Tim Lambert has made available raw data from the Lancet Iraq study.
I have run quick fixed-effects and random-effects poisson models on the data, which suggest a post-war mortality rate of between 80% and 250% above the pre-war level (i.e. a multiplier of between approx 1.8 and 3.5).
This approach allows for regional differences in mortality rates that are unobserved but time-constant.
The poisson model assumes no "over-dispersion", i.e. differences above those controlled for by the explanatory variables, such as differences by region in effect of the war and aftermath. The negative binomial model allows for overdispersion, and with Falluja in the data set, has a CI that includes no increased mortality. Excluding Falluja reduces the variance, and gives a CI from 8% to 120% increase (random effects).
Random-effects negative binomial regression Number of obs = 64 Group variable (i): place Number of groups = 32 Random effects u_i ~ Beta Obs per group: min = 2 avg = 2.0 max = 2 Wald chi2(1) = 5.71 Log likelihood = -115.06857 Prob > chi2 = 0.0168 ------------------------------------------------------------------------------ ndeaths | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- prepost | .4340295 .1816011 2.39 0.017 .0780979 .789961 _cons | 4.928958 1416.548 0.00 0.997 -2771.455 2781.313 personmonths | (exposure) -------------+---------------------------------------------------------------- /ln_r | 15.34534 1416.541 -2761.024 2791.715 /ln_s | 2.240766 .7886273 .695085 3.786447 -------------+---------------------------------------------------------------- r | 4617379 6.54e+09 0 . s | 9.40053 7.413514 2.003879 44.09944 ------------------------------------------------------------------------------ Likelihood-ratio test vs. pooled: chibar2(01) = 1.47 Prob>=chibar2 = 0.112 . lincom prepost,irr ( 1) [ndeaths]prepost = 0 ------------------------------------------------------------------------------ ndeaths | IRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 1.543464 .2802947 2.39 0.017 1.081229 2.20331 ------------------------------------------------------------------------------ . . hausman fixed_no_falluja . ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed_no_f~a . Difference S.E. -------------+---------------------------------------------------------------- prepost | .4178304 .4340295 -.0161991 .0820209 ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from xtn_fe B = inconsistent under Ha, efficient under Ho; obtained from xtn_re Test: Ho: difference in coefficients not systematic chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 0.04 Prob>chi2 = 0.8434