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We apply optimal matching techniques to class careers from age 15 to
age 35 for two moderately large samples, as a means of exploring the
utility of this sequence-oriented approach for the analysis of work-life
social mobility. We first apply multi-dimensional scaling techniques
to the inter-sequence distances generated by the optimal matching al-
gorithm in order to test whether the technique locates sequences in a
coherent and interpretable space. We find the space to be highly pat-
terned and reasonably interpretable. Next we run the two moderately
large samples (each approximately 1,500 sequences) through the anal-
ysis and examine the nature of the set of clusters that emerges. We find
the clusters to be distinct and an intuitively attractive grouping of the
sequences. Finally, we consider how the clusters are distributed across
cohorts: the distributions change markedly, though this islargely due
to changes in the distribution of classes over time. We briefly dis-
cuss means of separating ‘pure sequence’ change from changein the
gross ‘class time-budget’ of cohorts, and consider means ofapplying
statistical models to the problem. We conclude by endorsingOptimal
Matching Analysis, especially as a means of exploratory analysis of
longitudinal data.

Introduction: enthusiasm and scepticism
Data on individuals’ life histories can be represented as sequences of states, and
the sociological analysis of such data can benefit from the importation from other
disciplines of techniques designed to work with sequence data. This paper reports
our experiences applying a technique well-known in molecular biology, Optimal
Matching Analysis, to longitudinal data on class careers.

Techniques currently popular in sociology for the analysisof life-history and
other longitudinal data, such as models of transition matrices or hazard models, are
powerful and flexible, but generally do not deal with sequences holistically. The
inherent complexity of sequences (for ann-category state space, over a periodm
units long, there are

Pmi=1 ni different possible sequences), and the lack of tech-
niques to handle them directly, means that it is difficult to get an overview of the
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patterns in a longitudinal data set. Sequence analysis techniques such as optimal
matching appear to offer a useful addition to the longitudinal analyst’s tool-kit: the
ability to generate typologies of sequences empirically. They do this by calculat-
ing an inter-sequence distance measure which can subsequently be subjected to a
cluster analysis.

We came to Optimal Matching Analysis (OMA) with a mixture of enthusiasm
and scepticism. We are predisposed to be wary of black boxes,of cluster analysis
in general, and of claims that OMA and cognate procedures represent a movement
from variable-centred to narrative-centred analyses (Abbott, 1988), but a means
of comparingsequencesis precisely what existing analyses of longitudinal data on
class careers is lacking (Chan, 1995). Furthermore, the optimal matching algorithm
is, at leastprima facie, intuitively reasonable. We therefore decided to explore the
procedure, to see what sorts of results it generates and to see what sort of sense
it makes. We applied it to a problem Halpin had been dealing with using other
techniques (Halpin, 1993), namely to test for historical change evidenced in cross-
cohort difference in patterns of class mobility during the work life.

The Optimal Matching algorithm
Optimal Matching Analysis is a set of techniques routinely used by molecular biol-
ogists in the study of DNA or protein sequences, often as a tool for reconstructing
evolutionary trees. It was introduced into sociological analysis by Andrew Ab-
bott who has applied OMA to several substantive issues, suchas the development
of the welfare state (Abbott and DeViney, 1992), the order ofprofessionalisation
(Abbott, 1991), the careers of musicians (Abbott and Hrycak, 1990), and Morris
dances (Abbott and Forrest, 1986).1

OMA offers a means to analyse data in the form of complete sequences of
events, such as career histories. Its basic idea is very simple. Suppose the career
history of two people, observed at five-year intervals, can be represented as follows:� person A

– unskilled manual worker
– unskilled manual worker
– skilled manual worker
– unskilled manual worker
– unskilled manual worker� person B
– unskilled manual worker
– unskilled manual worker
– foreman
– small employer

What OMA does is to count how many substitutions, insertionsor deletions
(‘elementary operations’) are needed in order to turn sequence A into sequence
B, or vice versa. In this example, both A and B started their career as unskilled
manual workers. A took up a skilled manual job mid-way through his work life,
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but he returned to an unskilled manual position in the end. This is largely a case
of career immobility. In contrast, B became a foreman at about the same time as A
took up the skilled manual job. She then moved on to become a small employer.
One possible way to turn sequence A into sequence B is to substitute ‘foreman’
for ‘skilled manual worker’ (third observation), ‘small employer’ for ‘unskilled
manual worker’ (fourth observation), and then delete ‘unskilled manual worker’
(fifth observation).

Note that each elementary operation deals with a pair of units between two
sequences, rather than the position of these units in relation to other units in their
own sequences. In this sense, each elementary operation is blind to the temporal
order of events. However, in comparing two sequences a string of these elemen-
tary operations is carried out, and it is this repeated execution of local elementary
operations that carries the sequential and temporal information. Now consider that
each substitution, insertion or deletion incurs a ‘cost’ tothe pair of sequences un-
der comparison – the more substitutions one makes, the higher the cost, and the
greater the distance between the pair (the same for insertion and deletion). Opti-
mal matching algorithms are designed to find (or approximately find, where exact
solutions are impractical) the ‘cheapest’ set of transformations between sequence
pairs, and thus an overall similarity score (or distance score, depending on how the
calculation is programmed) can be given to each pair of sequences. Deciding these
costs is a key theoretical issue in OMA, to which we return later. But once such
comparison is repeated for all sequence pairs in the sample,we have a measure
of how much every sequence resembles every other. These similarity scores can
then be used in a clustering procedure which will suggest howmany clusters of
sequences there are, and what the typical sequence of each cluster looks like.

One major reservation we had to begin with was the relative indeterminacy of
cluster analysis. Cluster analysis is not supported by a large body of statistical rea-
soning. It can be sensitive to the specific linkage mechanismemployed – different
rules of cluster formation can give different solutions to the same data set. At the
same time, cluster analysis will always give a solution evenif there is no meaning-
ful structure in the data (Aldenderfer and Blashfield, 1984). Moreover, it can be
very sensitive to the actual sample it deals with, so a large sample is necessary in
order to expect to get repeatable, stable results. Similarly, since the clusters depend
on the sample, it is not possible to directly relate the clusters in one sample to those
in another: there is no guarantee that they will correspond.

We dealt with this reservation in two separate ways: first we avoided cluster
analysis altogether and examined the inter-sequence distances in terms of multi-
dimensional scaling (MDS), and second we used as large anN as possible in cluster
analyses of entire samples (we thus reduced sampling variability to the minimum
possible, and were able to examine how the distribution across clusters varied by
sub-group within the large sample, rather than having to compare separate sets of
clusters across subsamples).

However, as Abbott and Forrest remark (1986), there is an inherent problem
with analyses which involve procedures of pairwise comparison: the processing
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time required rises with the square of, rather than in directproportion to, the num-
ber of cases. This results in strong constraints on the size of sample we can deal
with. In the case of the MDS analysis we report below we could not exceed 400
cases at a time, but we managed to process entire samples (approximately 1,500
cases) in the cluster analyses.

Before reporting our findings, we briefly review existing tools for analysing
longitudinal work-life data.

Longitudinal work-life data and analysis

Analyses of class careers
Conventionally the analysis of social mobility is in terms of two-point inter-generat-
ional trajectories, analysed as a table of class of family oforigin by respondent’s
mature class position (see, for example, Goldthorpe, 1987). As fuller data came
to be available, three-point trajectories (class of origin, class at entry to the labour
market, mature class) were analysed (Goldthorpe, 1987, ch.5) A large body of
research now exists focusing on each of the two legs of this three-point journey.
Much research on education is addressed to the issue of how itplaces individuals
in the labour market, and how its effect coexists and interacts with the effect of class
of origin (e.g., König and Müller, 1986; Jonnson, 1993). Correspondingly, with
the collection of more and more longitudinal data covering the whole work life,
more analyses of work-life mobility are being carried out. However, the greatest
problem of longitudinal data is often its richness: it contains so much information
that it is difficult to use fully. Powerful statistical techniques can be applied to it,
but they almost always involve discarding some part of the information. For ex-
ample, the entry-class by mature-class table can be analysed by powerful loglinear
models giving useful insights into the overall structure ofthe processes govern-
ing work-life mobility. But this discards all information on what happens between
these two points.

A second approach translates the individual trajectories into class spells and
tabulates spells (i.e., one or more per individual) according to the class in which
they occur and their outcome (either transition to another class or persistence until
the moment of data collection, ‘censoring’) (Featherman and Selbee, 1988; Halpin,
1993, ch. 5). This has the advantage of focusing explicitly on the pattern of inter-
change between class locations, looking, as it were, at eachstepof the journey but
at the expense of losing all information on overall trajectory and on durations.

A third approach considers duration spent in various class as the most important
attribute (an early example of such analysis is provided by Rogoff Ramsøy (1975),
more recently Mayer (1991), Gershuny (1993)). We can analyse duration directly,
for instance, by modelling cumulative duration in each category in terms of the
mature class position (Halpin, 1993, ch. 5). This gives insights on the sorts of
background people in different mature classes have. However, it loses a great deal
of information too, as very many different career trajectories could generate the
same distribution of cumulated duration.
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Another very powerful technique, and one more amenable to the introduction
of explanatory variables, is hazard modelling (for a relevant application see Carroll
and Mayer, 1986). It represents a very searching look at the dynamics of transition
from one state to another, and can therefore take good account of both duration
and the individual steps of the trajectory. It can also take account of prior history
(and concurrent events) via time-dependent variables. Forinstance, in their anal-
ysis of how schooling and career experience affect entry rates into marriage and
motherhood, Blossfeld and Huinink (1991) incorporate a time-dependent variable
which measures the level of career resources. This variableis constructed to take
account of the number and length of previous spells of work, job changes, career
interruptions, and so on. Blossfeld and Huinink demonstrate how hazard modelling
can be skillfully exploited to take account of past history.But note that they were
guided by prior knowledge and theoretical models in their construction of the ca-
reer resources variable. In situations where prior knowledge is relatively thin, it
will be difficult to construct precise covariates that tap past history. In other words,
open-ended, exploratory attempts to understand patterns of sequence will not be as
well served by hazard modelling: if we try to include more than a small number of
variables representing history prior to the current state,we find it becomes quickly
unwieldy, and difficult to estimate (Halpin, 1993, ch. 6).

Each of these techniques is powerful, nevertheless. Furthermore, they are sup-
ported by conventional statistical theory, in which terms the results can be precisely
defined and interpreted, in regard to fit and significance. This is no small advan-
tage.

But how do we take holistic account of the career? How can we treat it as a
sequence? OMA seems to offer a way of doing this, though not, perhaps as yet,
with the full power that conventional statistics offers. Its greatest immediate utility
is the generation of empirical typologies of sequences: sequences by their nature
are highly detailed. The set of all logically possible sequences is enormous, and it
is impractical to attempt a systematic typology of the entire logically possible set.
However, it is clear that the sequences that actually exist are drawn from a highly
patterned subset of the possible set because there is a ‘logic’ to the progress along
the sequence. In terms of class careers this logic can be thought of in terms of
context-specific transition rates. This logic is the objectof our study, and therefore
not something we can use as an input, so the possibility of generating an empirical
typology of sequences, for further analysis, is very attractive.

Other approaches to sequence analysis
OMA is not the only method for the analysis of sequential data. In the context
of life-course and the labour market, various other techniques are currently in use.
These techniques tend to have simpler algorithms, and so they allow for easier
implementation or easier access to suitable software. But they are less general than
the optimal matching algorithm.

For example, Buchmann and Sacchi (1995) analyse occupational life-histories
of two cohorts of Swiss workers. They first apply factor analysis to a battery of
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occupational-level variables, reducing what would have been an intractably large
set of categories to a tractable five-dimensional space. However, their method as-
sumes there is a one-to-one correspondence between elements occupying the same
position or time point in two different sequences. Given this assumption, they
define the overall distance between two sequences as the meanof the distance be-
tween the sequences at each time point. The assumption of one-to-one correspon-
dence may be justifiable in certain situations, but it precludes taking account of the
possibility that similar patterns may display at differentplaces in the sequences.
Consider a simple situation where there are only two states,A andB (say, ‘in em-
ployment’ and ‘not in employment’). Suppose there are two sequences with the
following patterns:� Sequence 1:ABABABAB� Sequence 2:BABABABA.

We may think that sequences 1 and 2 are substantively the samein that both are
highly unstable, alternating rapidly between stateA and stateB. But given the as-
sumptions of one-to-one correspondence, the two sequencesare maximally differ-
ent from each other.

Degenne, Lebeaux and Mounier (1996) analyse the early labour market ex-
perience of a sample of young French women, with a tractably small state space
(unemployment, training, inactivity, different sorts of employment contracts,etc.).
Their approach is to summarise the career histories at discrete intervals, in terms
of (a) cumulated duration in the several states during that interval and (b) month-
by-month transition matrices. They then apply a factor analysis to the summary
variables, and use this as the basis for a cluster analysis. This method is attractive
because it makes use of information on both durations and transitions, but it is not
yet adequately explored.

Degenne et al. also propose a ‘blind’ technique that is interesting: it is blind
in that it makes no assumption about distances between states in the state space.
They define inter-sequence distance to be the sum, across observation points, of
the angle between the vectors of cumulated duration. That is,Dij =Xt cos�1(Xti;Xtj);
whereXti is a vector of the cumulated duration in the several states, of personi
at time t. This is attractive in that it will to some degree reflect the similarity of
sequences which have similar subsequences at different locations (if sequencei
has a late subsequence which occurs early in sequencej, its pattern of cumulated
duration will tend to converge with that of sequencej).

Dijkstra and Taris (1995) propose a method more closely related to optimal
matching, which uses a more complicated algorithm than Buchmann and Sacchi or
Degenne et al., but is simpler and less general than the full OMA algorithm. This
is implemented in a Macintosh program (Dijkstra, 1994). In areply to Dijkstra
and Taris, Abbott (1995) explores the relationship betweentheir method and his,
and sketches out a more general domain of sequence alignmentmethods within
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which specific techniques can be located and compared. Whilesome of Abbott’s
criticisms of the Dijkstra–Taris method are justified, in many respects the loss of
generality is compensated for by the simpler algorithm, andby the availability of
a social-science oriented implementation, albeit restricted to one type of computer.
However, the fact remains that their algorithm is less general than OMA.

Class careers: data and definitions
We use two separate data sets. For the MDS and the cluster analysis we use the
Irish Mobility Study (IMS) of 1973/4 (Jackson, 1974) and also for the cluster anal-
ysis we use the British Household Panel Study (BHPS, first wave 1991, Buck,
Gershuny, Rose and Scott, 1994). The Irish Mobility Study interviewed only men,
aged 18–64, and collected complete retrospective work-life histories. The BHPS
is, as its name suggests, a panel study, but over the first three waves enough data
were collected to construct retrospective work-life histories for the panel members.
Because the IMS did not collect information from women, and for compatibility
across the two samples, female BHPS respondents are excluded.

A further restriction is imposed: in order to have completely comparable data
for each respondent, only information up to age 35 is included, and respondents
aged less than 35 at the date of interview are excluded. This truncation is not re-
quired by OMA: the algorithm is entirely capable of calculating meaningful pair-
wise distances for sequences of different length. However,it simplifies the present
analysis, especially in relating OMA to other measures, such as cumulated dura-
tion, where the restriction is more relevant. In other contexts it seems entirely
appropriate to include short sequences, or to look at mobility after age 35. Each
remaining respondent contributes a sequence representinghis career from age 15
to age 35, one datum per three months, coded according to the seven-category
‘EGP’ variant of the Goldthorpe class scheme with one variation: an eighth cate-
gory, indicating ‘not-yet-in-labour-market’ is added. See Table 1 and Erikson and
Goldthorpe (1992), pp. 35ff, especially figure 2.1.

[Table 1 about here.]

We choose to formulate our study in terms of class mobility partly because of a
substantive interest in social mobility; we could have framed our study differently,
say, in terms of job mobility. The important thing is that thestate space should be
relatively small, so as to keep the matrix of substitution costs manageable.2 The
state space we end up with satisfies this criterion, and provides a set of categories
which are reasonably familiar to sociologists. The substantive justification for in-
cluding the extra pre-entry state (which is added to the sequences on the left where
entry to the labour market is after age 15) is to avoid having sequences of differ-
ent length, or which start at radically different ages. Thisis a relatively arbitrary
choice, as OMA copes equally well with sequences of uneven length.

Determining the substitution costs
The heart of the optimal matching algorithm is the use of a setof ‘elementary oper-
ations’ (substitution, insertion, deletion) to calculatehow to change one sequence
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into another. It is ‘optimal’ in that it finds the least expensive set of elementary
operations, but in order to make this calculation, it must know the cost of each
operation. Thus, putting a value on substitution andindel (i.e., insertion/deletion)
costs is a necessary but problematic part of doing OMA. Substitution cost in this
sense is a measure of the difference between states in the state space. What differ-
ences the investigator chooses to identify, and the values put on them, are external
to the optimal matching algorithm. They will have an effect,and possibly a strong
effect, on the resulting inter-sequence distances. Setting costs can be regarded as
one of the main points of theoretical or substantive input into the algorithm.

For the present exercise we borrow from the ‘hierarchy’ component of Erik-
son and Goldthorpe’s core model of intergenerational social mobility in assigning
substitution costs (1992). Erikson and Goldthorpe argue that the three hierarchi-
cal levels capture broad differences among social classes in terms of the resources
they offer as class of origin and their desirability as classof destination. We take
these hierarchical differences as crucial forces shaping work-life mobility as well.3
Given this scheme, the substitution costs are as assigned asfollows: the greatest
closeness is between identical elements, and as Table 2 shows, this zero-distance
substitution results in a closeness score of 4. The next greatest closeness is between
classes at the same hierarchical level, and thus for instance the score for a III–IVab
substitution (i.e., routine non-manual to self-employed) is 3. Substitutionsacross
one level boundary (e.g., from I–II to III, salariat to routine non-manual) score 2,
those across two boundaries (e.g., I–II to VIIb, salariat to agricultural labourers)
score the minimum closeness of 1. (It is important to bear in mind the distinction
between the state space through which the sequences move – the 7 EGP categories
plus the waiting state of ’not-yet-in-labour-market’ – andthe 3-category grouping
we use to relate the eight states. Mobility is constituted bymovement between
the eight categories; the use of the three hierarchy categories simply allows us to
judge certain pairs of states as more different than others.) We set the cost ofindels
relatively high, at 3.

[Table 2 about here.]

As for the eighth category of ‘not-yet-in-labour-market’,since we are not par-
ticularly interested in this category for its own sake, we treat it as completely ‘like’
each of the seven class categories (with a closeness score of4). This de-emphasises
it, and give more weight to the portion of the sequence in the labour market. The ef-
fect is to judge sequences ‘XABC’, and ‘AABC’ more similar than ‘XABC’ and ‘ABCC’,
where ‘X’ is the pre-entry state.

Multi-dimensional scaling: what is this space?
OMA generates a similarity (or distance) score for every pair of sequences under
consideration. As an alternative to using this informationin a cluster analysis it is
interesting to examine the space implied by these scores: dothe intuitively reason-
able elementary operations used in aligning pairs of sequences result in a coherent,
stable and meaningful space?
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To this end we partitioned the Irish sample into six five-year-wide pseudo-
cohorts, applied OMA to the cohorts, and thus generated for each cohort similarity
scores for all sequence pairs. For each matrix we extracted the first three principal
components (this constitutes a simple form of classical multi-dimensional scaling;
we stopped at three dimensions simply because that is the limit for convenient vi-
sual inspection). We were mainly interested to see if the sixcohorts showed similar
patterns, and whether the placement of the sequences in space seemed meaning-
ful. If the subsamples showed unstable patterns it would suggest that the method
of determining inter-sequence distances was overly sensitive to the actual sample,
whereas if they seemed stable then at least the space, if not the clustering within it,
could be expected to be stable across samples.4

In the event, we were reassured by what emerged. Each sample generated a
three-dimensional scatter roughly in the shape of a tetrahedron, with different types
of sequences well separated and, most importantly, with similar sequences occu-
pying similar locations in each plot. All six plots are reproduced in the appendix
(see figure 4), but the plot for cohort 6 is reproduced in figure2 with annotations.5

[Figure 1 about here.]

[Figure 2 about here.]

In the analysis we had the substantial advantage of access tointeractive ani-
mated three-dimensional scatterplots (XLispStat’s spinning scatterplots: Tierney,
1990). Coupled with the ability to use the mouse to read a label for each data
point (the labels concisely summarized each sequence), this made it much easier
to find patterns than it is to reproduce them on paper. The closest we can come
is a scatter-plot matrix, which presents three views of the data cloud, in plan, el-
evation and side-elevation. To read these, it is perhaps best to start by looking at
figure 1, which presents a familiar structure viewed in an analogous manner. Fig-
ure 2 presents the first three principal components of the inter-sequence distances
for cohort 6 in the same orientations: these three trianglesrepresent a tetrahedron
(it may help to keep the heads in mind when viewing this plot).

The most notable features about the tetrahedron are its apices, each one is oc-
cupied by a sequence that represents 100 per cent of the career, i.e., twenty years,
in a given class. The four apices thus represent classes I–II, V–VI, VIIa and VIIb
(respectively the salariat, skilled and supervisory manual work, semi- and unskilled
manual work and agricultural labour). Data points very nearthe apices are typi-
cally careers consisting of slightly late entry followed byunbroken careers in the
appropriate class. Moving further away from the apex, the careers show increas-
ingly long prior spells in other classes. Tracking along an edge of the tetrahedron
from the apex, the sequences typically change from 100 per cent of the relevant
class to mixtures of that class and the one towards whose apexyou are moving.
However, there is a lot of empty space, as there are limited numbers of sequences
in the analysis.

Classes III, IVaband IVcd (routine non-manual work, self employed and small
employers, and farming) do not feature on apices of the tetrahedron, but have
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specific and separate locations within it. Very likely, if wewere able to repre-
sent higher-order dimensions these would also emerge as apices. As with the 3-
dimensional apices, the point indicating 100 per cent careers in these classes is
surrounded by very similar careers, with similarity reducing as distance increases.

[Figure 3 about here.]

Figure 3 focuses in on one of these apices in detail, that dominated by class I–II
(this is the top apex of the two bottom cells of figure 2). This feature is visible in the
body of, and in the same orientation as, the top–left cell of figure 2. This has two
clear features, a well-populated line running approximately northwest–southeast in
the diagram, and another less well-populated line more-or-less at right angles to it.
All the data points in the main line are composed of complete careers in class I–II,
after late entry (in this subsample there are no complete class I–II careers starting
at age 15). The amount of time spent in the class varies from 17years (at the top–
left) to 7.25 years, and it varies monotonically along the line. The data points to the
side also represent long spells in class I–II, with prior experience in other classes;
the further from the main line, the longer the prior experience. This sort of pattern
is also visible in the other apices.

This exercise reassures us. First, the pairwise similarityscores generated by
OMA populate the 3-dimensional space in a coherent and patterned manner: sim-
ilar sequences are placed adjacent to each other while unlike sequences are placed
further apart. Secondly, the observed patterns are, broadly speaking, stable across
the 6 cohorts. Thus, it seems that the core algorithm of optimal matching are not
overly sensitive to sampling variation. Thirdly, it becomes clear that, as an al-
ternative to cluster analysis, one can use the extracted dimensions from MDS to
characterise the sequences.6
Optimal Matching and larger samples
Having satisfied ourselves that the algorithm generates a reasonably stable multi-
dimensional space, we now take a second approach to the problem of the sample-
sensitivity of cluster analysis. This approach consists inusing as large a sample
as possible at one time, for two reasons: (i) to reduce the indeterminacy of cluster
analyses, which is particularly acute in small samples and (ii) in order to be able to
compare the distribution of subgroups across asingle setof clusters, rather than to
compare several sets of clusters, each generated within subgroups of the sequences.

The two samples, IMS and BHPS, represented respectively about 1,300 and
1,600 entire career sequences from age 15 to age 35, coded into eighty three-month
periods. However, there are significant numbers of duplicates in the samples, and
excluding these reduces them to the order of 1,000 distinct sequences.7 There is
no point in including duplicates, as the pairwise distanceswill be identical, and
the clustering algorithm does not weight according to cluster size (in all analyses
subsequent to the clustering the duplicates are replaced).

Sample size is a problem for analyses like optimal matching,primarily be-
cause the resources needed tend to rise with the square of thesample size, but
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also because longitudinal data is necessarily ‘larger’ andmore complex than cross-
sectional. The ‘square’ problem arises because we compare each case with each
other case. The 1,000-case analyses took of the order of forty-five minutes of CPU
time on a fast VAXStation. But despite the fact that it is a problem, it is our opin-
ion that,paceAbbott and colleagues (Abbott and Forrest, 1986; Abbott, 1988), it
is a problem that is necessary to face. For a given set of states, the set of all pos-
sible sequences is extremely large. And even though the set of empirically likely
sequences is a small subset of this set, it is still a very large set. Any sample will
of necessity contain only a tiny fraction of the possible sequences, and while the
bulk of them will be typical (e.g., in the career context, entire sequences of one
state, or sequences which switch once at or near a particularpoint) and will oc-
cur reliably from sample to sample, a large proportion of them will be relatively
unusual, simply because they are detailed. Thus a significant proportion of each
sample, if repeated samples were collected, would consist of sequences relatively
unlikely to correspond closely to sequences in other samples. This is simply be-
cause sequences have more potential to vary than conventional variables do. Thus
analyses, anda fortiori cluster analyses, may be overly affected by small num-
bers of atypical cases. From this point of view, even 1,600 sequences may be an
inadequate sample.

Looking for historical change
Our interest in looking at career data as sequences arose from an existing interest
in historical change in social mobility during the work life. In particular, different
summary measures of work-life mobility yield different conclusions about change
in the underlying mobility regime: in the IMS the association between entry point
and class at age 35 is stable, once changes in class distributions are controlled for,
while measures which take more information from the career sequence than its
start and finish (analysis of all spells, pooled and tabulated by class of spell and
outcome of spell; analysis of cumulated duration in each category by class-at-35;
see section above) show some evidence of change across cohort in the underlying
mobility structure. What can OMA, a technique which analyses sequencequa
sequence, tell us about historical change in work-life mobility pattern?

Generating and identifying the clusters
In answering this question, we encountered various problems. First, as mentioned
above, there is the problem of computing power. But after that comes the problem
of interpreting output. It is not immediately obvious how tointerpret a dendrogram
which spreads over several pages. There may be better, automated, strategies, but
we simply examined the dendrogram in order to identify clusters. There is no
guarantee that tight easily identifiable clusters will emerge either: inspection of the
three-dimensional scatterplots above, for instance, shows that though there clearly
is a structure there are no tight clumps. Thus the borders between clusters, and the
number of clusters that emerge, are arbitrary, depending onhow the investigator
decides to delineate them.
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We used a simple rule of thumb: taking the dendrogram, draw a horizontal
line halfway between the top of the diagram (indicating the distance between the
final two clusters) and the bottom (indicating the distance between identical data
points, i.e., zero) and count the vertical lines crossing it, treating each one as the
root of a cluster. Were we to move this line up, the number of clusters would fall
as adjacent clusters became linked in the tree, andvice versawere we to lower it.
Though arbitrary, this rule has the virtue of simplicity, and in the two samples we
used it on, of generating a reasonable number of distinct clusters, but it has short-
comings. First, it will probably generate several tiny clusters, including singletons,
of sequences relatively unlike others. Secondly, it will also tend to pick out one
or more very large clusters, and these clusters may well be composed of quite dis-
tinct sub-clusters. In the former case, at least in the extreme, singletons and very
small clusters can be amalgamated into a residual category (which must not be re-
garded as a ‘cluster’ since its members will be more like other clusters than like
each other). Where very large categories are clearly divisible into smaller clusters,
this is an attractive thing to do, but it is not always cleanlypossible: very often to
remove a sub-cluster from a large cluster leaves behind a relatively disparate set, or
the sub-cluster may be composed of sub-sub-clusters which are nearly as different
from each other as the sub-cluster is from the remainder of the cluster. But this
is part and parcel of cluster analysis – its use is far more satisfactory where there
is a strong theoretical rationale for it, as there is in comparing DNA sequences in
evolutionary terms.

Though this procedure is messy, it does generate a set of useful and informative
categories, and it does separate the career sequences into sensible groups. Inspec-
tion of the clustered and aligned sequences shows how similar the clusters are, and
it is often easy to recognise sub-clusters within the clusters, by the relatively minor
dissimilarities between adjacent sequences.8 However, while the clusters are very
easy to characterise in a general way, it is impossible to characterise them formally
and exhaustively, that is, to define rules which will replicate the clusters exactly or
close to exactly. This is largely because the clusters will contain small numbers of
sequences whose similarity to the core sequences is less obvious. One cluster may
be typified by large numbers of sequences such as the following:EEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEFFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF
(a long spell in category E followed by an approximately equal spell in category F)
which may be accompanied by sequences likeHHHHHEEEEEEEEEEEEEEE EEEEEEEEEAAAAAAAAFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF
andHHHHHHHHHHHHBBBBBBBB BBBBBBBBAAAAAAAAFFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF.
The second and third are quite like each other, and thereforewill cluster together,
but only the second is like the typical, first, sequence. Thusthe third is ‘chained’
into the cluster. This is correct behaviour in terms of the clustering algorithm, but
it is not possible to replicate in a set of simple rules.

It is more useful to take the clusters ‘as given’ and use them as an input to
further analysis. In the remainder of the paper we present and analyse the cluster
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sets we derived for the full IMS and BHPS samples.

The cluster sets
The IMS data generates 16 distinct clusters, plus a residual, while the BHPS breaks
down into 9 plus 1. The fact that more clusters are identified for the IMS than for
the BHPS may reflect greater historical change in the Irish sample: agriculture
underwent a significant decline over the period while industry began to get estab-
lished; in the period the BHPS data covered, the magnitude ofthe change may
have been less (there the shift is out of heavy industry, and into white-collar work).
Visual inspection also suggests that the Irish data contains more careers with many
short spells, often but not only representing seasonal workin agriculture. These
patterns of sequences in these clusters are described briefly in Tables 3 and 4.

There are too many categories to discuss in detail, but it is worth noting certain
features. In the Irish data the largest single cluster is that containing long, usually
permanent, careers in agricultural labour, class VIIb. This is approximately six
times the size of the most similar cluster in the BHPS data, a difference due en-
tirely to the different sizes of the two countries’ agricultural sectors. That we can
identify corresponding pairs of clusters in the two samplesis due to the fact that
the typical sequences involved are extremely simple, tending towards 100 per cent
in one state. This is in turn due to the fact that agriculturallabour is, for some
people at least, a relatively absorbing location (the exception would be farmers’
sons, who may well become farmers themselves). Another location which tends to
produce ‘simple’ sequences is the salariat, class I–II (professional and managerial
workers). Positions in the salariat tend to be secure, so thehazard of exit from
the class is relatively low, and therefore long spells are common. It is also often
entered directly from higher education, because of the strong role of qualifications
in controlling entry, and therefore the pattern of late entry followed by an unbroken
spell in the class is typical. In the IMS this pattern emergesas a distinct cluster (8)
but in the BHPS, while the most similar cluster is much larger, experience prior to
class I–II is more various. This is partly due to the fact thatthe salariat is simply
larger in Britain over the period covered by the BHPS, but there is also distinctly
more variety in routes into it.

The clustering identifies features of the data that conventional summaries of the
sequences will miss. For instance, the distribution of cumulated time in different
classes will be similar for individuals in IMS clusters 6 and14, or BHPS clusters
2 and 9, but the fact that the order of the classes is reversed will be lost: clusters 6
(IMS) and 2 (BHPS) represent downward mobility from skilled/supervisory work
to semi-skilled work, while clusters 14 (IMS) and 9 (BHPS) represent the opposite.

Having generated the clusters and inspected them at length,we find with some
satisfaction that it is relatively easy to characterise theclusters verbally, and dis-
tinctly. That is, the contents of the clusters are relatively homogeneous and the
clusters are relatively distinct, when looked at as class careers. In other words, the
optimal matching and clustering does, at first blush, generate a reasonable ‘em-
pirical typology’ of career sequences. It is not, of course,a definitive typology:
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different matrices of substitutions costs would generate different clusterings. But
it does make sense at an intuitive level. We regard this as a second reason to be
reassured about optimal matching.

[Table 3 about here.]

[Table 4 about here.]

Simple inspection shows that the clusters are distinct, butwe can add a little
precision by examining them in terms of more conventional measures of work-life
mobility. We can look at how the clusters spend their time, and where they end up.
Tables 5 and 6 present the mean cumulated duration in each of the eight states, for
the two samples. The rows sum to twenty years, and present the‘average’ class
time-budget for a member of each cluster, between ages 15 and35.9 The first thing
to notice is how different the two samples are: in the Britishsample over 80 per cent
of the person–years are spent in classes I–II, III, V–VI and VIIa, compared with just
over 50 per cent for the Irish sample. In Ireland the two agricultural classes account
for almost 40 per cent of the time, compared with just 4 per cent in Britain. Thus we
cannot expect the clusters to be similar across the two surveys, simply because of
the gross differences in the distribution of the ‘material’out of which the sequences
are constructed.

Even at the level of cumulated duration (which is a lossy, or information-
discarding, representation of the sequence information) we see that the clusters are
all distinct (though certain ones do have similarities, as remarked above, page 13).
For instance, while clusters 2, 7 and 8 of the BHPS sample all account for substan-
tial proportions of time in class V–VI, skilled and supervisory workers, how they
spend the rest of their time is very distinct: respectively,unskilled manual (VIIa),
nowhere much (i.e., most time is in V–VI) and the salariat (I–II).

Class ‘destination’ or mature class position is an even morelossy way to repre-
sent a sequence, since it reduces each sequence to a single data point. However, it is
a very important summary, because the mature position is most likely a very stable
one, and one which has a very large bearing on the individual’s life-time situation.
From this point of view also, the clusters are very distinct.Of the 16 proper clusters
in the IMS, 12 are clearly dominated (i.e., over 75 per cent) by a single class-at-35.
Since there are only 7 class categories, this implies some overlap: clusters 7 and 8
in particular. This pair are 100 per cent in class I–II at age 35 and therefore com-
pletely indistinguishable in these terms. Clusters 4 and 6 are dominated by class
VIIa, semi- and unskilled labour, clusters 9 and 10 by farming. Byreference to the
table of duration, or by the descriptions of the clusters in Table 3 we can see how
distinct are the histories which lead to these similar or identical outcomes: cluster
4 spends over 17 years in class VIIa while cluster 6 spends less than 12, making
up the difference in class V–VI, supervisors and technicians. However, only by
looking at the clusters do we really see how the outcomes are arrived at, and see
that cluster 4 is typified by long absorbing spells in class VIIa, cluster 6 is typified
by downward mobility into VIIa from V–VI.

[Table 5 about here.]
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[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

Cross cohort change
Our purpose in generating an empirical typology of sequences is to see how its
distribution varies with respect to other variables. That is, we want to use the
clusters as an input to further analysis in which we ask, in what way does the
pattern of sequences change in relation to other variables.In principle, any other
variable could be used: sex, geographical region, educational qualifications, and so
on, but since we are interested in historical change we opt touse cohort.10 When
considering sequences holistically we cannot really access historical time other
than as cross-cohort contrast, as the sequences are by theirnature not located at
single time points but exist over a period. Tables 9 and 10 present the distribution of
clusters across the three cohorts in both samples. (In the IMS, the cohorts are those
born approximately 1908–17, 1918–27 and 1928–37; in the BHPS 1927–36, 1937–
46 and 1947–56.) Both tables show substantial change from cohort to cohort. In the
Irish data, the biggest change is in cluster 1, the main cluster for agricultural labour,
which declines by almost two thirds. IMS cluster 8 (and also the smaller cluster 7)
show systematic rises as the importance of class I–II increases. Cluster 16, typified
by long spells in class V–VI, supervisors and technicians, also rises substantially.
In the BHPS, clusters 1 (largely VIIb) and 7 (largely V–VI) fall systematically
while clusters 2 (V–VI switching to VIIa) and 4 (I–II) rise.

[Table 9 about here.]

[Table 10 about here.]

Thus at one level we immediately see historical change across the clusters.
However, have we found anything new? We already knew from allsorts of more
conventional measures that changes like these were taking place: IMS cluster 1
falls simply because agricultural labour was in sharp decline over the period the
data cover; IMS clusters 7 and 8 rise with the historical riseof the salariat, and
cluster 16 rises with industrialisation and the increase inclass V–VI jobs. BHPS
cluster 7 falls with the decline of heavy industry in Britain, and cluster 4 rises with
the relentless increase in class I–II. Perhaps the rise in cluster 2, representing down-
ward mobility from class V–VI to class VIIa (skilled to unskilled work in industry)
is interesting. Certainly it would show up in a table of spells tabulated by class-of-
spell, outcome and cohort, but inspection of the clusters and their tabulation across
cohort makes it more intuitively clear that something systematic is happening.

A class-career is composed of person–months (or person–days, person–quarters
or whatever) in various categories, and is situated in real historical time. At any
moment in historical time, the distribution of classes is fixed – each class position
is contributing exactly one person–moment to an individual’s class career. Over
time, the individuals move according to their desires and opportunities, and the
class distribution changes as a result as their career sequences develop. Thus there
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is a strong relationship between the period-wise distribution and the distribution
of sequences, though because the sequences are longitudinal this relationship is
complex. Within cohorts, there is a similar relationship between cumulated du-
ration and sequences. If we consider the cohort-wise distribution of cumulated
duration as a pool of person–quarters out of which the sequences are built, and
we take note that the clusters have a particular distribution of person-quarters, we
see that at least some of the difference in the distribution of clusters across cohorts
is driven by the difference in the pooled distribution of person-quarters across co-
horts. Tables 11 and 12 show that the distribution of time in the various states is
quite different across the cohorts and thus that a large amount of the change in the
distribution of clusters is driven by this more general change. The IMS shows more
overall change, with classes I–II, III, IVaband V–VI showing systematic rises, and
VIIb falling sharply; the BHPS shows a rise in class I–II, a fall inclass V–VI; both
samples show rises in time before entry to the labour market.

[Table 11 about here.]

[Table 12 about here.]

However, it is likely that there is some variation in the distribution of clusters
across cohort which is not driven by this change in time-budget across cohort.
We can regard this as net difference in sequences in some respect. Can we get at
this ‘pure sequence’ change, and identify what portion of itis a result of people
doing different things over and above the differences forced by change in the class
distribution? And if we could, what would it mean? If there were no pure-sequence
change, that would suggest that the distribution of sequences changed only to the
minimum extent forced by the change in the distribution of person–moments, and
that insofar as possible, people took the same type of routes. If there were some
pure-sequence change, this would mean that some individuals were taking different
routes through the possible space.

We have experimented with some statistical models of cross-cohort change
in an effort to control for cohort change in the overall distribution of time. This
work is incomplete and therefore we do not report it in detail. We discuss it here
primarily because it appears to be a sensible direction for further research on se-
quence alignment methods, and an essential direction to take if such methods are
to have more than exploratory application. Our core idea is to analyse a table of
cluster by cohort by time-budget, with each observation representing a person–
quarter. That is, we pool all person–time-units and tabulate them according to
cohort, class, and the cluster the sequence belongs to. The marginals of the table
thus represent the cohort/cluster table, the cohort/class-time-budget table and the
cluster/time-budget table, though the first of these is multiplied by the length of the
sequence as each sequence contributes one observation per element. Fitting a log-
linear model containing all three two-way interactions andthen assessing whether
the three-way interaction (or a subset of it) is needed is a means of ‘controlling for’
the gross change and searching for change across cohort in the ‘pure sequence’
pattern. However, loglinear models are not satisfactory because each individual or
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sequence contributes eighty observations, and these observations tend to be highly
dependent: most class spells last much longer than three months and therefore if an
individual contributes one observation in a given category, he is likely to contribute
many. This inflated number of observations means that most additions to the model
reduce the deviance far too much and thus it is next to impossible for a variable or
interaction to be judged insignificant. A more satisfactoryalternative is to treat the
cell counts as values of a continuous variables, and fit a linear regression model
instead, with cell count as they-variable. In our limited experiments, this shows
some power to discriminate changes in the underlying structure, after controlling
for change in the distribution of time. However, this work ispreliminary, and we
are open to suggestions as to how to advance it.

[Table 13 about here.]

[Table 14 about here.]

Conclusion
In broad terms, we find that Optimal Matching Analysis works as a means of grasp-
ing sequences holistically, and that its application to class careers is worthwhile.
It does seem to mutually place career sequences in a way that makes sense, and
the clusters it generates do constitute a useful empirical classification of the se-
quences. As a means of looking at longitudinal data it is excellent: when sequences
can be grouped on the basis of similarity it is much easier to get an overview of
the patterns, either visually or by tabulating the empirical typology generated by
the clustering against other variables. For this feature alone it is worth applying
to longitudinal data sets, as an ‘Exploratory Data Analysis’ technique; because of
the extra complexity of longitudinal data it is quite hard toget an overview of it
otherwise.

Other techniques for analysing longitudinal data can link much more effec-
tively into the power of conventional statistical method, and without doubt provide
very solid insights into longitudinal processes (and it must be remembered that the
sequence is just the trace of the longitudinal operation of these processes, an epi-
phenomenon). The cost of their greater power is a narrower focus. The means of
grasping sequence holistically is an important complementto these techniques.

Correspondingly, it would enhance the value of OMA if it could be linked
directly into statistical modelling. We have only just begun to think about this but
would encourage work in this direction.

Appendix: Software
The software we used for the sequence alignment and the cluster analysis isPileUp,
a program in the Wisconsin Package of the Genetics Computer Group Inc.PileUp
conducts a progressive pairwise alignment of sequences, a simplification of the
method described by Feng and Doolittle (1987). Since it doesnot compare every
possible pair of sequences, but rather proceeds by aligningthe two most similar
sequences, and then aligning further sequences with the cluster, it is significantly
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quicker than other methods, but produces a multiple alignment which is not strictly
optimal. We are grateful to Liz Cowe of the Department of Pathology in Oxford
for giving us access to this software, and for her time spent in helping us use it.

[Figure 4 about here.]
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Notes1A useful general discussion of sequence matching techniques is contained in
Sankoff and Kruskal (1983).2The algorithm can in principle deal with calculating substitution cost quanti-
tatively: if each state has a score or value, or a vector thereof, the substitution cost
could be calculated dynamically as some function of the difference between pairs
of states’ scores, such as absolute difference, or Euclidean distance.3While attractive, this is not definitive: it leaves out several other dimensions,
for instance sector: the resulting clusters would certainly be different if we ac-
knowledged that, for instance, agricultural labour is closer to farming than to un-
skilled work in industry. Different substantive ends will be served by different
substitution matrices.4This claim depends on the space being a function of the data state-space, the
substitution matrix and the optimal matching algorithm, and not of the actual sam-
ple of sequences. Of course, different samples will differ in how well they permit
the MDS exercise to map out the space.5The earlier cohorts’ plots in the appendix look rather more like flat-irons than
tetrahedra: this is largely because these cohorts’ class distributions are different,
with far fewer spells in I–II (the salariat) in particular, and thus the space is popu-
lated differently.6Of course, this is a very superficial analysis and we have not identified how
the space is structured. Nor have we looked in detail at how problematic sequences
are placed (for instance,AAABBB relative toBBBAAA, AABBB relative toAACBB orAAABB, etc.). Nor have we looked at how the implied space varies when the input
distance matrix is changed (this should be particularly enlightening).7PileUp, the matching and clustering program we used, had to be recompiled
to cope with this number, but since its default is a maximum of300 extremely long
sequences (more in later versions; ‘long’ means some thousands of elements) it is
well able to deal with relatively large numbers of short sequences (eighty elements
in our case).8Visual inspection is vastly eased by colour coding the sequences: we repre-
sented our twenty-year sequences as rows of eighty characters in a text file, in the
order of alignment, and using either a simple program to print the sequences to
screen interspersed with appropriate ANSI colour codes, ora colour-capable editor
(e.g., GNU Emacs), it is convenient to browse the entire sample and get a good
impressionistic overview of the distribution of sequences. As an exercise this is
worth doing even if there no further interest in optimal matching, but where the
main concern is with more conventional analyses of longitudinal data such as haz-
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ard models, because such an overview is informative and gives a good feel for the
data.9Of course, ‘average’ is a fiction: most individuals have verysmall numbers of
distinct spells so no one will have non-zero cumulated durations in all categories.10In the MDS analysis we used six five-year wide cohorts in orderto have a
small enough sample, but here we use three ten-year wide cohorts for the opposite
reason: to ensure adequate cell sizes in the tabulations.
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comme instrument d’analyse du marché du travail. Troisièmes journées
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Figure 1: An aid to read the 3-D scatterplot matrix in fig. 2. The three views of the
head correspond to the three views of the three-dimensionaldata cloud.
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Figure 2: The first three principal components of the inter-sequence distances for
cohort 6, Irish Mobility Study.
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Figure 3: Zooming in on the I–II apex (IMS, cohort 6).
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Figure 4: The first three principal components of the inter-sequence distances, for
all six IMS cohorts.
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Table 1: Outline of the state space, which is based on the EGP class scheme.

Class Description
I–II Professional and managerial
III Routine non-manual
IVab Self-employed and small employers
IVcd Farmers
V–VI Supervisory and skilled manual
VIIa Semi- and unskilled manual
VIIb Agricultural labour
X Awaiting entry to labour market (not an EGP category)
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Table 2: Determining substitution costs.

The three groups
Group 1 I–II
Group 2 III IVab IVcd V–VI
Group 3 VIIa VIIb

Pairwise ‘closeness’ matrix
I–II III IV ab IVcd V–VI VII a VIIb X

4 2 2 2 2 1 1 4
4 3 3 3 2 2 4

4 3 3 2 2 4
4 3 2 2 4

4 2 2 4
4 3 4

4 4
4
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Table 3: The IMS clusters.

Cluster N Brief Description
1 283 Long, usually absorbing, spells in VIIba, some include

short spells (5–7 years) in VIIa. Exits from VIIb tend to
be late.

2 130 First 10–15 years in VIIb, leading mostly to IVcd, but also
IVab and/or V–VI.

3 60 Two sub-clusters: (i) about 10 years in VIIb, followed by
10 years in VIIa; (ii) long spells in VIIa leading to very
short spells (2–3 years) in III, IVab, IVcd or V–VI.

4 198 Long spells in VIIa, sometimes preceded by very short
spells (3–4 years) in V–VI, III or, more typically and
slightly longer, VIIb.

5 31 10 to 12 years in VIIa, followed by spells in III, IVab,
IVcd or V–VI.

6 29 6 to 8 years in V–VI, leading to spells in VIIa.
7 28 Work-life mobility into I–II after 5–8 years in III.
8 66 Direct late entry into I–II.
9 43 Long spells in IVcd, preceded by short spells in III, IVab,

V–VI, VII a or VIIb.
10 30 8 to 10 years in VIIb, leading to IVcd.
11 43 Spells in III lasting 10–12 years, followed or precededby

spells in I–II, IVab or IVcd.
12 51 Direct entry into III.
13 44 Long spells in IVcd, preceded by spells in I–II, III, V–VI,

VIIa or VIIb.
14 40 10 to 12 years in V–VI, preceded by spells in VIIa or VIIb.
15 35 Very long spells in V–VI, leading to IVab, IVcd or VIIa.
16 137 Very long spells (16–18 years) in V–VI, preceded by VIIa

or VIIb.
17 61 Residual category.

Note: (a) Class categories are described in Table 1
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Table 4: The BHPS clusters.

Cluster N Brief Description
1 51 Dominated by long, usually absorbing, spells in VIIba
2 61 Long V–VI, followed by long VIIa. There are two large

subgroups apparent, differing in when the transition
takes place – about 25 and about 30.

3 237 Dominated by long late VIIa, with varying back-
grounds, including V–VI. Typically 15yrs+ in VIIa

4 406 Seems to be the main I–II cluster. Second half or more
is I–II, though there is a subgroups of 14 cases with
late entry direct to I–II after age 32. Heterogeneous
subgroup of 21 at the end has transition to V–VI, III,
IVab around age 30.

5 159 Typified by long spells in III (10-20 yrs), generally
staying, though with several subgroups exiting to I–II,
VIIa and IVab. Two substantial subgroups exit to I–II at
about 30 and about 33/34. Subgroups with prior spells
in VIIa, V–VI and I–II, generally settling by early/mid
20s.

6 43 The petty bourgeoisie: entry by 25, usually. Only 3 ex-
its. Main entry is from V–VI in 20–25 age band. Sub-
groups from I–II and III.

7 498 Skilled manual. Apart from 21 which switch to IVab
around 30, dominated by long absorbing spells in V–
VI. Typically at least 10 years, large inflow from VIIa
around 18–20, large numbers of entire 20 years or late
entry. Some other small subgroups with outflow to
other classes fairly late. Exit to I–II happens towards
34 in a handful of cases.

8 57 V–VI to I–II after age 25. A subgroup go through III
on the way.

9 52 First 10 years in VIIa, leaving almost all to V–VI, some
to IVab.

Residuals 27 One cluster starts in I–II, spends time in VIIa, exits to
V–VI or IVab, a second enters IVcd around age 25, a
third switches from VIIa to I–II around age 27–31.

Note: (a) Class categories are described in Table 1
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Table 5: IMS: The class time-budget ‘signature’ of the clusters.

Person–years in
Cluster I–II III IVab IVcd V–VI VII a VIIb Pre- Total

entry
1 .00 .03 .02 .08 .10 1.06 18.36 .35 20.0
2 .00 .02 .63 4.21 .55 1.00 12.99 .60 20.0
3 .06 .39 .55 .24 .66 10.74 6.72 .64 20.0
4 .00 .20 .02 .01 .38 17.34 1.47 .57 20.0
5 .00 2.73 .98 .92 1.72 11.67 .91 1.07 20.0
6 .00 .47 .10 .00 6.86 10.92 .98 .68 20.0
7 10.94 3.73 .11 .18 .92 1.02 .69 2.41 20.0
8 13.29 .17 .00 .00 .04 .03 .18 6.28 20.0
9 .01 .58 .27 15.18 .41 .66 2.01 .88 20.0
10 .00 .01 .00 11.08 .00 .28 8.28 .34 20.0
11 2.28 12.25 .70 .44 .91 1.07 .41 1.94 20.0
12 .00 17.32 .17 .04 .12 .08 .15 2.13 20.0
13 .28 .77 12.54 .06 2.47 2.29 .59 1.00 20.0
14 .06 .71 .19 .03 10.89 5.30 1.95 .87 20.0
15 .27 .67 2.77 .59 13.14 1.87 .09 .61 20.0
16 .00 .08 .06 .02 18.14 .47 .30 .92 20.0
17 1.96 3.92 .98 .41 2.83 5.77 2.92 1.20 20.0

Total 1.09 1.57 .72 1.28 3.22 4.66 6.38 1.07 20.0
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Table 6: BHPS: The class time-budget ‘signature’ of the clusters.

Person–years in
Cluster I–II III IVab IVcd V–VI VII a VIIb Pre- Total

entry
1 0.12 0.08 0.28 0.24 1.01 1.81 15.59 0.87 20.0
2 0.31 0.63 0.59 0.00 9.35 7.59 0.04 1.50 20.0
3 0.15 0.53 0.14 0.00 1.79 16.34 0.18 0.88 20.0
4 13.21 1.01 0.09 0.00 0.64 0.44 0.07 4.55 20.0
5 0.96 14.45 0.09 0.04 1.41 0.88 0.07 2.10 20.0
6 0.66 0.91 12.42 0.01 3.63 1.01 0.04 1.32 20.0
7 0.22 0.27 0.34 0.02 17.14 0.75 0.15 1.12 20.0
8 5.91 0.80 0.12 0.00 11.19 0.53 0.06 1.40 20.0
9 0.21 0.34 2.03 0.24 6.29 9.82 0.34 0.72 20.0
10 4.25 0.62 0.43 3.08 1.24 7.05 1.36 1.97 20.0

Total 3.88 1.97 0.60 0.08 7.05 3.70 0.64 2.08 20.0
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Table 7: IMS: The class destination ‘signature’ of the clusters.

Cluster Class at age 35, %ages
I–II III IV ab IVcd V–VI VII a VIIb Total

1 0.0 0.4 0.7 7.1 1.4 9.9 80.6 283
2 0.0 0.0 6.9 81.5 8.5 2.3 0.8 130
3 3.3 3.3 6.7 8.3 8.3 68.3 1.7 60
4 0.0 0.5 1.0 0.5 2.0 93.4 2.5 198
5 0.0 29.0 19.4 16.1 22.6 12.9 0.0 31
6 0.0 6.9 0.0 0.0 13.8 79.3 0.0 29
7 100.0 0.0 0.0 0.0 0.0 0.0 0.0 28
8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 66
9 0.0 0.0 0.0 100.0 0.0 0.0 0.0 43
10 0.0 0.0 0.0 96.7 0.0 3.3 0.0 30
11 37.2 39.5 14.0 7.0 0.0 2.3 0.0 43
12 0.0 94.1 5.9 0.0 0.0 0.0 0.0 51
13 2.3 0.0 90.9 2.3 2.3 2.3 0.0 44
14 7.5 5.0 2.5 2.5 77.5 5.0 0.0 40
15 2.9 0.0 45.7 5.7 25.7 20.0 0.0 35
16 0.0 1.5 1.5 0.7 94.2 1.5 0.7 137
17 16.4 13.1 6.6 9.8 8.2 41.0 4.9 61

Total 9.7 7.0 7.3 17.0 16.0 24.7 18.3 1309



34 TABLES

Table 8: BHPS: The class destination ‘signature’ of the clusters.

Cluster Class at age 35
I–II III IV ab IVcd V–VI VII a VIIb Total

1 0.0 3.9 3.9 5.9 5.9 15.7 64.7 51
2 3.3 0.0 0.0 0.0 0.0 95.1 1.6 61
3 2.1 1.7 4.2 0.0 3.0 88.6 0.4 237
4 92.1 3.0 2.0 0.0 2.0 1.0 0.0 404
5 17.6 76.7 3.1 0.0 0.0 2.5 0.0 159
6 0.0 2.3 93.0 0.0 2.3 2.3 0.0 43
7 3.4 1.8 5.2 0.4 86.9 2.2 0.0 498
8 94.7 1.8 3.5 0.0 0.0 0.0 0.0 57
9 3.8 1.9 25.0 1.9 67.3 0.0 0.0 52
10 40.7 0.0 11.1 25.9 11.1 11.1 0.0 27

Total 30.9 9.6 6.9 0.8 30.8 18.8 2.2 1589
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Table 9: IMS: Distribution of the clusters across cohort.
Cluster Cohort Total

col. percentages
A B C

1 32.5 20.0 12.4 283
2 9.7 9.3 10.7 130
3 5.3 4.9 3.5 60
4 13.5 17.1 14.7 198
5 2.8 2.4 1.9 31
6 0.2 4.0 2.3 29
7 0.9 1.8 3.7 28
8 4.4 4.9 5.8 66
9 3.9 1.6 4.4 43
10 2.3 3.3 1.2 30
11 1.9 4.0 4.0 43
12 2.6 4.0 5.1 51
13 1.6 3.8 4.7 44
14 2.1 3.1 4.0 40
15 3.2 2.2 2.6 35
16 8.4 9.8 13.3 137
17 4.6 3.8 5.6 61

Total 431 450 428 1309
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Table 10: BHPS: Distribution of the clusters across cohort.
Cluster Cohort Total

col. percentages
A B C

1 3.8 3.5 2.7 51
2 3.2 3.9 4.1 61
3 15.4 13.5 15.8 237
4 18.6 24.7 29.9 406
5 8.9 11.1 9.7 159
6 1.9 3.0 2.9 43
7 39.6 30.8 27.1 498
8 2.7 4.6 3.2 57
9 4.6 3.0 2.8 52
10 1.3 2.0 1.6 27

Total 371 542 678 1591



TABLES 37

Table 11: IMS: Cohort class time-budgets.

Cohort Person-years in
I–II III IV ab IVcd V–VI VII a VIIb Pre- Total

entry
A .74 1.09 .51 1.47 2.62 4.39 8.31 .88 20.0
B 1.06 1.57 .78 1.09 3.19 4.94 6.42 .96 20.0
C 1.48 2.06 .86 1.29 3.87 4.64 4.40 1.39 20.0

Total 1.09 1.57 .72 1.28 3.22 4.66 6.38 1.07 20.0
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Table 12: BHPS: Cohort class time-budgets.

Cohort Person-years in
I–II III IV ab IVcd V–VI VII a VIIb Pre- Total

entry
A 2.82 2.00 0.62 0.09 8.56 4.00 0.76 1.14 20.0
B 4.04 2.10 0.55 0.12 7.28 3.42 0.77 1.72 20.0
C 4.34 1.84 0.63 0.04 6.04 3.76 0.46 2.88 20.0

Total 3.88 1.97 0.60 0.08 7.05 3.70 0.64 2.08 20.0
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Table 13: IMS: Cohort class destination patterns.

Cohort Class at age 35
I–II III IV ab IVcd V–VI VII a VIIb Total

A 29 21 20 77 59 109 116 431
B 40 35 35 72 68 120 80 450
C 58 36 40 74 83 94 43 428

Total 127 92 95 223 210 323 239 1309
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Table 14: BHPS: Cohort class destination patterns.

Cohort Class at age 35
I–II III IV ab IVcd V–VI VII a VIIb Total

A 86 32 26 2 142 74 9 371
B 164 55 35 8 171 94 15 542
C 241 65 48 3 177 131 11 676

Total 491 152 109 13 490 299 35 1589


