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We apply optimal matching techniques to class careers figerila to
age 35 for two moderately large samples, as a means of expltivé
utility of this sequence-oriented approach for the analgsiwork-life
social mobility. We first apply multi-dimensional scalingchniques
to the inter-sequence distances generated by the optimehimg al-
gorithm in order to test whether the technique locates sempsein a
coherent and interpretable space. We find the space to bly ipgh
terned and reasonably interpretable. Next we run the twoenabely
large samples (each approximately 1,500 sequences) thtbegnal-
ysis and examine the nature of the set of clusters that esefgefind
the clusters to be distinct and an intuitively attractiveugiing of the
sequences. Finally, we consider how the clusters aretuigtd across
cohorts: the distributions change markedly, though thiarigely due
to changes in the distribution of classes over time. We ridif-
cuss means of separating ‘pure sequence’ change from chatige
gross ‘class time-budget’ of cohorts, and consider meamlpplfying
statistical models to the problem. We conclude by endorSipgimal
Matching Analysis, especially as a means of exploratoryyaisaof
longitudinal data.

Introduction: enthusiasm and scepticism

Data on individuals’ life histories can be represented amieeces of states, and
the sociological analysis of such data can benefit from thgomation from other
disciplines of techniques designed to work with sequenta. déis paper reports
our experiences applying a technique well-known in mokcbiology, Optimal
Matching Analysis, to longitudinal data on class careers.

Techniques currently popular in sociology for the analyditife-history and
other longitudinal data, such as models of transition roesrdor hazard models, are
powerful and flexible, but generally do not deal with seq@snigolistically. The
inherent complexity of sequences (for mtategory state space, over a perind
units long, there ar&", n’ different possible sequences), and the lack of tech-
nigues to handle them directly, means that it is difficult & gn overview of the
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patterns in a longitudinal data set. Sequence analysisitpeds such as optimal
matching appear to offer a useful addition to the longitatanalyst's tool-kit: the

ability to generate typologies of sequences empiricallyeyrdo this by calculat-
ing an inter-sequence distance measure which can subglggersubjected to a
cluster analysis.

We came to Optimal Matching Analysis (OMA) with a mixture aiteusiasm
and scepticism. We are predisposed to be wary of black boketster analysis
in general, and of claims that OMA and cognate proceduragsept a movement
from variable-centred to narrative-centred analyses (&bl1988), but a means
of comparingsequences precisely what existing analyses of longitudinal data on
class careers is lacking (Chan, 1995). Furthermore, themaptnatching algorithm
is, at leasprima facie intuitively reasonable. We therefore decided to explbee t
procedure, to see what sorts of results it generates ancetwlisat sort of sense
it makes. We applied it to a problem Halpin had been dealirity wsing other
techniques (Halpin, 1993), namely to test for historicare evidenced in cross-
cohort difference in patterns of class mobility during therkvife.

The Optimal Matching algorithm

Optimal Matching Analysis is a set of techniques routinedgdiby molecular biol-
ogists in the study of DNA or protein sequences, often as lddooeconstructing
evolutionary trees. It was introduced into sociologicahlgsis by Andrew Ab-
bott who has applied OMA to several substantive issues, asithe development
of the welfare state (Abbott and DeViney, 1992), the ordeprofessionalisation
(Abbott, 1991), the careers of musicians (Abbott and Hryd#00), and Morris
dances (Abbott and Forrest, 1986).

OMA offers a means to analyse data in the form of complete eseops of
events, such as career histories. Its basic idea is verjeinfuppose the career
history of two people, observed at five-year intervals, @relpresented as follows:

e person A

— unskilled manual worker
unskilled manual worker
skilled manual worker
unskilled manual worker
unskilled manual worker
e person B

— unskilled manual worker

— unskilled manual worker

— foreman

— small employer

What OMA does is to count how many substitutions, insertionsgleletions
(‘elementary operations’) are needed in order to turn secpi\ into sequence
B, or vice versa. In this example, both A and B started theieeaas unskilled
manual workers. A took up a skilled manual job mid-way thitwins work life,
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but he returned to an unskilled manual position in the ends iBhlargely a case
of career immobility. In contrast, B became a foreman at atimusame time as A
took up the skilled manual job. She then moved on to becomea#i employer.
One possible way to turn sequence A into sequence B is toisbstoreman’
for ‘skilled manual worker’ (third observation), ‘small ghoyer’ for ‘unskilled
manual worker’ (fourth observation), and then delete ‘illexk manual worker’
(fifth observation).

Note that each elementary operation deals with a pair of urétween two
sequences, rather than the position of these units inael&ti other units in their
own sequences. In this sense, each elementary operatitindgdthe temporal
order of events. However, in comparing two sequences gjsifithese elemen-
tary operations is carried out, and it is this repeated di@tof local elementary
operations that carries the sequential and temporal irsfttom Now consider that
each substitution, insertion or deletion incurs a ‘costhe pair of sequences un-
der comparison — the more substitutions one makes, themibgbecost, and the
greater the distance between the pair (the same for inseatid deletion). Opti-
mal matching algorithms are designed to find (or approximdied, where exact
solutions are impractical) the ‘cheapest’ set of transkifoms between sequence
pairs, and thus an overall similarity score (or distanceesatepending on how the
calculation is programmed) can be given to each pair of sempse Deciding these
costs is a key theoretical issue in OMA, to which we returerlaBut once such
comparison is repeated for all sequence pairs in the samwgldyave a measure
of how much every sequence resembles every other. Thedar#iynscores can
then be used in a clustering procedure which will suggest imamy clusters of
sequences there are, and what the typical sequence of eabér dboks like.

One major reservation we had to begin with was the relatigdetarminacy of
cluster analysis. Cluster analysis is not supported byge laody of statistical rea-
soning. It can be sensitive to the specific linkage mecharisiployed — different
rules of cluster formation can give different solutionstie same data set. At the
same time, cluster analysis will always give a solution af/érere is no meaning-
ful structure in the data (Aldenderfer and Blashfield, 1984lpreover, it can be
very sensitive to the actual sample it deals with, so a laagepse is necessary in
order to expect to get repeatable, stable results. Simikirice the clusters depend
on the sample, it is not possible to directly relate the elssin one sample to those
in another: there is no guarantee that they will correspond.

We dealt with this reservation in two separate ways: first waded cluster
analysis altogether and examined the inter-sequencendéstan terms of multi-
dimensional scaling (MDS), and second we used as lar§esmpossible in cluster
analyses of entire samples (we thus reduced sampling ildyidb the minimum
possible, and were able to examine how the distributionsacetusters varied by
sub-group within the large sample, rather than having toparm separate sets of
clusters across subsamples).

However, as Abbott and Forrest remark (1986), there is aerémt problem
with analyses which involve procedures of pairwise conguari the processing
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time required rises with the square of, rather than in dipegportion to, the num-
ber of cases. This results in strong constraints on the $izarople we can deal
with. In the case of the MDS analysis we report below we cowtlexceed 400
cases at a time, but we managed to process entire sampleexjapgtely 1,500
cases) in the cluster analyses.

Before reporting our findings, we briefly review existing l®or analysing
longitudinal work-life data.

Longitudinal work-life data and analysis

Analyses of class careers

Conventionally the analysis of social mobility is in termigwo-point inter-generat-
ional trajectories, analysed as a table of class of familgrafin by respondent’s
mature class position (see, for example, Goldthorpe, 198%)fuller data came
to be available, three-point trajectories (class of origlass at entry to the labour
market, mature class) were analysed (Goldthorpe, 19875)cA.large body of
research now exists focusing on each of the two legs of théetpoint journey.
Much research on education is addressed to the issue of hpacés individuals
in the labour market, and how its effect coexists and intenaith the effect of class
of origin (e.g, Konig and Muller, 1986; Jonnson, 1993). Correspondinglith
the collection of more and more longitudinal data covering whole work life,
more analyses of work-life mobility are being carried oubwéver, the greatest
problem of longitudinal data is often its richness: it céméaso much information
that it is difficult to use fully. Powerful statistical tecigues can be applied to it,
but they almost always involve discarding some part of tiiermation. For ex-
ample, the entry-class by mature-class table can be adabysgowerful loglinear
models giving useful insights into the overall structuretitd processes govern-
ing work-life mobility. But this discards all informatiomowhat happens between
these two points.

A second approach translates the individual trajectonés élass spells and
tabulates spellsi.€., one or more per individual) according to the class in which
they occur and their outcome (either transition to anotkesscor persistence until
the moment of data collection, ‘censoring’) (Feathermah@albee, 1988; Halpin,
1993, ch. 5). This has the advantage of focusing explicitlfle pattern of inter-
change between class locations, looking, as it were, at&apbf the journey but
at the expense of losing all information on overall trajegtand on durations.

A third approach considers duration spent in various clagiseamost important
attribute (an early example of such analysis is provided bgd® Ramsgy (1975),
more recently Mayer (1991), Gershuny (1993)). We can apalysation directly,
for instance, by modelling cumulative duration in each gaig in terms of the
mature class position (Halpin, 1993, ch. 5). This givesghts on the sorts of
background people in different mature classes have. Hawitleses a great deal
of information too, as very many different career trajee®rcould generate the
same distribution of cumulated duration.
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Another very powerful technique, and one more amenableetantihoduction
of explanatory variables, is hazard modelling (for a ret¢\eplication see Carroll
and Mayer, 1986). It represents a very searching look atytherdics of transition
from one state to another, and can therefore take good acobtloth duration
and the individual steps of the trajectory. It can also tad@ant of prior history
(and concurrent events) via time-dependent variables.instance, in their anal-
ysis of how schooling and career experience affect entgsraito marriage and
motherhood, Blossfeld and Huinink (1991) incorporate atikependent variable
which measures the level of career resources. This vansigenstructed to take
account of the number and length of previous spells of watx,ghanges, career
interruptions, and so on. Blossfeld and Huinink demonstnatv hazard modelling
can be skillfully exploited to take account of past histdByt note that they were
guided by prior knowledge and theoretical models in theirstauction of the ca-
reer resources variable. In situations where prior knogded relatively thin, it
will be difficult to construct precise covariates that tagtgastory. In other words,
open-ended, exploratory attempts to understand pattésggjaence will not be as
well served by hazard modelling: if we try to include morertl@asmall number of
variables representing history prior to the current statefind it becomes quickly
unwieldy, and difficult to estimate (Halpin, 1993, ch. 6).

Each of these techniques is powerful, nevertheless. Furtire, they are sup-
ported by conventional statistical theory, in which terhmsitesults can be precisely
defined and interpreted, in regard to fit and significance s Tiho small advan-
tage.

But how do we take holistic account of the career? How can e it as a
sequence? OMA seems to offer a way of doing this, though mohaps as yet,
with the full power that conventional statistics offers dfreatest immediate utility
is the generation of empirical typologies of sequencesueces by their nature
are highly detailed. The set of all logically possible sewgss is enormous, and it
is impractical to attempt a systematic typology of the enltigically possible set.
However, it is clear that the sequences that actually ergstieawn from a highly
patterned subset of the possible set because there is & foghe progress along
the sequence. In terms of class careers this logic can bghhat in terms of
context-specific transition rates. This logic is the obgaiur study, and therefore
not something we can use as an input, so the possibility afrgéng an empirical
typology of sequences, for further analysis, is very ativac

Other approaches to sequence analysis
OMA is not the only method for the analysis of sequential ddtathe context
of life-course and the labour market, various other tealnescare currently in use.
These techniques tend to have simpler algorithms, and soatlev for easier
implementation or easier access to suitable software.Heytdre less general than
the optimal matching algorithm.

For example, Buchmann and Sacchi (1995) analyse occuphtifahistories
of two cohorts of Swiss workers. They first apply factor asayto a battery of
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occupational-level variables, reducing what would havenban intractably large
set of categories to a tractable five-dimensional space.ederyvtheir method as-
sumes there is a one-to-one correspondence between edamsenpying the same
position or time point in two different sequences. Givers thssumption, they
define the overall distance between two sequences as theahttendistance be-
tween the sequences at each time point. The assumption -ddemee correspon-
dence may be justifiable in certain situations, but it préetutaking account of the
possibility that similar patterns may display at differgaéces in the sequences.
Consider a simple situation where there are only two statesdB (say, ‘in em-
ployment’ and ‘not in employment’). Suppose there are twgqusaces with the
following patterns:

e Sequence 1ABABABAB

e Sequence 2BABABABA.

We may think that sequences 1 and 2 are substantively the isatingt both are
highly unstable, alternating rapidly between stat@nd stateB. But given the as-
sumptions of one-to-one correspondence, the two sequane@saximally differ-
ent from each other.

Degenne, Lebeaux and Mounier (1996) analyse the early tainauket ex-
perience of a sample of young French women, with a tractablllsstate space
(unemployment, training, inactivity, different sorts ahployment contractstc).
Their approach is to summarise the career histories atetiésantervals, in terms
of (a) cumulated duration in the several states during titatval and (b) month-
by-month transition matrices. They then apply a factor ysiglto the summary
variables, and use this as the basis for a cluster analyBis.nTethod is attractive
because it makes use of information on both durations anditians, but it is not
yet adequately explored.

Degenne et al. also propose a ‘blind’ technique that is éstarg: it is blind
in that it makes no assumption about distances betweers statbe state space.
They define inter-sequence distance to be the sum, acrossvatisn points, of
the angle between the vectors of cumulated duration. That is

D;; = Zcosfl(th’,th),
t

whereX,; is a vector of the cumulated duration in the several stafegeisoni
at timet. This is attractive in that it will to some degree reflect timaikarity of
sequences which have similar subsequences at differestidos (if sequence
has a late subsequence which occurs early in seqyeiisgattern of cumulated
duration will tend to converge with that of sequenkte

Dijkstra and Taris (1995) propose a method more closelhteélto optimal
matching, which uses a more complicated algorithm than Buaetm and Sacchi or
Degenne et al., but is simpler and less general than the fdA@lgorithm. This
is implemented in a Macintosh program (Dijkstra, 1994). Ireply to Dijkstra
and Taris, Abbott (1995) explores the relationship betwieir method and his,
and sketches out a more general domain of sequence aligmmathbds within
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which specific techniques can be located and compared. \Athitee of Abbott's
criticisms of the Dijkstra—Taris method are justified, inmpaespects the loss of
generality is compensated for by the simpler algorithm, laythe availability of
a social-science oriented implementation, albeit réstlito one type of computer.
However, the fact remains that their algorithm is less gartean OMA.

Class careers: data and definitions
We use two separate data sets. For the MDS and the clustesisnak use the
Irish Mobility Study (IMS) of 1973/4 (Jackson, 1974) andafer the cluster anal-
ysis we use the British Household Panel Study (BHPS, firsewi#891, Buck,
Gershuny, Rose and Scott, 1994). The Irish Mobility Studgriviewed only men,
aged 18-64, and collected complete retrospective waekhiistories. The BHPS
is, as its name suggests, a panel study, but over the firgt tieees enough data
were collected to construct retrospective work-life higte for the panel members.
Because the IMS did not collect information from women, amddompatibility
across the two samples, female BHPS respondents are eaclude

A further restriction is imposed: in order to have completmdmparable data
for each respondent, only information up to age 35 is indudad respondents
aged less than 35 at the date of interview are excluded. Tunisdtion is not re-
quired by OMA: the algorithm is entirely capable of calcingtmeaningful pair-
wise distances for sequences of different length. Howé@amplifies the present
analysis, especially in relating OMA to other measureshascumulated dura-
tion, where the restriction is more relevant. In other cristét seems entirely
appropriate to include short sequences, or to look at nmylafier age 35. Each
remaining respondent contributes a sequence represdigimgreer from age 15
to age 35, one datum per three months, coded according teetlem-sategory
‘EGP’ variant of the Goldthorpe class scheme with one viamatan eighth cate-
gory, indicating ‘not-yet-in-labour-market’ is added.eSeable 1 and Erikson and
Goldthorpe (1992), pp. 35ff, especially figure 2.1.

[Table 1 about here.]

We choose to formulate our study in terms of class mobilitglpaecause of a
substantive interest in social mobility; we could have feahour study differently,
say, in terms of job mobility. The important thing is that gtate space should be
relatively small, so as to keep the matrix of substitutiostsananageabfe.The
state space we end up with satisfies this criterion, and gesva set of categories
which are reasonably familiar to sociologists. The sulistaiustification for in-
cluding the extra pre-entry state (which is added to theesecps on the left where
entry to the labour market is after age 15) is to avoid havimgusences of differ-
ent length, or which start at radically different ages. Tikia relatively arbitrary
choice, as OMA copes equally well with sequences of unevegthe

Determining the substitution costs
The heart of the optimal matching algorithm is the use of @aselementary oper-
ations’ (substitution, insertion, deletion) to calculataw to change one sequence
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into another. It is ‘optimal’ in that it finds the least expmmesset of elementary
operations, but in order to make this calculation, it mustvkrthe cost of each
operation. Thus, putting a value on substitution ardel (i.e., insertion/deletion)
costs is a necessary but problematic part of doing OMA. Subish cost in this
sense is a measure of the difference between states in thesgte. What differ-
ences the investigator chooses to identify, and the valuesmpthem, are external
to the optimal matching algorithm. They will have an effestd possibly a strong
effect, on the resulting inter-sequence distances. §attists can be regarded as
one of the main points of theoretical or substantive inpta the algorithm.

For the present exercise we borrow from the ‘hierarchy’ congmt of Erik-
son and Goldthorpe’s core model of intergenerational savidoility in assigning
substitution costs (1992). Erikson and Goldthorpe argaéttie three hierarchi-
cal levels capture broad differences among social clasgesms of the resources
they offer as class of origin and their desirability as clakdestination. We take
these hierarchical differences as crucial forces shapuorg-ife mobility as well?
Given this scheme, the substitution costs are as assignetiass: the greatest
closeness is between identical elements, and as Table Zstios/zero-distance
substitution results in a closeness score of 4. The nextageeoseness is between
classes at the same hierarchical level, and thus for instifwecscore for a Ill-l&b
substitution {.e., routine non-manual to self-employed) is 3. Substitutiaosss
one level boundarye(g, from I-Il to Ill, salariat to routine non-manual) score 2,
those across two boundariesd, |-l to VIIb, salariat to agricultural labourers)
score the minimum closeness of 1. (It is important to bearimdrthe distinction
between the state space through which the sequences maw& E@P categories
plus the waiting state of 'not-yet-in-labour-market’ — ahe 3-category grouping
we use to relate the eight states. Mobility is constitutedhimvement between
the eight categories; the use of the three hierarchy caesgsimply allows us to
judge certain pairs of states as more different than ofhers.set the cost dhdels
relatively high, at 3.

[Table 2 about here.]

As for the eighth category of ‘not-yet-in-labour-markedince we are not par-
ticularly interested in this category for its own sake, veatiit as completely ‘like’
each of the seven class categories (with a closeness scby.€eldfis de-emphasises
it, and give more weight to the portion of the sequence indbelir market. The ef-
fectis to judge sequencesABC’, and ‘AABC’ more similar thanXABC’ and ‘ABCC’,
where X’ is the pre-entry state.

Multi-dimensional scaling: what is this space?

OMA generates a similarity (or distance) score for every pasequences under
consideration. As an alternative to using this informafioa cluster analysis it is
interesting to examine the space implied by these scoretfiedatuitively reason-

able elementary operations used in aligning pairs of sempgeresult in a coherent,
stable and meaningful space?
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To this end we partitioned the Irish sample into six five-y@ate pseudo-
cohorts, applied OMA to the cohorts, and thus generatedaic eohort similarity
scores for all sequence pairs. For each matrix we extrabeefirst three principal
components (this constitutes a simple form of classicatirdithensional scaling;
we stopped at three dimensions simply because that is tlitefdintonvenient vi-
sual inspection). We were mainly interested to see if theaitorts showed similar
patterns, and whether the placement of the sequences ia spamed meaning-
ful. If the subsamples showed unstable patterns it woulgesigthat the method
of determining inter-sequence distances was overly $emsit the actual sample,
whereas if they seemed stable then at least the space, fanolustering within it,
could be expected to be stable across samniples.

In the event, we were reassured by what emerged. Each sammeated a
three-dimensional scatter roughly in the shape of a tedraine with different types
of sequences well separated and, most importantly, witliasimequences occu-
pying similar locations in each plot. All six plots are reguzed in the appendix
(see figure 4), but the plot for cohort 6 is reproduced in figuvgth annotations.

[Figure 1 about here.]
[Figure 2 about here.]

In the analysis we had the substantial advantage of accdstetactive ani-
mated three-dimensional scatterplo¥d.ispStat’s spinning scatterplots: Tierney,
1990). Coupled with the ability to use the mouse to read al lvecach data
point (the labels concisely summarized each sequence)ntade it much easier
to find patterns than it is to reproduce them on paper. Thesstase can come
is a scatter-plot matrix, which presents three views of ta ¢loud, in plan, el-
evation and side-elevation. To read these, it is perhapstdesart by looking at
figure 1, which presents a familiar structure viewed in arlagws manner. Fig-
ure 2 presents the first three principal components of thee-8gquence distances
for cohort 6 in the same orientations: these three trianglpsesent a tetrahedron
(it may help to keep the heads in mind when viewing this plot).

The most notable features about the tetrahedron are itesaach one is oc-
cupied by a sequence that represents 100 per cent of the, cGaeéventy years,
in a given class. The four apices thus represent classes/# VM, Vila and Vib
(respectively the salariat, skilled and supervisory mawoak, semi- and unskilled
manual work and agricultural labour). Data points very rtbarapices are typi-
cally careers consisting of slightly late entry followed imybroken careers in the
appropriate class. Moving further away from the apex, threera show increas-
ingly long prior spells in other classes. Tracking along dgeesof the tetrahedron
from the apex, the sequences typically change from 100 perafehe relevant
class to mixtures of that class and the one towards whoseapeare moving.
However, there is a lot of empty space, as there are limitedoeus of sequences
in the analysis.

Classes I, I\db and 1\ed (routine non-manual work, self employed and small
employers, and farming) do not feature on apices of thehethan, but have
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specific and separate locations within it. Very likely, if were able to repre-
sent higher-order dimensions these would also emerge essaphs with the 3-
dimensional apices, the point indicating 100 per cent cargethese classes is
surrounded by very similar careers, with similarity reaigcas distance increases.

[Figure 3 about here.]

Figure 3 focuses in on one of these apices in detail, thatmitel by class I-II
(this is the top apex of the two bottom cells of figure 2). Thiatfire is visible in the
body of, and in the same orientation as, the top—left cellgpfré 2. This has two
clear features, a well-populated line running approxityaterthwest—southeast in
the diagram, and another less well-populated line mordess-at right angles to it.
All the data points in the main line are composed of complateers in class I-ll,
after late entry (in this subsample there are no compless didl careers starting
at age 15). The amount of time spent in the class varies frogeais (at the top—
left) to 7.25 years, and it varies monotonically along theliThe data points to the
side also represent long spells in class I-ll, with priorexignce in other classes;
the further from the main line, the longer the prior expec&nThis sort of pattern
is also visible in the other apices.

This exercise reassures us. First, the pairwise similadtyres generated by
OMA populate the 3-dimensional space in a coherent andrpattananner: sim-
ilar sequences are placed adjacent to each other whilesusdifuences are placed
further apart. Secondly, the observed patterns are, lyepalaking, stable across
the 6 cohorts. Thus, it seems that the core algorithm of @gdtimatching are not
overly sensitive to sampling variation. Thirdly, it becanelear that, as an al-
ternative to cluster analysis, one can use the extractedrdgiions from MDS to
characterise the sequencées.

Optimal Matching and larger samples

Having satisfied ourselves that the algorithm generateasorably stable multi-
dimensional space, we now take a second approach to theepraflthe sample-
sensitivity of cluster analysis. This approach consistasimg as large a sample
as possible at one time, for two reasons: (i) to reduce thetémchinacy of cluster
analyses, which is particularly acute in small samples @it ©rder to be able to
compare the distribution of subgroups acrosingle sef clusters, rather than to
compare several sets of clusters, each generated withgnauis of the sequences.

The two samples, IMS and BHPS, represented respectivelyt 45800 and
1,600 entire career sequences from age 15 to age 35, codagighty three-month
periods. However, there are significant numbers of duggat the samples, and
excluding these reduces them to the order of 1,000 distemtences. There is
no point in including duplicates, as the pairwise distanedkbe identical, and
the clustering algorithm does not weight according to elustze (in all analyses
subsequent to the clustering the duplicates are replaced).

Sample size is a problem for analyses like optimal matchgmgparily be-
cause the resources needed tend to rise with the square satige size, but
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also because longitudinal data is necessarily ‘larger'mace complex than cross-
sectional. The ‘square’ problem arises because we compatease with each
other case. The 1,000-case analyses took of the order pfffeetminutes of CPU
time on a fast VAXStation. But despite the fact that it is algbemn, it is our opin-

ion that, paceAbbott and colleagues (Abbott and Forrest, 1986; Abbot88)9it

is a problem that is necessary to face. For a given set ofsthie set of all pos-
sible sequences is extremely large. And even though the senirically likely
sequences is a small subset of this set, it is still a verelagy. Any sample will

of necessity contain only a tiny fraction of the possibleusses, and while the
bulk of them will be typical €.g, in the career context, entire sequences of one
state, or sequences which switch once at or near a partipaiat) and will oc-
cur reliably from sample to sample, a large proportion ofith&ill be relatively
unusual, simply because they are detailed. Thus a sigrtifpraportion of each
sample, if repeated samples were collected, would confsgaquences relatively
unlikely to correspond closely to sequences in other sanpldis is simply be-
cause sequences have more potential to vary than convantanables do. Thus
analyses, ana fortiori cluster analyses, may be overly affected by small num-
bers of atypical cases. From this point of view, even 1,6@ueseces may be an
inadequate sample.

Looking for historical change

Our interest in looking at career data as sequences araseaficexisting interest
in historical change in social mobility during the work lifan particular, different
summary measures of work-life mobility yield different ctusions about change
in the underlying mobility regime: in the IMS the associatimetween entry point
and class at age 35 is stable, once changes in class disinibaire controlled for,
while measures which take more information from the careguence than its
start and finish (analysis of all spells, pooled and tabdldte class of spell and
outcome of spell; analysis of cumulated duration in eachgmay by class-at-35;
see section above) show some evidence of change across icoter underlying
mobility structure. What can OMA, a technique which anadysequenceua
sequence, tell us about historical change in work-life titylpattern?

Generating and identifying the clusters

In answering this question, we encountered various prahldfitst, as mentioned
above, there is the problem of computing power. But after¢bmes the problem
of interpreting output. Itis not immediately obvious howiriterpret a dendrogram
which spreads over several pages. There may be better, atgibnstrategies, but
we simply examined the dendrogram in order to identify @ist There is no

guarantee that tight easily identifiable clusters will egeegither: inspection of the
three-dimensional scatterplots above, for instance, shbat though there clearly
is a structure there are no tight clumps. Thus the bordevedest clusters, and the
number of clusters that emerge, are arbitrary, dependinigoanthe investigator

decides to delineate them.
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We used a simple rule of thumb: taking the dendrogram, drawr&dntal
line halfway between the top of the diagram (indicating tietaghce between the
final two clusters) and the bottom (indicating the distanegvieen identical data
points,i.e., zero) and count the vertical lines crossing it, treatingheane as the
root of a cluster. Were we to move this line up, the number adtelrs would fall
as adjacent clusters became linked in the tree vaoelversawere we to lower it.
Though arbitrary, this rule has the virtue of simplicitydan the two samples we
used it on, of generating a reasonable number of distinstesls, but it has short-
comings. First, it will probably generate several tiny tdus, including singletons,
of sequences relatively unlike others. Secondly, it wiiocatend to pick out one
or more very large clusters, and these clusters may well trgposed of quite dis-
tinct sub-clusters. In the former case, at least in the mdresingletons and very
small clusters can be amalgamated into a residual categtigh{ must not be re-
garded as a ‘cluster’ since its members will be more like othasters than like
each other). Where very large categories are clearly dieignto smaller clusters,
this is an attractive thing to do, but it is not always clegmbgsible: very often to
remove a sub-cluster from a large cluster leaves behinctivedly disparate set, or
the sub-cluster may be composed of sub-sub-clusters whichearly as different
from each other as the sub-cluster is from the remaindereothinster. But this
is part and parcel of cluster analysis — its use is far moiiefaatory where there
is a strong theoretical rationale for it, as there is in conmgaDNA sequences in
evolutionary terms.

Though this procedure is messy, it does generate a set ofl asefinformative
categories, and it does separate the career sequencesrisibla groups. Inspec-
tion of the clustered and aligned sequences shows how sitindalusters are, and
it is often easy to recognise sub-clusters within the ctastay the relatively minor
dissimilarities between adjacent sequericétowever, while the clusters are very
easy to characterise in a general way, it is impossible tacterise them formally
and exhaustively, that is, to define rules which will regtiicthe clusters exactly or
close to exactly. This is largely because the clusters wiitain small numbers of
sequences whose similarity to the core sequences is leggisb®ne cluster may
be typified by large numbers of sequences such as the foljpwin
EEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEFFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFE
(along spell in category E followed by an approximately égpell in category F)
which may be accompanied by sequences like
HHHHHEEEEEEEEEEEEEEE EEEEEEEEEAAAAAAAAFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF
and
HHHHHHHHHHHHBBBBBBBB BBBBBBBBAAAAAAAAFFFF FFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF .
The second and third are quite like each other, and therefitireluster together,
but only the second is like the typical, first, sequence. Thaghird is ‘chained’
into the cluster. This is correct behaviour in terms of thestgring algorithm, but
it is not possible to replicate in a set of simple rules.

It is more useful to take the clusters ‘as given’ and use therarainput to
further analysis. In the remainder of the paper we presathiaalyse the cluster
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sets we derived for the full IMS and BHPS samples.

The cluster sets

The IMS data generates 16 distinct clusters, plus a residdke the BHPS breaks
down into 9 plus 1. The fact that more clusters are identifaedHe IMS than for
the BHPS may reflect greater historical change in the Irishpsa agriculture
underwent a significant decline over the period while indusegan to get estab-
lished; in the period the BHPS data covered, the magnitudbeothange may
have been less (there the shift is out of heavy industry, miodvhite-collar work).
Visual inspection also suggests that the Irish data contaiore careers with many
short spells, often but not only representing seasonal \Wwo#dgriculture. These
patterns of sequences in these clusters are described lmigfibles 3 and 4.

There are too many categories to discuss in detail, but ibrshanoting certain
features. In the Irish data the largest single cluster isd¢bataining long, usually
permanent, careers in agricultural labour, clas$9.VIThis is approximately six
times the size of the most similar cluster in the BHPS datdffarence due en-
tirely to the different sizes of the two countries’ agricuil sectors. That we can
identify corresponding pairs of clusters in the two samjdedue to the fact that
the typical sequences involved are extremely simple, tenttiwards 100 per cent
in one state. This is in turn due to the fact that agricultlabbur is, for some
people at least, a relatively absorbing location (the etgepvould be farmers’
sons, who may well become farmers themselves). Anothetidmcavhich tends to
produce ‘simple’ sequences is the salariat, class I-llf¢gsional and managerial
workers). Positions in the salariat tend to be secure, stalzard of exit from
the class is relatively low, and therefore long spells amroon. It is also often
entered directly from higher education, because of thagtrole of qualifications
in controlling entry, and therefore the pattern of late gfatlowed by an unbroken
spell in the class is typical. In the IMS this pattern emem@gea distinct cluster (8)
but in the BHPS, while the most similar cluster is much larg&perience prior to
class |-l is more various. This is partly due to the fact tinet salariat is simply
larger in Britain over the period covered by the BHPS, butdhie also distinctly
more variety in routes into it.

The clustering identifies features of the data that coneaatisummaries of the
sequences will miss. For instance, the distribution of dated time in different
classes will be similar for individuals in IMS clusters 6 aldl or BHPS clusters
2 and 9, but the fact that the order of the classes is revergedenlost: clusters 6
(IMS) and 2 (BHPS) represent downward mobility from skilegpervisory work
to semi-skilled work, while clusters 14 (IMS) and 9 (BHPY)nesent the opposite.

Having generated the clusters and inspected them at lemgtfind with some
satisfaction that it is relatively easy to characterisedlusters verbally, and dis-
tinctly. That is, the contents of the clusters are relaivedmogeneous and the
clusters are relatively distinct, when looked at as classera. In other words, the
optimal matching and clustering does, at first blush, gdeesiaeasonable ‘em-
pirical typology’ of career sequences. It is not, of coumsalefinitive typology:
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different matrices of substitutions costs would generifferdnt clusterings. But
it does make sense at an intuitive level. We regard this as@dereason to be
reassured about optimal matching.

[Table 3 about here.]
[Table 4 about here.]

Simple inspection shows that the clusters are distinctweautan add a little
precision by examining them in terms of more conventionahsnees of work-life
mobility. We can look at how the clusters spend their timel, where they end up.
Tables 5 and 6 present the mean cumulated duration in eabbk efght states, for
the two samples. The rows sum to twenty years, and preseravbege’ class
time-budget for a member of each cluster, between ages 135hdhe first thing
to notice is how different the two samples are: in the Briiample over 80 per cent
of the person-years are spentin classes I-Il, Ill, V-VI afid,\tompared with just
over 50 per cent for the Irish sample. In Ireland the two adfical classes account
for almost 40 per cent of the time, compared with just 4 pet icefaritain. Thus we
cannot expect the clusters to be similar across the two gsirganmply because of
the gross differences in the distribution of the ‘mater@alt of which the sequences
are constructed.

Even at the level of cumulated duration (which is a lossy, nforimation-
discarding, representation of the sequence informati@3ee that the clusters are
all distinct (though certain ones do have similarities,eanarked above, page 13).
For instance, while clusters 2, 7 and 8 of the BHPS sampleatiunt for substan-
tial proportions of time in class V-VI, skilled and supeong workers, how they
spend the rest of their time is very distinct: respectivahyskilled manual (VH),
nowhere muchife., most time is in V=VI) and the salariat (I-I1).

Class ‘destination’ or mature class position is an even fom®y way to repre-
sent a sequence, since it reduces each sequence to a stagteida However, it is
a very important summary, because the mature position islikely a very stable
one, and one which has a very large bearing on the indivisllitd-time situation.
From this point of view also, the clusters are very disti@ftthe 16 proper clusters
in the IMS, 12 are clearly dominatedd, over 75 per cent) by a single class-at-35.
Since there are only 7 class categories, this implies somdap: clusters 7 and 8
in particular. This pair are 100 per cent in class |-l at a§eaBd therefore com-
pletely indistinguishable in these terms. Clusters 4 andeGlaminated by class
Vlla, semi- and unskilled labour, clusters 9 and 10 by farmingré8grence to the
table of duration, or by the descriptions of the clustersablé 3 we can see how
distinct are the histories which lead to these similar oniidal outcomes: cluster
4 spends over 17 years in classaAvhile cluster 6 spends less than 12, making
up the difference in class V-VI, supervisors and techngiaHowever, only by
looking at the clusters do we really see how the outcomesrakea at, and see
that cluster 4 is typified by long absorbing spells in clasMluster 6 is typified
by downward mobility into VI& from V=VI.

[Table 5 about here.]
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[Table 6 about here.]
[Table 7 about here.]
[Table 8 about here.]

Cross cohort change

Our purpose in generating an empirical typology of sequeligdo see how its
distribution varies with respect to other variables. Thgtwe want to use the
clusters as an input to further analysis in which we ask, imtwhay does the
pattern of sequences change in relation to other varialbtegtinciple, any other
variable could be used: sex, geographical region, eduttoualifications, and so
on, but since we are interested in historical change we opseéocohort? When
considering sequences holistically we cannot really actéstorical time other
than as cross-cohort contrast, as the sequences are byalhgie not located at
single time points but exist over a period. Tables 9 and 18gmtethe distribution of
clusters across the three cohorts in both samples. (In tise v cohorts are those
born approximately 1908-17, 1918-27 and 1928-37; in theBHR27-36, 1937—
46 and 1947-56.) Both tables show substantial change frborcm cohort. In the
Irish data, the biggest change is in cluster 1, the mainaldist agricultural labour,
which declines by almost two thirds. IMS cluster 8 (and alsmgamaller cluster 7)
show systematic rises as the importance of class |-l iseeaCluster 16, typified
by long spells in class V-VI, supervisors and techniciaisy dses substantially.
In the BHPS, clusters 1 (largely W)l and 7 (largely V-VI) fall systematically
while clusters 2 (V=VI switching to VH) and 4 (I-lI) rise.

[Table 9 about here.]
[Table 10 about here.]

Thus at one level we immediately see historical change adiws clusters.
However, have we found anything new? We already knew froraaats of more
conventional measures that changes like these were takieg:pIMS cluster 1
falls simply because agricultural labour was in sharp dectiver the period the
data cover; IMS clusters 7 and 8 rise with the historical oé¢he salariat, and
cluster 16 rises with industrialisation and the increasel@ss V-VI jobs. BHPS
cluster 7 falls with the decline of heavy industry in Britaémd cluster 4 rises with
the relentless increase in class I-Il. Perhaps the riseiter 2, representing down-
ward mobility from class V-VI to class \Al(skilled to unskilled work in industry)
is interesting. Certainly it would show up in a table of spédlibulated by class-of-
spell, outcome and cohort, but inspection of the clustedstlagir tabulation across
cohort makes it more intuitively clear that something systéc is happening.

A class-career is composed of person—months (or persos—gesson—quarters
or whatever) in various categories, and is situated in risabtical time. At any
moment in historical time, the distribution of classes igfix- each class position
is contributing exactly one person—moment to an indivisduelass career. Over
time, the individuals move according to their desires andodinities, and the
class distribution changes as a result as their careerseggidevelop. Thus there
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is a strong relationship between the period-wise distidbuand the distribution
of sequences, though because the sequences are londitilnisngelationship is
complex. Within cohorts, there is a similar relationshigween cumulated du-
ration and sequences. If we consider the cohort-wise loigion of cumulated
duration as a pool of person—quarters out of which the semseare built, and
we take note that the clusters have a particular distributioperson-quarters, we
see that at least some of the difference in the distributfariusters across cohorts
is driven by the difference in the pooled distribution of gmr-quarters across co-
horts. Tables 11 and 12 show that the distribution of tiména\tarious states is
quite different across the cohorts and thus that a large atrwfihe change in the
distribution of clusters is driven by this more general gf@nrhe IMS shows more
overall change, with classes I-ll, Ill, & and V-VI showing systematic rises, and
Vllb falling sharply; the BHPS shows a rise in class I-ll, a faltiass V-VI; both
samples show rises in time before entry to the labour market.

[Table 11 about here.]
[Table 12 about here.]

However, it is likely that there is some variation in the digition of clusters
across cohort which is not driven by this change in time-letidirross cohort.
We can regard this as net difference in sequences in somectespan we get at
this ‘pure sequence’ change, and identify what portion @ & result of people
doing different things over and above the differences fbtmgchange in the class
distribution? And if we could, what would it mean? If therer@®@o pure-sequence
change, that would suggest that the distribution of seqegenbanged only to the
minimum extent forced by the change in the distribution akpa—moments, and
that insofar as possible, people took the same type of rolft¢isere were some
pure-sequence change, this would mean that some indigidugak taking different
routes through the possible space.

We have experimented with some statistical models of arokert change
in an effort to control for cohort change in the overall disition of time. This
work is incomplete and therefore we do not report it in detéite discuss it here
primarily because it appears to be a sensible directionuithér research on se-
guence alignment methods, and an essential direction ¢oitakich methods are
to have more than exploratory application. Our core idea @rnalyse a table of
cluster by cohort by time-budget, with each observatiorresgnting a person—
quarter. That is, we pool all person-time-units and tabuthem according to
cohort, class, and the cluster the sequence belongs to. afgmals of the table
thus represent the cohort/cluster table, the cohortAitiassbudget table and the
cluster/time-budget table, though the first of these isiplidd by the length of the
sequence as each sequence contributes one observatidarpent Fitting a log-
linear model containing all three two-way interactions #meh assessing whether
the three-way interaction (or a subset of it) is needed isansef ‘controlling for’
the gross change and searching for change across cohoe ipute sequence’
pattern. However, loglinear models are not satisfactopabse each individual or
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sequence contributes eighty observations, and thesevalises tend to be highly
dependent: most class spells last much longer than threthmand therefore if an
individual contributes one observation in a given categoeyis likely to contribute
many. This inflated number of observations means that ma#i@as to the model
reduce the deviance far too much and thus it is next to imples&r a variable or
interaction to be judged insignificant. A more satisfactaltgrnative is to treat the
cell counts as values of a continuous variables, and fit aidinegression model
instead, with cell count as thevariable. In our limited experiments, this shows
some power to discriminate changes in the underlying straciafter controlling
for change in the distribution of time. However, this worlpigliminary, and we
are open to suggestions as to how to advance it.

[Table 13 about here.]
[Table 14 about here.]

Conclusion

In broad terms, we find that Optimal Matching Analysis worksaneans of grasp-
ing sequences holistically, and that its application te<leareers is worthwhile.
It does seem to mutually place career sequences in a way Hiasnsense, and
the clusters it generates do constitute a useful empirieakification of the se-
guences. As a means of looking at longitudinal data it is e when sequences
can be grouped on the basis of similarity it is much easieretoag overview of

the patterns, either visually or by tabulating the empirigpology generated by
the clustering against other variables. For this featubeelt is worth applying

to longitudinal data sets, as an ‘Exploratory Data Analytsishnique; because of
the extra complexity of longitudinal data it is quite hardgiet an overview of it

otherwise.

Other techniques for analysing longitudinal data can linkclmmore effec-
tively into the power of conventional statistical methoddavithout doubt provide
very solid insights into longitudinal processes (and it tlagsremembered that the
sequence is just the trace of the longitudinal operatiome$e processes, an epi-
phenomenon). The cost of their greater power is a narroveeisfoThe means of
grasping sequence holistically is an important complerteetitese technigues.

Correspondingly, it would enhance the value of OMA if it abude linked
directly into statistical modelling. We have only just bago think about this but
would encourage work in this direction.

Appendix: Software

The software we used for the sequence alignment and therchrstlysis i®ileUp,
a program in the Wisconsin Package of the Genetics Compuiterp3nc. PileUp
conducts a progressive pairwise alignment of sequencespification of the
method described by Feng and Doolittle (1987). Since it dméEompare every
possible pair of sequences, but rather proceeds by alighsgwo most similar
sequences, and then aligning further sequences with theglit is significantly
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quicker than other methods, but produces a multiple aligrinviich is not strictly
optimal. We are grateful to Liz Cowe of the Department of Blthy in Oxford
for giving us access to this software, and for her time spehelping us use it.

[Figure 4 about here.]
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Notes

A useful general discussion of sequence matching techsiigueontained in
Sankoff and Kruskal (1983).

2The algorithm can in principle deal with calculating sutogibn cost quanti-
tatively: if each state has a score or value, or a vector tigifee substitution cost
could be calculated dynamically as some function of theedifice between pairs
of states’ scores, such as absolute difference, or Eudidiséance.

3While attractive, this is not definitive: it leaves out selasther dimensions,
for instance sector: the resulting clusters would ceryabd different if we ac-
knowledged that, for instance, agricultural labour is eta® farming than to un-
skilled work in industry. Different substantive ends wik lserved by different
substitution matrices.

4This claim depends on the space being a function of the daita-space, the
substitution matrix and the optimal matching algorithmg aot of the actual sam-
ple of sequences. Of course, different samples will diffiehaw well they permit
the MDS exercise to map out the space.

5The earlier cohorts’ plots in the appendix look rather mike flat-irons than
tetrahedra: this is largely because these cohorts’ clatshditions are different,
with far fewer spells in I-Il (the salariat) in particulandthus the space is popu-
lated differently.

60f course, this is a very superficial analysis and we havedwitified how
the space is structured. Nor have we looked in detail at holiematic sequences
are placed (for instanc@AABBB relative toBBBAAA, AABBB relative toAACBB or
AAABB, etc). Nor have we looked at how the implied space varies whennjat i
distance matrix is changed (this should be particularlygéigning).

"PileUp, the matching and clustering program we used, had to be gitain
to cope with this number, but since its default is a maximurdGtf extremely long
sequences (more in later versions; ‘long’ means some thdgsaf elements) it is
well able to deal with relatively large numbers of short sames (eighty elements
in our case).

8Visual inspection is vastly eased by colour coding the sece® we repre-

sented our twenty-year sequences as rows of eighty chegacte text file, in the
order of alignment, and using either a simple program totpha sequences to
screen interspersed with appropriate ANSI colour codes cotour-capable editor
(e.g, GNU Emacs), it is convenient to browse the entire sample and get a good
impressionistic overview of the distribution of sequencés an exercise this is
worth doing even if there no further interest in optimal niétg, but where the
main concern is with more conventional analyses of longiteiddata such as haz-



20 Brendan Halpin and Tak Wing Chan

ard models, because such an overview is informative and gigood feel for the
data.

90f course, ‘average’ is a fiction: most individuals have v&myall numbers of
distinct spells so no one will have non-zero cumulated dmatin all categories.

10In the MDS analysis we used six five-year wide cohorts in otdenave a
small enough sample, but here we use three ten-year widetsdoothe opposite
reason: to ensure adequate cell sizes in the tabulations.
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Figure 1: An aid to read the 3-D scatterplot matrix in fig. 2eThree views of the
head correspond to the three views of the three-dimensdatalcloud.
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Figure 2: The first three principal components of the ineaeence distances for
cohort 6, Irish Mobility Study.



FIGURES

7.56096 g & 17 years in I-1I

Spell in I-II broken by
2yrs 1 VIT8 N

Entry c.18yrs, ox_
jw;z 11’; III,II'I Experience in VIIa and III
b y prior to long I-II
] 4
> o
o
& N 100% I-1T after
Entry c.20yrs, late entry
Syrs in III, 10 yrs
in I-11
7.25 years in I-II
675879
T T ‘
-5.59407 -.44436

EigVec_1

Figure 3: Zooming in on the |-l apex (IMS, cohort 6).

25



26

Eigvec_1
151745 ®
000%33
° @ of Elgvec-2
&
-.112426 o
O] o
o 8
o° ° °
§°o° r o| Eigvec_3
-.056368 122993 -.110785  .457257
Cohort 1
Eigvec_1
5.71728 °
& o)
&aﬁdotkm Eigvec.2
-6.13321 ° - 3
°°on% °%° o
G So g&% Eigvec_3
-8.59189 21.4546 -2.07352  7.59412
Cohort 3
Eigvec_1
12,5515
Wgso&
o, o
e oW Eigvec.2
Qe °
-10.7868
) O%
!@58 o o 3
@ [+ o
o °© ° %80, % | Eigvec.3
S 8
-16.0528 27.7101 -5.70091  14.2272
Cohort 5

FIGURES
Eigvec_1
.7087
5.70875 @@gw§
%?E Eigvec_2
%0
-3.99496 -
{e]
0&0 €O
4 .
%og o Eigvec-3
-7.95762 21.1204 -2.15872  5.72785
Caohort 2
Eigvec_1
15.9984
Eigvec_2
-9.87357
Eigvec_3
-16.9938 29.444 -486626  14.5646
Cohort 4
Eigvec_1
13.3393 o
%°°°
o
&,ofo%;@b Eigvec_2
{e]
-12.5988
Eigvec_3
-10.728 27.8984 -6.51739  14.7086
Cohort 6

Figure 4: The first three principal components of the inwqgence distances, for

all six IMS cohorts.



TABLES

27

Table 1: Outline of the state space, which is based on the E&5B scheme.

Class Description

-l
[
IVab
IVed
V=-VI
Vila
VIlib
X

Professional and managerial

Routine non-manual

Self-employed and small employers

Farmers

Supervisory and skilled manual

Semi- and unskilled manual

Agricultural labour

Awaiting entry to labour market (not an EGP category)
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Table 2: Determining substitution costs.
The three groups

Groupl [l
Group 2 I Ivab 1Ived V-Vi

Group3 VIia Vb

Pairwise ‘closeness’ matrix
.| M IVvab Ived V=VI Vila Vilb X

4 2 2 2 2 1
4 3 3 3 2

4 3 3 2

4 3 2

4 2

4

-booNNN,\“_\
hhbhbpbb
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Table 3: The IMS clusters.

Cluster N Brief Description

1 283 Long, usually absorbing, spells in 1) some include
short spells (5—7 years) in \Al Exits from Vlb tend to
be late.

2 130 First 10-15 years in \H}leading mostly to I'¥d, but also
IVab and/or V-VI.

3 60 Two sub-clusters: (i) about 10 years inb/fflollowed by
10 years in VI&; (ii) long spells in VIa leading to very
short spells (2—3 years) in I, &b, IVcd or V=VI.

4 198 Long spells in VH, sometimes preceded by very short
spells (3—4 years) in V=VI, Ill or, more typically and
slightly longer, Vib.

5 31 10to 12 years in V4| followed by spells in Ill, Nab,
IVed or V=VI.

6 29 6to8yearsinV-VI, leading to spellsin ¥l

7 28 Work-life mobility into I-II after 5-8 years in lll.

8 66 Directlate entry into I-II.

9 43 Long spells in I¥d, preceded by short spells in lll, 4,
V=VI, Vllaor Vlib.

10 30 8to 10 yearsin Wl leading to I\éd.

11 43 Spellsin lll lasting 10-12 years, followed or preceligd
spells in I-Il, Mab or IvVed.

12 51 Directentry into lIl.

13 44 Long spells in Isd, preceded by spells in -1, 1ll, V=VI,
Vila or Vlib.

14 40 10to12yearsin V-VI, preceded by spells i\t VIlb.

15 35 \Verylong spells in V=VI, leading to &, I\Vcd or Vlla.

16 137 \Verylong spells (16-18 years) in V-VI, preceded bwVII
or Vlib.

17 61 Residual category.

Note: (a) Class categories are described in Table 1
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Table 4: The BHPS clusters.

Cluster

N

Brief Description

1
2

8

9

Residuals

51
61

237

406

159

43

498

57

52

27

Dominated by long, usually absorbing, spells irb¥Il
Long V-VI, followed by long Vi There are two large
subgroups apparent, differing in when the transition
takes place — about 25 and about 30.

Dominated by long late \d] with varying back-
grounds, including V=VI. Typically 15yrs+ in \dl
Seems to be the main |-l cluster. Second half or more
is I-1l, though there is a subgroups of 14 cases with
late entry direct to I-Il after age 32. Heterogeneous
subgroup of 21 at the end has transition to V-VI, Il
IVab around age 30.

Typified by long spells in Il (10-20 yrs), generally
staying, though with several subgroups exiting to I-lIl,
Vlilaand Nab. Two substantial subgroups exit to I-Il at
about 30 and about 33/34. Subgroups with prior spells
in Vlla, V=VI and I-ll, generally settling by early/mid
20s.
The petty bourgeoisie: entry by 25, usually. Only 3 ex-
its. Main entry is from V=VI in 20-25 age band. Sub-
groups from I-Il and IIl.

Skilled manual. Apart from 21 which switch toaly
around 30, dominated by long absorbing spells in V—
VI. Typically at least 10 years, large inflow from ¥l
around 18-20, large numbers of entire 20 years or late
entry. Some other small subgroups with outflow to
other classes fairly late. Exit to -1l happens towards
34 in a handful of cases.
V-VI to I-ll after age 25. A subgroup go through llI
on the way.

First 10 years in V4, leaving almost all to V-VI, some
to IVab.

One cluster starts in I-ll, spends time im,\ékits to
V=VI or IVab, a second enters ¢d around age 25, a
third switches from Vi to |-l around age 27-31.

Note: (a) Class categories are described in Table 1
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Table 5: IMS: The class time-budget ‘signature’ of the @ust

Person-yearsin
M Ivab Ived V=VI Vlla VIilb Pre- Total
entry

Cluster -l
1 .00
2 .00
3 .06
4 .00
5 .00
6 .00
7 10.94
8 13.29
9 .01
10 .00
11 2.28
12 .00
13 .28
14 .06
15 .27
16 .00
17 1.96
Total 1.09

.03 .02 .08 .10 1.06 18.36 .35 20.0
.02 .63 421 55 1.00 12.99 .60 20.0
.39 .55 .24 .66 10.74 6.72 .64 200
.20 .02 .01 38 17.34 1.47 .57 200
2.73 .98 92 172 11.67 91 107 200
A7 .10 .00 6.86 10.92 .98 .68 20.0
3.73 A1 .18 92 1.02 .69 241 200
A7 .00 .00 .04 .03 18 6.28 20.0
.58 .27 15.18 41 .66 201 .88 20.0
.01 .00 11.08 .00 .28 8.28 34 20.0
12.25 .70 A4 91  1.07 41 194 200
17.32 17 .04 12 .08 A5 213 200
g7 1254 .06 247 229 59 1.00 20.0
71 19 .03 1089 530 1.95 .87 20.0
.67 277 59 1314 1.87 .09 .61 20.0
.08 .06 .02 18.14 A7 .30 .92 20.0
3.92 .98 41 283 577 292 120 20.0

1.57 72 128 322 466 638 107 20.0
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Table 6: BHPS: The class time-budget ‘signature’ of thetelss

Person-years in

Cluster Il 1" IVab Ived V-VI Vila VIIb Pre- Total
entry

1 0.12 008 028 024 101 181 1559 0.87 20.0
2 031 063 059 000 935 759 004 150 20.0
3 0.15 053 0.14 000 1.79 16.34 0.18 0.88 20.0
4 13.21 1.01 009 000 0.64 044 0.07 455 20.0
5 0.96 1445 0.09 004 141 088 0.07 210 20.0
6 0.66 091 1242 001 363 101 0.04 132 20.0
7 0.22 0.27 034 0.02 1714 0.75 0.15 1.12 20.0
8 591 080 0.12 0.00 11.19 053 0.06 140 20.0
9 021 034 203 024 6.29 982 034 0.72 200
10 425 062 043 308 124 705 136 197 20.0

Total 388 197 060 008 705 370 064 208 20.0
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Table 7: IMS: The class destination ‘signature’ of the @ust

Cluster Class at age 35, %ages
11 l Ivab Ived V-VI Vila Vilb Total

1 00 04 07 7.1 1.4 99 806 283
2 00 00 69 815 85 23 08 130
3 33 33 6.7 8.3 83 683 1.7 60
4 00 05 10 0.5 20 934 25 198
5 0.0 290 194 161 226 129 0.0 31
6 00 69 00 00 138 793 0.0 29
7 1000 0.0 0.0 0.0 00 0.0 00 28
8 1000 0.0 0.0 0.0 00 0.0 00 66
9 00 00 0.0 1000 00 00 00 43
10 00 00 00 96.7 00 33 00 30
11 372 395 140 7.0 00 23 00 43
12 0.0 941 5.9 0.0 00 0.0 00 51
13 23 0.0 90.9 2.3 23 23 00 44
14 75 50 25 25 775 50 00 40
15 29 00 457 57 257 200 0.0 35
16 00 15 15 0.7 942 15 0.7 137
17 164 131 6.6 9.8 8.2 410 49 61

Total 97 70 73 170 16.0 24.7 183 1309
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Table 8: BHPS: The class destination ‘signature’ of thetekss

Cluster Class at age 35
-1l l IVab Ived V-VI Vila VIlb Total

1 00 39 39 59 59 157 64.7 51
2 33 00 00 OO0 00 951 16 61
3 21 17 42 00 30 886 04 237
4 921 30 20 0.0 20 10 0.0 404
5 176 76.7 31 0.0 00 25 0.0 159
6 00 23 930 00 23 23 00 43
7 34 18 52 04 869 22 00 498
8 947 18 35 0.0 0.0 0.0 00 57
9 38 19 250 19 673 00 00 52
10 40.7 00 111 259 111 111 0.0 27

Total 309 96 69 08 308 188 2.2 1589
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Table 9: IMS: Distribution of the clusters across cohort.

Cluster Cohort Total
col. percentages
A B C
1 325 20.0 124 283
2 9.7 93 107 130
3 53 49 35 60
4 135 171 147 198
5 28 24 19 31
6 0.2 40 23 29
7 09 18 37 28
8 44 49 58 66
9 39 16 44 43
10 23 33 12 30
11 19 40 40 43
12 26 40 51 51
13 16 38 47 44
14 21 31 4.0 40
15 32 22 26 35
16 84 98 133 137
17 46 38 56 61

Total 431 450 428 1309
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Table 10: BHPS: Distribution of the clusters across cohort.

Cluster Cohort Total

col. percentages

A B C
1 38 35 27 51
2 32 39 41 61
3 154 135 158 237
4 186 24.7 299 406
5 89 111 97 159
6 19 30 29 43
7 39.6 30.8 27.1 498
8 27 46 32 57
9 46 3.0 28 52
10 1.3 20 16 27

Total 371 542 678 1591
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Table 11: IMS: Cohort class time-budgets.

Cohort Person-years in

[ M Ivab IvVed V-VI Vila VIilb Pre- Total

entry

A 74 109 51 147 262 439 831 .88 20.0
B 1.06 1.57 78 1.09 319 494 6.42 96 20.0
C 148 206 .86 129 387 464 440 139 200

Total 1.09 157 .72 128 322 466 6.38 1.07 200
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Table 12: BHPS: Cohort class time-budgets.

Cohort Person-years in

[ M Ivab IvVed V-VI Vila VIilb Pre- Total

entry

A 282 200 062 0.09 856 400 0.76 1.14 20.0
B 404 210 055 012 728 342 077 172 20.0
C 434 184 063 004 6.04 376 046 288 20.0
Total 3.88 1.97 0.60 0.08 7.05 3.70 0.64 2.08 20.0
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Table 13: IMS: Cohort class destination patterns.

Cohort Class at age 35

-1 1l IVab Ived V-VI Vila VIlb Total
A 29 21 20 77 59 109 116 431
B 40 35 35 72 68 120 80 450
C 58 36 40 74 83 94 43 428

Total 127 92 95 223 210 323 239 1309
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Table 14: BHPS: Cohort class destination patterns.

Cohort Class at age 35

-1l 1 IVab Ived V-VI Vila VIlb Total
A 86 32 26 2 142 74 9 371
B 164 55 35 8 171 94 15 542
C 241 65 48 3 177 131 11 676
Total 491 152

109 13 490 299 35 1589




