
Sequence Analysis for Social Scientists

Brendan Halpin, Dept of Sociology
University of Limerick

Oslo, June 16-18 2015

Contents

1 Session 1: Introduction 1
1.1 Installing the software . 1
1.2 A simple example . 1
1.3 Hamming distance . 2
1.4 Optimal Matching distance . 2
1.5 OMA’s workspace . 2
1.6 Differential length . 3
1.7 Further experimentation . 4

2 Session 2: Working with real data 4
2.1 Working with real data . 4
2.2 Survival curves . 5
2.3 School-leavers data . 5
2.4 OM and Hamming with real data 6
2.5 Clustering . 7
2.6 Comparing distance matrices . 7
2.7 Other linkages . 8
2.8 String representations and regular expressions 8
2.9 Other ways of characterising clusters: n-spells, cumdur, entropy,

turbulence . 9

3 Session 3 10
3.1 Setup: recreate oma matrix and cluster solution 10
3.2 Multi-dimensional scaling . 10
3.3 Optimal matching and costs . 11

3.3.1 Indel, OM and Hamming 12
3.3.2 Different substitution matrices 12
3.3.3 MDS mat on substitution matrices 13

3.4 Other distance measures . 13
3.5 Post hoc analysis . 14
3.6 Discrepancy . 15

3.6.1 Pseudo-R2 and pseudo-F tests 15
3.6.2 Comparing F-tests with cluster solutions 15
3.6.3 Assessing cluster solutions 16
3.6.4 Medoids . 16

1

4 Session 4 16
4.1 MCSA . 16

4.1.1 Viewing results . 17
4.2 Dyads . 17

1 Session 1: Introduction

1.1 Installing the software

We will work with Stata. This requires initially downloading add-ons. Try:

net from http://teaching.sociology.ul.ie/sadi/

net install sadi

to begin with. This installs my SADI package. See http://www.ul.ie/

sociology/pubs/wp2014-03.pdf for full information on SADI.
As well as SADI we need two other packages:

ssc install moremata

ssc install sq

This installs some matrix manipulation tools that my software, SADI, uses, and
the SQOM package of Kohler et al., which is useful for graphics.

1.2 A simple example

We begin with a simple example. This code creates a small sequence data set:

input id s1 s2 s3 s4 s5

1 1 2 3 2 3

2 2 3 4 1 4

3 4 4 4 4 4

4 1 1 2 3 3

5 4 3 2 1 4

end

Put the code in the Stata do-file editor and run it. These sequences have 5
observations and 4 states.

1.3 Hamming distance

Hamming distance is the sum of the difference at each time point. It requires
sequences to be the same length, and recognises similarity at the same time
point. To calculate Hamming distance we need to define the difference be-
tween the states. To do this we need a 4x4 matrix:

matrix subs = (0,1,2,3\ ///

1,0,1,2\ ///

2,1,0,1\ ///

3,2,1,0)

matrix list subs

2

http://www.ul.ie/sociology/pubs/wp2014-03.pdf
http://www.ul.ie/sociology/pubs/wp2014-03.pdf

This particular example sets the "substitution cost" to the simple difference be-
tween the values.

To make the calculation, issue the following command:

hamming s1-s5, subsmat(subs) pwd(ham)

matlist ham

The distances are written to the ham matrix, which has the same order as the
data set. For one or two pairs of sequences, verify that the Hamming distance
is what you would expect.

1.4 Optimal Matching distance

The OMA distance is similar to Hamming distance, except that it also allows
insertion and deletion, and can thus recognise similarities that are out of align-
ment. To do this it needs an indel() option to put a cost on insertion and dele-
tion, and a length() option because it can work with sequences of different
length. If the indel cost is less than half any substitution cost, those substitu-
tions will not be used, so in general use, the minimum indel cost is half the
largest substitution cost.

oma s1-s5, subsmat(subs) pwd(oma) len(5) indel(1.5)

matlist oma

Compare the ham and oma distance matrices: what do you notice about
them?

1.5 OMA’s workspace

To understand how the OM algorithm works, the workspace option will print
the internal work matrices for each pair of sequences (use only with very small
datasets!).

oma s1-s5 if inlist(id,1,5), subsmat(subs) pwd(oma) len(5) indel(1.5) workspace

Sequence 1 is represented by the rows, sequence 2 by the columns. The
margins of the table count the cost of repeated insertions or deletions. Begin-
ning in the top left of the table, each cell is filled as the minimum of the one
above it plus the indel cost (delete from seq 1), the one to its left plus the indel
cost (delete from seq 2), and the one above-left plus the substitution cost. Note
that a deletion from one sequence is equivalent to an insertion in the other.

The bottom right element of the workspace is the OM distance (be-
fore it is normalised by dividing by the length of the longer sequence).
Working backwards allows us to determine what each operation was (inser-
tion/deletion/substitution), to identify the optimal alignment or alignments.

Seq 1: 1 2 3 2 3

Seq 2: 4 3 2 1 4

Substitution costs:

4 3 2 1 4

3

1 3.00 2.00 1.00 0.00 3.00

2 2.00 1.00 0.00 1.00 2.00

3 1.00 0.00 1.00 2.00 1.00

2 2.00 1.00 0.00 1.00 2.00

3 1.00 0.00 1.00 2.00 1.00

Working space:

0.00 | 1.50 3.00 4.50 6.00 7.50

-----+------------------------------

1.50 | 3.00 3.50 4.00 4.50 6.00

3.00 | 3.50 4.00 3.50 5.00 6.50

4.50 | 4.00 3.50 5.00 5.50 6.00

6.00 | 5.50 5.00 3.50 5.00 6.50

7.50 | 7.00 5.50 5.00 5.50 6.00

In this example the result is 6 (or 1.2 when normalised, less than the Ham-
ming distance of 1.4). Working back, the last operation was substitution (6 = 5
+ 1, comparing 3 and 4), so we are now one cell up and one to the left, compar-
ing 2 and 1. The cheapest way to arrive here is from the cell to the left (3.5 + 1.5
= 5, delete 1), because this allows us to backtrack through two perfect matches
(2 vs 2, and 3 vs 3). At this point we are comparing 2 and 4 (row 2, col 1 in the
body of the table) where a substitution cost of 2 puts us in the margin of the
table, and we delete 1 to arrive at the start.

Repeat this exercise for sequence pairs (1,3) and (2,4). Note the the (1,3)
distance is the same as Hamming, but the (2,4) is not.

Repeat the exercise for pair (1,5) but increase the indelcost to 2. What hap-
pens?

1.6 Differential length

The optimal matching algorithm is designed to deal with sequences of differing
lengths.

clear

input id s1 s2 s3 s4 s5 seqlen

1 1 2 3 2 3 5

2 2 3 4 1 4 5

3 4 4 4 . . 3

4 1 1 2 3 . 4

5 4 3 2 1 4 5

end

oma s1-s5, subsmat(subs) pwd(om2) len(seqlen) indel(1.5)

matlist om2

1.7 Further experimentation

If you have time, experiment with other sequences, by editing the input sec-
tion of the code. Experiment with other substitution matrices, for instance the
following:

4

matrix extreme = (0,1,2,5\ ///

1,0,1,2\ ///

2,1,0,1\ ///

5,2,1,0)

which treats category 4 as extra different (note you will need to change the
indel() option too).

2 Session 2: Working with real data

2.1 Working with real data

We will work with two main example data sets, a six-year span of labour mar-
ket activity of women who have a birth at the end of year two (drawn from
the BHPS) and the McVicar/Anayadike-Danes school leaver data set. We will
work with the mothers’ labour market sequences first:

use http://teaching.sociology.ul.ie/oslo/bsseq

The labour market status variable has the values full-time, part-time, un-
employed and non-employed, but we have 72 consecutive observations. How
do we get an overview?

tab state1 state72

tab state1 state24

tab state24 state72

Better to make a chronogram or time-dependent state-distribution graph:

chronogram state*

This loses all individual information but summarises the temporal average
well. To retain the individual level view, we need to use indexplots. SQOM is
useful here, but requires the data in a different format (long, with one observa-
tion per person–time-unit):

reshape long state, i(pid) j(t)

sqset state pid t

sqindexplot, order(pid)

This plot orders the data by PID, which is pretty much at random with
respect to the sequences. As a result, it is hard to see much structure. The
default sqindexplot is to sort "lexically", by month 1, then by month 2, etc.

sqindexplot

This is a little better, and in particular we see that there are significant numbers
of sequences 100% in the same state. However, for those that change state,
after the first transition there is the same chaos as before. You could also sort
by another transition, e.g., the date of the first month in work after the birth.
To calculate this variable we move back to the wide format temporarily.

5

reshape wide

gen retdate = 99

forvalues x = 25/72 {

replace retdate = `x' if inlist(state`x',1,2) & retdate==99

}

reshape long

sqindexplot, order(retdate)

We can use one or two other SQOM utilities to get more information on the
sequences:

sqtab

sqdes

sqtab tabulates the sequences (showing a truncated representation), which
makes it apparent (with numbers) that we have lots of simple sequences, with
27.45% being non-employed the whole time. sqdes shows that there are 417
(of 940) unique patterns. For 392 patterns there is only a single example, but
the 100% non-employed pattern has 258 examples.

2.2 Survival curves

Indexplots and chronograms take advantage of the whole time-span but it can
be useful to focus on single transitions in a more traditional framework such as
Kaplan-Meier survival curves. Let’s look at the return to work again, defined
as the first month full or part-time after the birth (for some it is month 1, for
some never).

reshape wide

gen returned = retdate<99

stset retdate, failure(returned)

sts graph

2.3 School-leavers data

Download the MVAD data. Note that this has six states (school, training, fur-
ther education, higher education, unemployment, employment). Use the tools
described above to get an overview of it. Note that this dataset has a few use-
ful covariates, so try adding the by option to the chronogram, indexplot and
survival graphs (e.g., by(male) or by(gcse5eq)).

2.4 OM and Hamming with real data

Calculating OM and Hamming distances works the same way as with the small
data set above. The only difference is setting the substitution and indel costs.
For the mothers data, the same substitution matrix can be used:

matrix subs = (0,1,2,3\ ///

1,0,1,2\ ///

2,1,0,1\ ///

3,2,1,0)

matrix list subs

6

This puts the four states on a single dimension from full-time work to non-
employment. For the MVAD data, you could use the cost matrix they used in
their paper:

matrix mvdanes = (0,1,1,2,1,3 \ ///

1,0,1,2,1,3 \ ///

1,1,0,2,1,2 \ ///

2,2,2,0,1,1 \ ///

1,1,1,1,0,2 \ ///

3,3,2,1,2,0)

For either or both data sets, calculate OM (set indel to 1.5) and Hamming
distances. You may need to increase the maximum matrix size first (the default
is 800 and there are 940 mothers’ sequences):

clear

use http://teaching.sociology.ul.ie/oslo/mvad

matrix mvdanes = (0,1,1,2,1,3 \ ///

1,0,1,2,1,3 \ ///

1,1,0,2,1,2 \ ///

2,2,2,0,1,1 \ ///

1,1,1,1,0,2 \ ///

3,3,2,1,2,0)

hamming state1-state72, subsmat(mvdanes) pwd(ham)

oma state1-state72, subsmat(mvdanes) indel(2) pwd(oma) len(72)

Note that the hamming command is relatively slow as it is coded in Mata,
rather than C. The oma command has to make rather more calculations so it is
necessary to code this in C for speed. However both commands are making
440,391 sequence comparisons, so neither is instantaneous.

You can compare the results by inspecting parts of the distance matrices
like this:

matlist ham[1..10,1..10]

matlist oma[1..10,1..10]

Note that in many cases the distances are the same. You can compare pairs
visually using a string representation of the sequence:

stripe state*, gen(seqstr) symb("EFHSTU")

list seqstr if inlist(_n,1,10)

list seqstr if inlist(_n,6,10)

2.5 Clustering

When you have large distance matrices, simple inspection is not effective. We
need to reduce the complexity of the data in some manner. The usual one is
cluster analysis: group sequences with similar sequences in order to create a
data-driven classification. This is readily carried out in Stata. Given distances
in the matrix oma:

clustermat wards oma, add

cluster generate g8=groups(8)

7

tab g8

sort g8 seqstr

list g8 seqstr

chronogram state*, by(g8)

We can also create cluster-specific index plots:

cluster generate g999 = groups(800), ties(fewer)

reshape long state, i(id) j(t)

sqset state id t

sqindexplot, by(g8) // by cluster, lexical order within

sqindexplot, order(g999) // by dendrogram order

sqindexplot, by(g8) order(g999) // by cluster, sub-cluster order within

It can be useful to view the dendrogram, but for more than about 40 se-
quences it needs to be "trimmed" using the cutnumber() or cutvalue() op-
tions:

reshape wide

cluster dendrogram, cutnumber(40)

cluster dendrogram, cutvalue(15)

2.6 Comparing distance matrices

We can run the same analysis on OMA distances and on Hamming distances.
The results will not be very different but will not be the same. First, we can
compare the distances against each other, for instance by correlation:

corrsqm ham oma

As we see, the correlation is very high, partly because for many pairs the dis-
tances are the same. But if we cluster the Hamming distance and compare it
with the OM cluster solution, small differences are amplified a little:

clustermat wards ham, add

cluster gen h8=groups(8)

permtab g8 h8

permtab permutes the second classification to maximise its match with the
first, and then tabulates the result. As we see, a substantial minority of se-
quences are clustered differently.

2.7 Other linkages

Ward’s "linkage" (i.e., method for deciding what elements to combine into clus-
ters) is often used in cluster analysis, and it has a nice interpretation in terms
of minimising intra-cluster variance. There are a number of other linkages in
hierarchical agglomerative cluster analysis, as well as non-hierarchical cluster
methods to consider. While non-hierarchical methods such as k-means and k-
medians are not available for distance matrices in Stata, it is easy to replace
Ward’s with other methods. The choices available are:

• singlelinkage single-linkage cluster analysis

8

• averagelinkage average-linkage cluster analysis

• completelinkage complete-linkage cluster analysis

• waveragelinkage weighted-average linkage cluster analysis

• medianlinkage median-linkage cluster analysis

• centroidlinkage centroid-linkage cluster analysis

• wardslinkage Ward’s linkage cluster analysis

Try clustermat median oma, add and so on, using e.g., permtab to com-
pare solutions.

In my experience, Ward’s is the most likely to yield a fairly even distribution
of cases across clusters.

2.8 String representations and regular expressions

We have seen the utility of representing sequences as strings:

permtab g8 h8, newvar(ph8)

list seqstr if g8==1 & ph8==7 // View cases in disagreement

list seqstr if g8==1 & ph8!=7

"Regular expressions" are ways of defining patterns in strings. Regexes are
implemented in many languages, including Stata. These can be very useful for
exploring the structure of sequences.

• A*B: A zero or more times followed by a B

• A+B: at least one A followed by a B

• A?B: A zero or one time followed by a B

• A.+B: an A followed by at least one character, followed by a B

• (AB)+C: one or more AB=s followed by a =C

• ^ABC: a string starting with ABC

• ABC$: a string ending with ABC

• ^A+$: a string composed entirely of {A}s

• A[BCD]+E: A followed by at least one of B, C or D, followed by E

• A[^A]+A: A followed by at least one element that is not A, followed by A

For instance, to ask how many sequences are 100% in non-employment:

clear

use http://teaching.sociology.ul.ie/oslo/bsseq

stripe state*, gen(seqstr) symb("FPun")

count if regexm(seqstr,"^n+$")

How many sequences do we observe entering unemployment from full-time:

9

count if regexm(seqstr,"Fu")

How many sequences do we observe entering unemployment from full-time,
but later return to full or part-time:

count if regexm(seqstr,"Fu.+[FP]")

What clusters include sequences with 12 months part-time:

// Generate clusters

oma state1-state72, subsmat(subs) indel(2) pwd(oma) len(72)

clustermat wards oma, add

cluster gen g8=groups(8)

// Test patterns

gen pt12 = regexm(seqstr,"PPPPPPPPPPPP")

tab g8 pt12

What clusters include sequences that are never in non-employment:

gen nevern = regexm(seqstr,"^[FPu]+$")

tab g8 nevern

Which include sequences that experience at least 12 consecutive months of full-
time, at least 6 of non-employment and at least 12 of full-time later:

gen fnf = regexm(seqstr,"FFFFFFFFFFFF.*nnnnnn.*FFFFFFFFFFFF")

tab g8 fnf

With either data set, explore this method to characterise as many of the
clusters as possible. It is a very good way of assessing the coherence of the
cluster solution in terms of substantive meaning. With luck and perseverance
you may end up defining a set of ideal types that characterise the bulk of the
data.

2.9 Other ways of characterising clusters: n-spells, cumdur,
entropy, turbulence

The SADI package includes a number of other utilities that can be useful for
summarising clusters or individual sequences.

cumuldur state*, cd(dur) nstates(4)

table g8, c(mean dur1 mean dur2 mean dur3 mean dur4)

nspells state*, gen(nspells)

table g8, c(mean nspells)

entropy state*, cd(rel) nstates(4) gen(entropy)

table g8, c(mean entropy)

Cumulated duration simply adds time-units in each state, creating one
summary variable (dur1 to dur4 in this case) per state. nspells treats consecu-
tive runs in the same state as spells (with missing counted as a state, if present).
The entropy calculation calculates Shannon entropy, based on cumulated du-
ration. Entropy is calculated as −∑ pi log2 pi where pi is the proportion of
months in state i. It takes no account of order, only of cumulative duration, so
is clearly inferior to Elzinga’s turbulence measure, which is available in R but
not in Stata.

10

3 Session 3

3.1 Setup: recreate oma matrix and cluster solution

use http://teaching.sociology.ul.ie/oslo/bsseq

matrix subs = (0,1,2,3\ ///

1,0,1,2\ ///

2,1,0,1\ ///

3,2,1,0)

oma state1-state72, subsmat(subs) indel(2) pwd(oma) len(72)

clustermat wards oma, add

cluster gen g = groups(8 999), ties(fewer)

3.2 Multi-dimensional scaling

The other "obvious" thing to do with a pairwise distance matrix, apart from
partitioning into clusters, is to use the information in it to attempt to construct
the multi-dimensional space it implies. In the distances are meaningful, it is
likely that they describe a space with much fewer dimensions than the number
of trajectories. In fact, we often find that two to three dimensions will capture
a large part of the structure.

This code does MDS on the oma distance matrix, and saves the first three
dimensions (coordinate vectors) to variables:

set matsize 1000

mdsmat oma, dim(3)

matrix dim = e(Y)

svmat dim

The MDS output shows that three dimensions account for between 75% and
99% of the structure (there is ambiguity about whether we should calculate the
recovered distances additively or in Euclidean fashion).

We can examine the relationship between the MDS and cluster solutions:

separate dim2, by(g8)

scatter dim21-dim28 dim1

separate dim3, by(g8)

scatter dim31-dim38 dim1

We can print sequence info on the scatterplot:

stripe state*, gen(seqstr)

scatter dim2 dim1, mlabel(seqstr)

scatter dim2 dim1 if inrange(dim1,0,1), mlabel(seqstr)

However, that can be hard to read. It can be more convenient in the results
window:

sort dim1

list dim1 dim2 dim3 seqstr, clean

This shows the relationship between the first dimension and the sequences.
Note how it starts at 100% A, and ends up in 100% B. Note the locations on dim1

11

of the four types of single-spell sequences, and relate that to the substitution
costs.

You can do the same sorting by dim2, etc, to help interpret the other dimen-
sions.

We can also use indexplots in this context:

reshape long state, i(pid) j(t)

sqset state pid t

sqindexplot, order(dim1)

Indexplots ordered by the first MDS dimension are used by Piccarreta and
Lior (2010).

We can extend on this by partitioning the MDS space mechanically (note
that cluster analysis can be thought of as partitioning it algorithmically). This
approach cuts each dimension at the mean, creating 8 = 23 partitions:

reshape wide

centile dim1

gen d1 = dim1>`r(ub_1)'

centile dim2

gen d2 = dim2>`r(ub_1)'

centile dim3

gen d3 = dim3>`r(ub_1)'

gen dx = d3+2*(d2 + 2*d1)

reshape long

sqindexplot, order(dim1) by(dx, legend(off) cols(4))

As we can see, the partitions are very distinct, and this offers an attractive
alternative to clustering.

3.3 Optimal matching and costs

A lot of criticism of OM hinges on the lack of understanding of the effect of
substitution and indel costs. However, we can experiment and get insight that
way.

3.3.1 Indel, OM and Hamming

First, note that if you raise indel costs enough, OM yields Hamming distances:

reshape wide

hamming state*, subs(subs) pwd(ham)

oma state*, subs(subs) indel(1.5) length(72) pwd(om1)

corrsqm ham om1

oma state*, subs(subs) indel(1.75) length(72) pwd(om2)

corrsqm ham om2

oma state*, subs(subs) indel(2.0) length(72) pwd(om3)

corrsqm ham om3

return list

oma state*, subs(subs) indel(2.5) length(72) pwd(om4)

// . . .

How high do you have to raise indel before you get a correlation of exactly 1?
(return list after corrsqm shows you the unrounded result).

12

3.3.2 Different substitution matrices

The substitution matrix we have been using is very simple – it puts the four
states at equal intervals along a single dimension:

matrix linear = (0,1,2,3\ ///

1,0,1,2\ ///

2,1,0,1\ ///

3,2,1,0)

An equally simple position would be to put all states equally different from
each other:

matrix linear = (0,1,1,1\ ///

1,0,1,1\ ///

1,1,0,1\ ///

1,1,1,0)

Generate and compare cluster solutions for these two distance structures
(note that you should set the indel cost relative to the maximum substitution
cost). Can you see where the differences come from?

Experiment also with this matrix, which marks non-employment as more
distinct in a linear framework:

matrix nonemp = (0,1,2,5\ ///

1,0,1,2\ ///

2,1,0,1\ ///

5,2,1,0)

Consider also a matrix that puts F, P and U on a single dimension with N
equally different from them all:

matrix twodim = (0,1,2,2\ ///

1,0,1,2\ ///

2,1,0,2\ ///

2,2,2,0)

This approximates two dimensions (see this fact with mdsmat twodim)
Note: compare the results using corrsqm, and indexplots and permutation

tables of the cluster results.

3.3.3 MDS mat on substitution matrices

As we have seen, MDS can be used to make sense of substitution matrices as
well as distance matrices. It is a useful way to think about the structure of
the "state" state-space, which is projected onto the "trajectory" state-space. See
what structure you find in these two substitution cost matrices, taken respec-
tively from Halpin and Chan (1998) and McVicar and Anyadike-Danes (2002):

matrix hc = (0, 2, 2, 2, 2, 3, 3\ ///

2, 0, 1, 1, 1, 2, 2\ ///

2, 1, 0, 1, 1, 2, 2\ ///

2, 1, 1, 0, 1, 2, 2\ ///

2, 1, 1, 1, 0, 2, 2\ ///

13

3, 2, 2, 2, 2, 0, 1\ ///

3, 2, 2, 2, 2, 1, 0)

matrix rownames hc = I-II III IVab IVcd V-VI VIIa VIIb

matrix colnames hc = I-II III IVab IVcd V-VI VIIa VIIb

matrix md = (0, 1, 1, 2, 1, 3\ ///

1, 0, 1, 2, 1, 3\ ///

1, 1, 0, 2, 1, 2\ ///

2, 2, 2, 0, 1, 1\ ///

1, 1, 1, 1, 0, 2\ ///

3, 3, 2, 1, 2, 0)

matrix rownames md = E F H S T U

matrix colnames md = E F H S T U

mdsmat hc, dim(3)

mat hcd = e(Y)

svmat hcd

graph matrix hcd*

3.4 Other distance measures

OM is the default distance measure in much sequence analysis literature but
there are a number of alternatives with different characteristics. This include:

• methods that take account of context (neighbouring states, spell length):
Hollister’s localised OM and my duration-adjusted OMv (both are non-
metric, unfortunately)

• Lesnard’s Dynamic Hamming distance

• Time-warping measures such as Marteau’s Time-Warp Edit Distance

• Elzinga’s combinatorial approaches.

On one or both of the example data sets, fit each of the measures and com-
pare the results, using corrsqm, comparing indexplots and permtab.

LOM and OMv:

hollister state*, subs(subs) time(0.5) local(0.5) pwdist(hol) length(72)

omav state*, subs(subs) indel(1.5) pwdist(omv) length(72)

metricp hol

metricp omv

Dynamic Hamming:

dynhamming state*, pwdist(dyn)

TWED:

twed state8, subsmat(subs) lambda(0.5) nu(0.15) pwdist(twd) len(72)

Elzinga’s duration-weighted spell-focused Number of Matching Subse-
quences measure (combinprep reorganises the data substantially first):

combinprep, state(state) length(l) idvar(pid) nsp(nspells)

combinadd state1-l`r(maxspells)', pwsim(xtd) nspells(nspells) nstates(`r(nels)') rtype(d)

14

3.5 Post hoc analysis

Use the MVAD data to explore the association between the sequences and other
covariates:

use http://teaching.sociology.ul.ie/oslo/mvad, clear

matrix md = (0, 1, 1, 2, 1, 3\ ///

1, 0, 1, 2, 1, 3\ ///

1, 1, 0, 2, 1, 2\ ///

2, 2, 2, 0, 1, 1\ ///

1, 1, 1, 1, 0, 2\ ///

3, 3, 2, 1, 2, 0)

matrix rownames md = E F H S T U

matrix colnames md = E F H S T U

oma state*, subs(md) indel(1.5) pwd(oma) length(72)

clustermat wards oma, add

cluster gen g8=groups(8)

// Predict the outcome classification using covariates

mlogit g8 funemp grammar gcse

// Predict the classification using cumulated duration

cumuldur state*, cd(cd) nstates(6)

mlogit g8 cd1-cd5

est store base

mlogit g8 cd1-cd5 grammar

lrtest base

// Does the clustering "explain" the covariates, over and above the

// simpler summary of cumulated duration?

logit gcse cd1-cd5

logit gcse cd1-cd5 i.g8

3.6 Discrepancy

Studer et al (2011) describe a way of treating distance matrices in a way anal-
ogous to sums of squares in linear models. It is useful for assessing the asso-
ciation of a covariate with the distance structure. For instance, are members of
groups within a variable statistically more like each other?

3.6.1 Pseudo-R2 and pseudo-F tests

With the MVAD data:

oma state*, subs(md) indel(1.5) pwd(oma) length(72)

discrepancy funemp, dist(oma) idvar(id)

15

Average distance to the centre of the group when broken down by funemp

(father unemployed) is less than that to the centre of the whole data set, but
not much: it doesn’t appear to be statistically significant according to the
permutation-test p-value.

discrepancy gcse5eq, dist(oma) idvar(id)

For gcse5eq (5 or more GCSEs) the result is significant. When the
permutation-test p-value is in the tail like this, it is worth testing with more
permutations, 1000 to 5000 (this is a little slow):

discrepancy gcse5eq, dist(oma) idvar(id) niter(1000)

If you want to test the effect of multiple variables, you need to create their
cross-tabulation:

gen cross = gcse5eq+funemp*2

discrepancy cross, dist(oma) idvar(id) niter(1000)

3.6.2 Comparing F-tests with cluster solutions

The alternative way to assess association between distances and covariates is
via the cluster solution (by tabulating or modelling):

tab g8 funemp, chi

tab g8 gcse5eq, chi

tab g8 cross, chi

Compare the results with those from the discrepancy pseudo-F test.

3.6.3 Assessing cluster solutions

We can also use discrepancy to assess how homogeneous cluster solutions are,
to compare different clusterings of the same data:

discrepancy g8, dist(oma) id(id)

clustermat waver oma, add

cluster gen w8=groups(8)

discrepancy w8, dist(oma) id(id)

We can see how clusters differ in homogeneity, by saving as a variable the
distance to the cluster centre of gravity:

discrepancy g8, dist(oma) id(id) dcg(d2c)

Use an indexplot to see how the different mean distances relate visually to
cluster homogeneity.

16

3.6.4 Medoids

Finally, we can use discrepancy to identify "medoids", the sequences in each
cluster closest to its centre.

bysort g8: egen mindist = min(d2c)

gen medoid = d2c == mindist

tab g8 medoid

list g8 stripe if medoid

gsort g8 -medoid

by g8: gen first = _n==1

list g8 medoid stripe if first

Note that more than one sequence can be the medoid.
Compare the indexplot and/or chronogram with the medoid. Is it a good

summary?

4 Session 4

4.1 MCSA

Use the data in http://teaching.sociology.ul.ie/oslo/mcsa18.dta and
the example code in http://teaching.sociology.ul.ie/oslo/mcsa18run.

do to set up an MCSA example. The data contains 18 observations of the state
at interview on employment status (employed/unemployed/not employed)
and vote (4 categories). The code creates a combined variable and a combined
substitution cost matrix.

do http://teaching.sociology.ul.ie/oslo/mcsa18run.do

Do OMA on the eun variable, and on the vote variable. Combine the dis-
tances as follows:

mata: st_matrix("additive", st_matrix("deun") :+ st_matrix("dvote"))

This simply adds the 1-domain distances together in a new distance matrix,
additive. Do a cluster analysis on this distance: it takes account of the two
dimensions without accounting for their interacting with each other.

Then do OMA on the combined variable, using the combined substitution
cost matrix. Do a cluster analysis on this and compare your results. This takes
account of the domains’ interaction.

oma cross1-cross18, subs(mcsa) indel(3) pwd(dist) length(18)

clustermat wards dist, add

cluster generate g = groups(4 8 16 32 500), ties(fewer)

4.1.1 Viewing results

The following code will graph the results together

17

http://teaching.sociology.ul.ie/oslo/mcsa18.dta
http://teaching.sociology.ul.ie/oslo/mcsa18run.do
http://teaching.sociology.ul.ie/oslo/mcsa18run.do

reshape long cross vote eun, i(pid) j(t)

sqset eun pid t

sqindexplot, by(g8, legend(off) note("Employment")) order(g500) name(emplot, replace)

sqset vote pid t

sqindexplot, by(g8, legend(off) note("Voting intention")) order(g500) name(votplot, replace)

4.2 Dyads

See http://teaching.sociology.ul.ie/dyadoma.do for a worked example

18

http://teaching.sociology.ul.ie/dyadoma.do

	Session 1: Introduction
	Installing the software
	A simple example
	Hamming distance
	Optimal Matching distance
	OMA's workspace
	Differential length
	Further experimentation

	Session 2: Working with real data
	Working with real data
	Survival curves
	School-leavers data
	OM and Hamming with real data
	Clustering
	Comparing distance matrices
	Other linkages
	String representations and regular expressions
	Other ways of characterising clusters: n-spells, cumdur, entropy, turbulence

	Session 3
	Setup: recreate oma matrix and cluster solution
	Multi-dimensional scaling
	Optimal matching and costs
	Indel, OM and Hamming
	Different substitution matrices
	MDS mat on substitution matrices

	Other distance measures
	Post hoc analysis
	Discrepancy
	Pseudo-R2 and pseudo-F tests
	Comparing F-tests with cluster solutions
	Assessing cluster solutions
	Medoids

	Session 4
	MCSA
	Viewing results

	Dyads

