Sequence analysis for social scientists

Brendan Halpin, Dept of Sociology, University of Limerick

Oslo June 16-18 2015

Outline

- What is sequence analysis?
- Why it can be worth doing, and how it complements existing approaches
- How to do it, and how to think about it
- Practical, hands-on focus, using (inter alia) my SADI add-on for Stata (Halpin, 2014a)

Sequence Analysis

- What is sequence analysis?
 - Large, growing and ramifying research area
 - From Abbott and Hrycak (1990) to the 2015 edition of Sociological Methodology
 - See Halpin (2013) for an annotated bibliography
- Focus on lifecourse trajectories as sequences, as wholes
- Usually proceed by defining distances between pairs of sequences, classify, etc

Why do Sequence Analysis?

- Why would we want to do it
 - Holistic vs analytic?
 - Exploratory vs hypothesis testing?
 - Descriptive, visualisation
- Complexity of longitudinal processes hard to capture
- How should we think about $d \to D$?
- Complementary alternative to stochastic techniques which model data generation process

Sequences are messy

- Lifecourse sequences are epiphenomena of more fundamental underlying processes
- The processes are potentially complex: difficult to predict distribution of sequences
- Other techniques (hazard rate models, models of late outcome using history, models of the pattern of transition rates) give a powerful but partial view
- SA clearly allows us visualise complex data; possibly allows us observe features that will otherwise be missed

Potentially complex processes

- The generating processes are complex:
 - individuals bring different characteristics from the beginning
 - history matters, including via duration dependence (individuals accumulate characteristics)
 - time matters:
 - calendar time (e.g. economic cycle), state distribution may change dramatically
 - developmental time (maturation)
 - processes in other lifecourse domains
- Too many parameters to model, hard to visualise distribution of life courses, also the possibility of emergent features
 - Clear exploratory advantages
 - possibility of detecting things that might not be detected otherwise

Timing, sequence, quantum

- Different things can be interesting
 - Timing: when things happen
 - Sequence: in what order do things happen
 - Quantum: how much time is spent in different states (Billari et al., 2006)
- Many applications in longitudinal social science: annotated bibliography in Halpin (2013)

Non-holistic approaches

- Numerous non-holistic approaches exist
- Typically they will discard some aspect of the information in the data, and focus powerfully on another
- For instance, focus on
 - cumulated duration in states (how much but not when)
 - transition patterns between states (period-to-period but not overall)
 - time-to-event of leaving spell (spells, perhaps pooled, but lose sight of individual career).

Cumulative duration

- For instance, summarise trajectories in terms of cumulative time in each state
- Typically use as a predictor (e.g., proportion of time unemployed predicting later ill-health)
- Or as an outcome: variables measured earlier (e.g., school performance) predicting proportion of time unemployed.

Transition rate models

- Model rates of period-to-period change: e.g., monthly movement between labour market statuses
- Model origin-destination patterns: e.g., transition between class at entry to labour market, and class at age 35
- Markov models
- Very useful, good overview, can be descriptive or stochastic: tables make categorical data digestible
- Disadvantage: the focus on the t-1/t or t_0/t_T pattern means a loss of individual continuity
- Some potential to model longer Markov chains (Gabadinho, 2014)

Hazard-rate modelling

- Hazard-rate modelling is one of the dominant statistical alternative
- Either in terms of survival tables and curves (essentially descriptive)
- Or full stochastic models of the determinants of the hazard rate (Cox and/or parametric)
- Example: what characteristics speed up (or slow down) exit from unemployment?
- Very nice conceptual model of the temporal process
- Can test hypotheses
- Disadvantage: spell orientation, lack of whole-trajectory overview

Latent class analysis

- Latent class growth curve models
 - Where theory allows a developmental model of a quantitative outcome
 - Account for the structure of repeated measurement of individuals
 - Not so suitable for categorical variables
- Latent class models can be applied to careers
 - However, difficult to properly incorporate the longitudinality
 - Examples: Lovaglio and Mezzanzanica (2013); Barban and Billari (2012)

units

Holistic approaches by definition treat whole trajectories as

- Classification of sequences is a typical goal
- Usually achieved by defining inter-sequence similarity and cluster analysis
- But other aspects of similarity may be interesting
 - Variation of similarity by grouping variable (cohort, social class)
 - Dyad similarity (couples' time use, mother-daughter fertility etc)
 - Distance to pre-defined ideal types (empirical or theoretical)

Defining similarity

- Defining similarity the key challenge: must be
 - efficient
 - coherent, and
 - sociologically meaningful
- We will consider a number of methods to do this
 - Hamming distance and Optimal Matching distance (today)
 - Dynamic Hamming, time-warping measures and combinatorial subsequence measures (later)

Hamming distance and Optimal Matching

- The simplest way to compare sequences is element-wise
- Given a rule for d(a, b), project it onto D(A, B) as $D(A, B) = \sum_i d(A_i, B_i)$
- Requires sequence of equal length
- Hamming distance: recognises match or similarity at same time
- Simple but important case of mapping $d(a,b) \rightarrow D(A,B)$

Hamming distance example

Input four short sequences

Hamming distance example

Input four short sequences

Resulting distances

```
. matrix list ham
```

```
symmetric ham[4,4]

c1 c2 c3 c4

r1 0

r2 1.2 0

r3 .6 1.4 0

r4 1.2 1.2 1.8 0
```

Optimal Matching

- Hamming recognises similarity at the same time
- If sequences have similarity that is out of alignment this will not be recognised
- OM defines similarity like Hamming, but with insertion and deletion to allow sequences to align
- I.e., it cuts bits out in order to slide other parts along to match
- Insertion/deletion also enables comparison of sequences of different lengths

OM example

OMA call

```
. oma s1-s5, subs(scost) indel(1.5) ///
            pwd(oma) length(5)
```

OM example

OMA call

Resulting distances

OM distances

```
    symmetric oma[4,4]

    c1
    c2
    c3
    c4

    r1
    0

    r2
    .6
    0

    r3
    .6
    .6
    0

    r4
    1.2
    1.2
    1.8
    0
```

Hamming distances

```
symmetric ham[4,4]

c1 c2 c3 c4

r1 0

r2 1.2 0

r3 .6 1.4 0

r4 1.2 1.2 1.8 0
```

OM vs Hamming

- For most pairs the OM and Hamming distance is the same
- For the pairs (1,2) and (2,3), OM distance is less because "alignment" allows a better match
- 1 vs 2

• 2 vs 3

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
		=
		=
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
		=
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
subs $\mathtt{B}{ ightarrow}\mathtt{A}$	CDAACD	+1 = 5
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
subs B $ ightarrow$ A	CDAACD	+1 = 5
subs $C \rightarrow B$	CDAABD	+1 = 6
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
subs B $ ightarrow$ A	CDAACD	+1 = 5
subs $C \rightarrow B$	CDAABD	+1 = 6
delete D	CDAAB-	+2 = 8
Sequence 1	CDAAB	= 8

- OM distance is defined as the cheapest set of "elementary operations" that edit one sequence into another
- Determining the cheapest set of "elementary operations" is potentially complex – a large population of candidates
- However, it can be stated as a recursive problem and programmed very efficiently
- Understanding how it is programmed can help understand the principle of OM

OM: Recursive problem

$$egin{aligned} \Delta_{\mathit{OM}}(A^p,B^q) = \ & \min \left\{ egin{array}{ll} \Delta_{\mathit{OM}}(A^{p-1},B^q) & + \mathit{indel} \ \Delta_{\mathit{OM}}(A^{p-1},B^{q-1}) + \delta(a_p,b_q) \ \Delta_{\mathit{OM}}(A^p,B^{q-1}) & + \mathit{indel} \end{array}
ight. \end{aligned}$$

(Δ represents distance between sequences, and δ differences within the state space)

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

			<i>s</i> ₂			
		Α	В	C	D	
	C	2	1	0	1	
s_1	D	3	2	1	0	
	Α	0	1	2	3	
	Α	0	1	2	3	
	В	1	0	1	2	

0	2	4	6	8
2				
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

= $min(0 + 2, 2 + 2, 2 + 2) = 2$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2				
2 4 6 8				
6				
8				
10				

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

$$= min(2+1, 2+2, 4+2) = 3$$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
10				

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3		
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

$$= min(4+0,3+2,6+2) = 4$$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3		
4				
2 4 6 8				
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	
4				
2 4 6 8				
8				
10				

$$= min(6+1,4+2,8+2) = 6$$

$$s_{2}$$

$$A B C D$$

$$c 2 1 0 1$$

$$s_{1} D 3 2 1 0$$

$$A 0 1 2 3$$

$$A 0 1 2 3$$

$$B 1 0 1 2$$

0	2	4	6	8
	2	3	4	
2 4 6 8				
6				
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4 6 8				
6				
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4 6 8	4	4	4	4
6				
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4 6 8	4	4	4	4
6	4	5	6	6
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8	6	5	7	8
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8	6	5	7	8
10	8	6	6	8

Two example data sets

- We will be primarily using two data sets as examples
 - MVAD: McVicar/Anyadike-Danes data on the school-to-work transition in Northern Ireland (72 months, 6 states)
 - BSSEQ: 6 years of labour market history of women who have a birth at end of year 2 (72 months, 4 states)

Initial step: looking at life course data

- It's harder to get an overview of lifecourse that cross-sectional data
- However, a number of numeric and graphical techniques are available

Numeric summaries

We can summarise lifecourse data in terms of:

- Cumulative duration
- Number of spells
- Patterns of transition rates
 - month by month
 - start by finish
- Durations to event (time to first job, first marriage, first child)

Useful to break down these measures by covariates, and model them

Cumulative duration

```
use myad
cumuldur state*, cd(cd) nstates(6)
reshape long cd, i(id) j(durtype)
label values durtype state
table male durtype, c(mean cd) format(%5.2f)
table grammar durtype, c(mean cd) format(%5.2f)
                  durtype
   \verb|male|| E F H S T U
      0 | 29.24 12.73 10.12 7.30 5.55 7.06
      1 | 34.96 10.75 6.81 5.00 9.12 5.36
                 durtype
 grammar | E F H S T U
      0 | 34.25 12.42 6.07 4.44 8.09 6.74
      1 | 23.02 8.47 18.93 13.62 4.32 3.64
```

Number of spells

- . nspells state*, gen(nsp)
- . tab nsp grammar, col nofreq

	Ι	grammar			
nsp	1	0	1	1	Total
	-+-			-+-	
1	1	6.17	4.65	1	5.90
2	1	20.24	24.81	-	21.07
3	1	30.70	33.33	1	31.18
4		19.21	19.38	1	19.24
5	\mathbf{I}	12.52	6.98	1	11.52
6	\mathbf{I}	4.12	6.20	1	4.49
7	\mathbf{I}	3.95	1.55	1	3.51
8	\mathbf{I}	1.37	2.33	1	1.54
9	\mathbf{I}	1.03	0.78	1	0.98
10	\mathbf{I}	0.34	0.00	1	0.28
11	\mathbf{I}	0.34	0.00	1	0.28
	-+-			+-	
Total	ı	100.00	100.00	ī	100.00

Transition rates

```
use mvad
reshape long state, i(id) j(t)
by id: gen last = state[_n-1] if _n>1
label values last state
tab last state, row nofreq
```

Transition rates

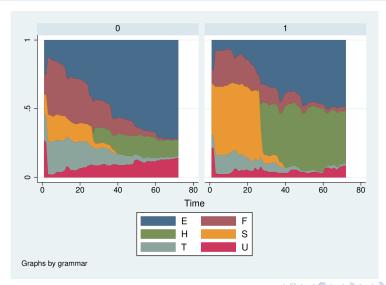
ı	state						
last	l E	F	Н	S	T	U	Total
E	22,039 98.16	115 0.51	56 0.25	39 0.17	58 0.26	146 0.65	
F	227 2.73	7,927 95.25			33 0.40	73	
Н	60 1.02		5,787 98.72			11 0.19	5,862 100.00
S	59 1.36	50 1.15	74 1.70	94.82	19 0.44		100.00
T	197 3.74	21 0.40	0.00	4 0.08	4,973	69	5,264
U	182 4.23	120 2.79	9 0.21	39 0.91	64 1.49		
Total	22,764 45.03	8,234 16.29	5,980 11.83	4,210 8.33	5,150 10.19		

Graphs

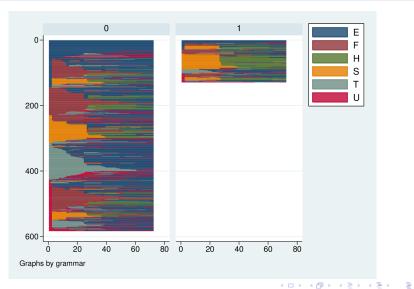
Graphs give us an even better overview. Consider

- Chronograms
- Survival plots
- Index plots
- Transition rate time-series

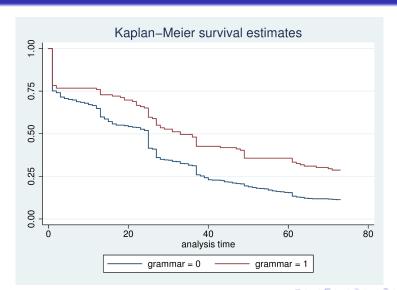
Chronograms



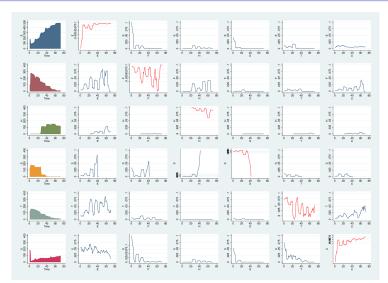
Index plots



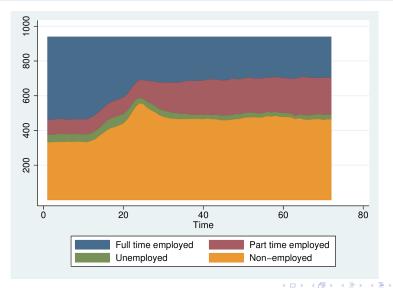
Survival plots: time to first job



Transition rate time-series



Chronogram, mothers' labour market history (BS)



OM on BS data

```
use bsseq
matrix scost = (0,1,2,3 \ \ \ ///
                  1,0,1,2 \setminus ///
                  2,1,0,1 \setminus ///
                  3,2,1,0)
oma state*, subs(scost) indel(1.5) pwd(oma) len(72)
matlist oma[1..5,1..5]
```

OM output

```
. oma state*, subs(scost) indel(1.5) pwd(oma) len(72) Normalising distances with respect to length (0 observations deleted) 417 unique observations nrefs: 0
```

. matlist oma[1..5,1..5]

1	c1	c2	c3	c4	с5
 r1	0				
r2	2.694444	0			
r3	.7777778	1.916667	0		
r4	1.861111	.8333333	1.083333	0	
r5	2.277778	.4583333	1.541667	.8333333	0

Hamming for comparison

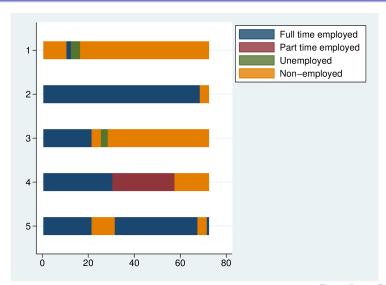
- . hamming state*, subs(scost) pwd(ham)
- . corrsqm ham oma

VECH correlation between ham and oma: 0.9946

. matlist ham[1..5,1..5]

1	c1	c2	с3	c4	c5
r1	0				
r2	2.694444	0			
r3	.7777778	1.916667	0		
r4	1.861111	.8333333	1.083333	0	
r5	2.277778	.5	1.583333	1.222222	0

First five sequences



What to do with distances?

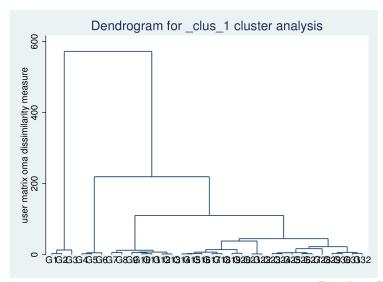
- Pairwise distance matrices are an intermediate point
- One useful thing: create a data-driven classification
- Use cluster analysis, typically using Ward's linkage
- Number of clusters is a matter for thought, 8 is convenient for exposition

Cluster analysis: empirical typologies from distances

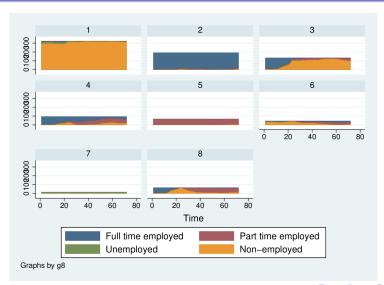
Clustering OM

clustermat wards oma, add
cluster generate g8=groups(8)
cluster dendrogram, cutnumber(32)
chronogram state*, by(g8)

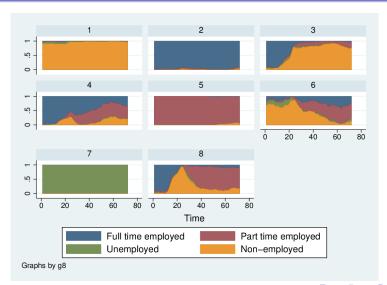
Dendrogram



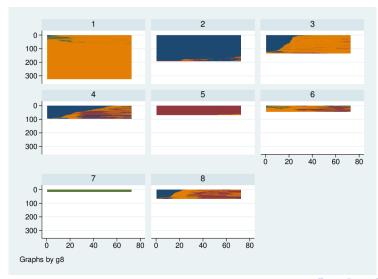
Chronogram by cluster



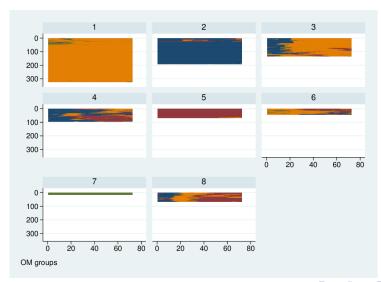
Chronogram, proportional



Indexplot



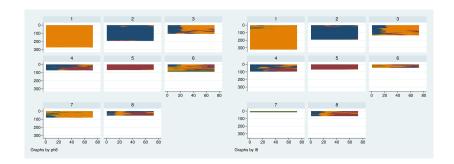
Indexplot in dendrogram order



Details

```
clustermat wards oma, add
cluster generate g8 = groups(8)
cluster generate g999 = groups(800), ties(fewer)
chronogram state*, by(g8)
chronogram state*, by(g8) prop
reshape long state, i(pid) j(t)
sqset state pid t
sqindexplot, by(g8, legend(off))
sqindexplot, by(g8, legend(off)) order(g999)
```

Compare Hamming (L) and OM (R) solutions



ARI and permtab

	Hamming							
OM	1	2	3	4	5	6	7	8
1	273	0	1	0	0	1	48	0
2	0	192	0	0	0	0	0	0
3	0	0	85	0	1	16	32	0
4	0	0	10	69	0	0	0	16
5	0	0	0	0	68	0	0	0
6	0	1	0	0	0	44	0	0
7	0	0	0	0	0	16	0	0
8	0	0	10	4	0	14	0	39

• Kappa-max: 0.7791

• Adjusted Rand Index: 0.7818

Complexity of sequences

- Complexity of sequences is relevant: more complex means less likely to be similar (and perhaps, similarity is more interesting)
- How to measure? Number of spells is part of it
- Also distribution of time
- A single long spell is the simplest sequence
- Many spells in many different states is very complex

Shannon Entropy

- Information theory relates complexity to "entropy"
- More complex objects are harder to describe, cannot be compressed
- Shannon Entropy: $\epsilon = -\sum p_i \log_2 p_i$ where p_i is the proportion of months in state i
- Takes account of diversity of state but ABABAB counts as no more complex than AAABBB
- Perhaps add n-spells information: $\epsilon' = \epsilon \times \frac{m}{l}$ where m is number of spells and l is length

Example: entropy

```
entropy state*, gen(ent) cd(pcd) nstates(4)
nspells state*, gen(nsp)
gen ent2 = ent*nsp/72
table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)
```

as | man(ant) man(ant2) man(ngn)

mean(nsp)	mean(ent2)	mean(ent)	g8
1.536	0.008	0.150	1
1.359	0.004	0.100	2
3.560	0.061	1.143	3
3.684	0.057	1.053	4
1.235	0.003	0.074	5
4.844	0.091	1.252	6 I
1.000	0.000	0.000	7
4.597	0.097	1.489	8

Elzinga's turbulence

- In Elzinga (2010) a measure of complexity is proposed that is more appropriate for spell data
- It is based on duration weighted spells, and on subsequence counting
- It combines a measure based on the number of distince subsequences, with a measure of the variance of their durations
- It is (only) available in TraMineR
- However, in practice the simpler Shannon entropy correlates highly with it

Regular expressions

- If sequences are represented as text, text-processing tools such as "regular expressions" can be used to sort between them
- Refer to lab notes for more details

```
stripe state*, gen(seqst)
list seqst in 1/5,clean
count if regexm(seqst,"^A+$")
count if regexm(seqst,"^AAAAAA+.*DDDDDD.*AAAAAAA.*$")
count if regexm(seqst,"AB.*AB")
```

Multi-dimensional scaling

- The other "obvious" thing to do with pairwise distances is multi-dimensional scaling
- The network of distances implies a coherent space: can we re-construct it?
- Preferably with dimensions much less than number of sequences!
- Standard MDS uses principal component analysis

Example

```
. mdsmat oma, \dim(3) (row names of (dis)similarity matrix differ from column names; row names used)
```

Classical metric multidimensional scaling dissimilarity matrix: oma

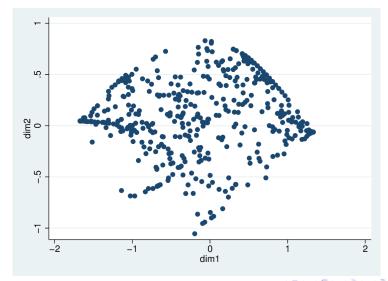
			Number of opp	3-10
Eigenvalues > 0	=	188	Mardia fit measure 1 =	0.7556
Retained dimensions	=	3	Mardia fit measure 2 =	0.9932

Number of obs

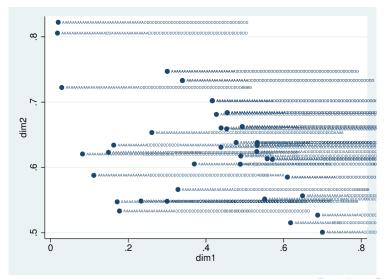
	I		abs(eige	(eigenv	alue)^2	
Dimension	1	Eigenvalue	Percent	Cumul.	Percent	Cumul.
1		1205.3971	67.73	67.73	98.57	98.57
2	1	95.282325	5.35	73.08	0.62	99.19
3	1	44.082404	2.48	75.56	0.13	99.32
	+-					
4	1	28.932307	1.63	77.19	0.06	99.38
5	1	23.350698	1.31	78.50	0.04	99.41
6	1	12.040492	0.68	79.17	0.01	99.42
7	1	10.398137	0.58	79.76	0.01	99.43
8	1	8.8446418	0.50	80.26	0.01	99.44
9	1	6.3672493	0.36	80.61	0.00	99.44
10	1	6.1013343	0.34	80.96	0.00	99.44

940

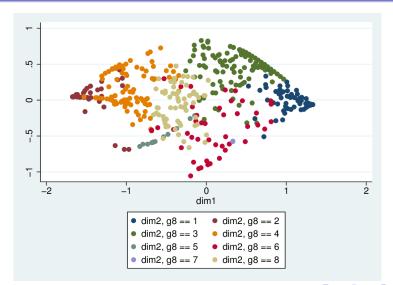
Scatterplot



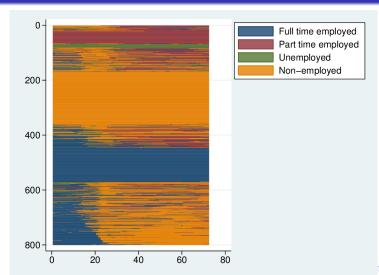
Scatterplot



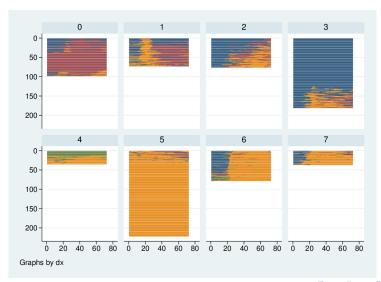
Scatterplot by cluster solution



Avoid clustering: Indexplot ordered by 1st MDS dimension



Partitioning by MDS



Are substitution costs a problem?

- Repeated claims in the literature:
 - that sociologists don't know how to set substitution costs,
 - that we can't match the effectiveness of molecular biology
- Yes, our analytical goals are often much less well defined than those of the biologists
- No, substitution costs are not an intractable problem

Mapping states to sequences

- The essence of SA is mapping a view of a state space onto a view of a trajectory space: $d(s) \rightarrow D(S)$
- We start with knowledge or a view of how states relate to each other (what states are like each other, what states are dissimilar)
- With a suitable algorithm we map this perspective onto trajectories through the state space: what trajectories are more or less similar
- The nature of the algorithm determines
 - Whether the mapping makes sense
 - Exactly how the structure of the state space affects the structure of the trajectory space

OMA coherent?

- Can we expect OMA to provide a coherent $d(s) \rightarrow D(S)$ mapping?
- Elementary operations are intuitively appealing:

 - 2 D(ABCD, ABD) = f(indel)
 - minimising concatenation of these two operations to link any pair of trajectories
- If 3 is reasonable, 1 and 2 determine how state space affects trajectory space

Thinking about state spaces and distances

- Costs can be thought of as distances between states
- If state space is \mathbb{R}^n , distance is intuitive
- If state space is categorical, how define distance?
 - State space as efficient summary of clustered distribution in \mathbb{R}^n : distances are between cluster centroids
 - State space can be mapped onto specific set of quantitative dimensions; each state located at the vector of its mean values; Euclidean or other distances between vectors
 - States can be located relative to each other on theoretical grounds

Transitions and substitutions

- Transition rates frequently proposed as basis for substitution costs
- Critics of OMA complain of substitution operations implying impossible transitions (e.g., Wu)
- Even proponents of OMA are sometimes concerned about "impossible" transitions (e.g., Pollock)
- But substitutions are not transitions, {not even a little bit!}
 - substitutions happen across sequences, D(ABC, ADC) = f(d(B, D)) (similarity of states)
 - transitions happen within sequences (movement between state)

Informative transition rates

- No logical connection between substitutions and transition rates
- but under certain circumstances transition rates can inform us about state distances
- If state space is a partitioning of an unknown \mathbb{R}^n , movement is random (unstructured), and the probability of a move is inversely related to its length, then
- distance between states will vary inversely with the transition rates
- However, these conditions usually not met

Deceptive transiton rates

- Example: using voting intentions as a way of defining inter party distances
- UK: relatively high Con–LibDem two-way flows; ditto Lab–LibDem
- But Con-Lab transitions much lower: implies a potentially incoherent space (non-metric, more below)
 - d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab)
- Procedure confuses party state space and voter characteristics
- Voter polarisation/loyalty is trajectory information, not state information
- Another type of problem: irrelevant distinctions can cause similar states to have low transition rates

Take "space" seriously

- Very useful to think in spatial terms
 - **①** State space as efficient summary of clustered distribution in \mathbb{R}^n
 - State space mapped onto specific set of quantitative dimensions
 - State space defined on theoretical grounds
- For 1 and 2, explicitly multidimensional, in case 2 dimensions are explicit
- For 1 and 3, we can attempt to recover the implicit dimensions

Looking at state spaces

- Two very simple state spaces:
 - Single dimension, equally spaced:

0	1	2	3
1	0	1	2
2	1	0	1
3	2	1	0

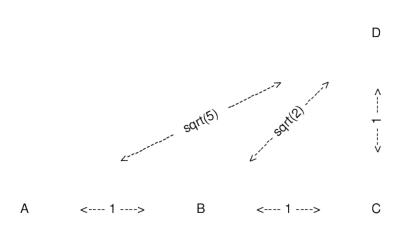
• All states equidistant -n-1 dimensions

0	1	1 1	
1	0	1	1
1	1	0	1
1	1	1	0

More dimensions

- E.g., 2D picture of inter-party distances: location on left-right scale, plus on pro-/anti-EU scale
- Distances are Euclidean or other metric (e.g., L1)
 - Euclidean: $\sqrt{\sum_i (r_i s_i)^2}$
 - L1 (city block): $\sum_{i} |r_i s_i|$
- Generalises easily to many dimensions
- Problem: how to weight different dimensions?
 - Scale by standard deviation? Substantive importance?

2-D example



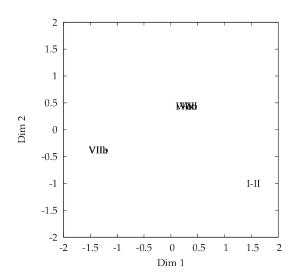
Spatial structure of theoretical spaces

- We can analyse "theoretically-informed" or ad hoc state spaces spatially
- Principle components analysis of substitution matrix
- Examples: Halpin and Chan (1998) McVicar and Anyadike-Danes (2002):

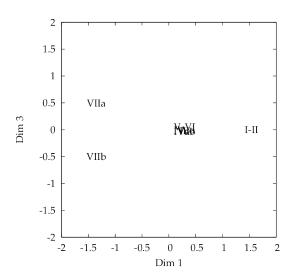
I–II	0	2	2	2	2	3	3
Ш	2	0	1	1	1	2	2
IVab	2	1	0	1	1	2	2
<i>IVcd</i>	2	1	1	0	1	2	2
V–VI	2	1	1	1	0	2	2
VIIa	3	2	2	2	2	0	1
VIIb	3	2	2	2	2	1	0

Ε	0	1	1	2	1	3
F	1	0	1	2	1	3
Н	1	1	0	2	1	2
S	2	2	2	0	1	1
Τ	1	1	1	1	0	2
U	3	3	2	1	2	0

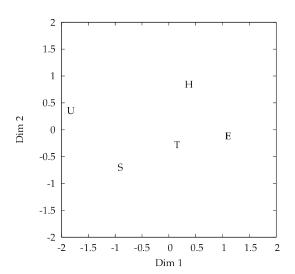
H&C, 1st two PCA dimensions



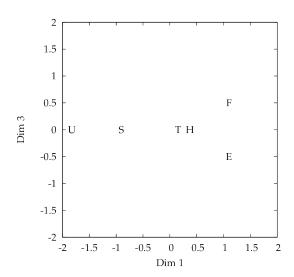
H&C, dimensions 1 & 3



MVAD, 1st two dimensions



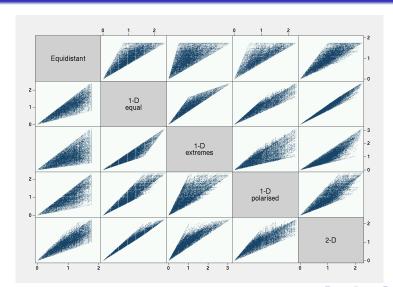
MVAD, dimensions 1 & 3



Structure passes through

- State space structure passes through to trajectory space structure
 - Distances between states clearly affect distances between trajectories containing high proportions of those states
 - If d("A","B") << d("A","C") then D("..AAAA..","..BBB..") will tend to be less than D("..AAAA..","..CCC..")
 - Differential distances promote alignment: AADDAAA and AAADDAA are more likely to be aligned to match the DD if d("A","D") is large
 - If the state distances are non-metric, the trajectory distances may also be non-metric (at least between trajectories consisting of near 100% one state)
 - Unidimensional states spaces will tend to be reflected strongly in 1st principle component of trajectory space

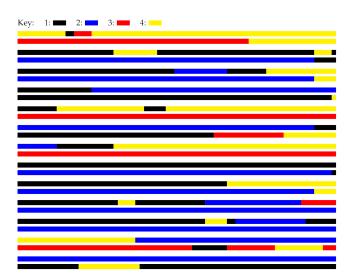
Comparing effects



Correlations

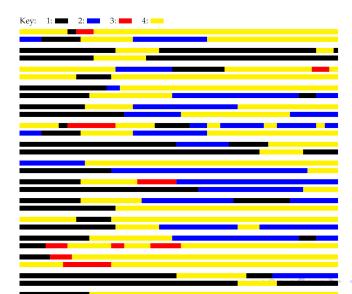
Equidistant	1.00				
1-D equal	0.85	1.00			
1-D extremes	0.66	0.93	1.00		
1-D polarised	0.83	0.94	0.81	1.00	
2-D	0.87	0.98	0.91	0.90	1.00

Equidistant relatively greater than 1-D



Equidistant relatively less than 1-D

Equidistant close to 1-D



Designing state spaces

- Be explicit about state spaces and what distances mean
- Think spatially
 - Choose high or low dimensions, but have your reasons
- Simplify state space as far as possible
 - Drop irrelevant distinctions
 - Drop longitudinal information: let the sequence encode the temporal information, make state space cross-sectional

Dropping temporal information

e.g., Simplify marital status:

	Living alone		Living with partner
Legally married	Separated		Married
Not legally married	Single,	never	Cohabiting
	married,	post-	
	cohabitation,		
	divorced		

- The sequence will distinguish adequately between the various "single" states
- Parity sequences: Women's annual fertility history
 - in parity terms: 000112333344444
 - in birth event terms: 000101100010000

Costing OM: a tractable problem

- Substitution costs make a big difference
 - but largely understandable in operation
 - and an asset more meaningful state space, more meaningful trajectory space
- Think spatially! Use data and geometric models
- Simplify
- Let the sequence do the temporal work

SA and further analysis

- With pairwise distances or a cluster solution we can move on to conventional analysis:
 - Explain the clusters: who goes where?
 - Predict from the clusters: do they have consequences for the future?
- Approaches: tabular, ANOVA, regression, logit
- Using clusters, MDS dimensions or other summaries of the distances

Explaining cluster membership, MVAD data

. tab g8 funemp, chi

	1	funemp			
g8	1	0	1	1	Total
	+-			+	
1	1	13.28	11.97	1	13.06
2	1	22.52	24.79	1	22.89
3		9.41	5.13	-	8.71
4	1	20.84	18.80	1	20.51
5		8.24	17.09	-	9.69
6	1	3.03	10.26	1	4.21
7	1	6.89	5.13	1	6.60
8		15.80	6.84	-	14.33
	+-			-+	
Total	1	100.00	100.00	1	100.00

Pearson chi2(7) = 28.5978 Pr = 0.000

. tab g8 gcse5eq, chi

g8	 -	gcse5eq 0	1	1	Total
1	i	17.26	5.77	i	13.06
2	1	29.87	10.77	1	22.89
3	1	2.21	20.00	1	8.71
4	1	20.80	20.00	1	20.51
5	1	13.05	3.85	1	9.69
6	1	5.75	1.54	1	4.21
7	1	6.64	6.54	1	6.60
8	1	4.42	31.54	1	14.33
	+-			+	
Total	1	452	260	1	712

Pearson chi2(7) = 209.0925 Pr = 0.000

Association between covariates and clustering

- Where we have outcome variables, we may want to see how well they are predicted by the cluster solution
- Here one question is whether the cluster solution has additional explanatory power over and above simple summaries such as cumulated duration
- Nested model test (pretend, for the example, that grammar is an outcome)

```
cumuldur state*, cd(cd) nstates(6)
logit grammar cd1-cd5
est store base
logit grammar cd1-cd5 i.g8
lrtest base
```

Beating cumulated duration

Logistic regression Number of obs = 712 LR chi2(12) = 107.71 Prob > chi2 = 0.0000 Pseudo R2 = 0.1598 Log likelihood = -283.04946

grammar	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
cd1	.0404702	.0259219	1.56	0.118	0103358	.0912761
cd2	.0064551	.0278439	0.23	0.817	0481178	.0610281
cd3	.0527723	.0262769	2.01	0.045	.0012706	.104274
cd4	.0036833	.0259473	0.14	0.887	0471725	.0545391
cd5	.0260562	.0278449	0.94	0.349	0285188	.0806312
1						
g8						
2	.803025	.562242	1.43	0.153	2989491	1.904999
3	1.263318	.9776174	1.29	0.196	6527766	3.179413
4	1.752938	.6169286	2.84	0.004	.5437803	2.962096
5 I	.9323015	.8809664	1.06	0.290	7943608	2.658964
6 I	2.599953	1.522719	1.71	0.088	3845203	5.584427
7	2.348554	.815007	2.88	0.004	.7511697	3.945939
8 I	3.368678	1.034953	3.25	0.001	1.340208	5.397148
1						
_cons	-5.30223	1.884739	-2.81	0.005	-8.996251	-1.608209

LR chi2(7) = 21.03Likelihood-ratio test

Prob > chi2 = 0.0037 (Assumption: base nested in .)

MDS and modelling

• It may make sense to model with the MDS dimensions

```
mdsmat oma, dim(3)
matrix dim=e(Y)
svmat dim
logit grammar cd1-cd5 dim1-dim3
lrtest base
```

MDS dimensions and model

grammar	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
cd1	.0361684	.10541	0.34	0.732	1704313	.2427681
cd2	.0529717	.1157715	0.46	0.647	1739364	.2798797
cd3	.0727049	.094217	0.77	0.440	111957	.2573669
cd4	.0083839	.0486104	0.17	0.863	0868908	.1036585
cd5	.0172631	.0781496	0.22	0.825	1359074	.1704336
dim1	9561052	2.407083	-0.40	0.691	-5.673902	3.761691
dim2	1.942324	.7237847	2.68	0.007	.5237325	3.360916
dim3	1.408145	1.796422	0.78	0.433	-2.112777	4.929068
_cons	-4.346376	6.378463	-0.68	0.496	-16.84793	8.155182

. 1rtest base

Likelihood-ratio test LR chi2(3) = 9.16 (Assumption: base nested in .) Prob > chi2 = 0.0272

MDS correlated?

. corr cd* dim* (obs=712)

1	cd1	cd2	cd3	cd4	cd5	cd6
cd1	1.0000					
cd2	-0.3075	1.0000				
cd3	-0.6320	0.0022	1.0000			
cd4	-0.4384	-0.2480	0.5044	1.0000		
cd5	-0.0393	-0.2969	-0.3062	-0.2696	1.0000	
cd6	-0.2772	-0.1232	-0.2111	-0.1194	0.0408	1.0000
dim1	0.7224	0.2218	-0.3431	-0.4694	-0.0406	-0.7369
dim2	-0.0326	-0.3829	0.3578	0.7098	-0.0525	-0.4964
dim3	0.5810	-0.6630	-0.6685	-0.1359	0.3294	0.3453

Studer et al's discrepancy

- Studer et al. (2011) propose a method for treating distances matrices analogously to SS in regression and ANOVA
- The average distance to the centre of the whole matrix is the analogue of total sum of squares
- With a grouping variable, the distance to the centre for each groups is the residual sum of squares
- This allows a pseudo- R^2 and a pseudo-F test
- Permutation is used to approximate the sampling distribution of pseudo-F

use mvad

Discrepancy and MVAD

```
matrix md = (0, 1, 1, 2, 1, 3)
            1, 0, 1, 2, 1, 3\ ///
            1, 1, 0, 2, 1, 2\ ///
            2, 2, 2, 0, 1, 1\ ///
            1, 1, 1, 1, 0, 2\ ///
            3, 3, 2, 1, 2, 0)
matrix rownames md = E F H S T U
matrix colnames md = E F H S T U
set matsize 1000
oma state*, subs(md) indel(1.5) pwd(oma) length(72)
discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)
```

Discrepancy results

```
Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value

funemp | .007956 5.694094 .17

funemp | N(d2c) min(d2c) mean(d2c) max(d2c)
```

0 | 595 .2215114 .463736 1.919831 1 | 117 .2757618 .5502117 1.518995

. discrepancy funemp, dist(oma) idvar(id) niter(100) dcg(d2c)

Alternatives to OM and Hamming

- OMA is the dominant but not the only approach
- It receives justified and unjustified criticism in terms of its fit to lifecourse data
- One axis of critique relates to costs: Dynamic Hamming sidesteps this
- Another relates to whether token strings are:
 - a good way to represent life-course processes (continuous time, discrete state space, infrequent transitions)
 - and whether operations on token-strings match sociological difference

Alternatives

- Hollister's LOM and my OMv attempt to fix OM by paying attention to the local context of operations (but fail: non-metric)
- TWED "warps time" and has more sensitivity to spell order
- Lesnard's Dynamic Hamming estimates substitution costs from the data and does no alignment
- Elzinga's duration-weighted combinatorial measures pay strict attention to spell order and duration
- See Halpin (2014b) for a discussion
- See Studer and Ritschard (2014) for a comprehensive review of distance measures

An aside: Metric spaces

- To treat a dissimilarity as a distance, it must be compatible with a "metric space"
- Everyday 3D Euclidean space is metric, but we can relax many of the characteristics of Euclidean space and still think in spatial terms, using e.g., cluster analysis and MDS
- Four conditions are required
 - d(x,x) = 0; identity
 - $d(x, y) \ge 0$; non-negativity
 - d(x, y) = d(y, x); symmetry
 - $d(x,y) \le d(x,z) + d(z,y)$; the "triangle inequality"
- LOM and OMv do not satisfy the triangle inequality

Hollister's Localised OM

- Hollister argues that OM's elementary operations need to take into account the context: the adjacent states, at least
- Inserting a B between two Bs is cheaper than between an A and a C
- Operates very like OM, with substitution costs, but a modified approach to indels
- To insert element k between elements i and j the indel cost is:

$$\iota = \alpha \frac{\delta_{i,k} + \delta_{j,k}}{2} + \beta$$

where α and β are chosen by the analyst

LOM non-metric

Hollister's measure violates the triangle inequality for the following trio:

BBBBAB, CCCACC and BBBACC

For a substitution cost of 1, α 0.5 and β 0.5 (i.e., $\iota=0.5\frac{\delta_{i,k}+\delta_{j,k}}{2}+0.5$), the direct distance between sequences 1 and 2 is 6 units. However, the indirect distance passing through sequence 3 is 5.5 (2.5 plus 3):

	Distance						
	LOM OM						
Pair	$\delta = 1, \alpha = \beta = 0.5$	$\iota = 1.0$	$\iota = 0.75$				
1, 2	6	6	5.5				
1, 3	2.5	3	2.5				
2, 3	3	3	3				

Halpin's duration-adjusted OMv

- My approach had a very similar motivation: operations should be weighted less in big spells, more in short ones
- Scale indel and substitution costs according to the square-root of the spell length
- Also non-metric: sequences with long spells are closer to all other spells, without affecting distances between other spells

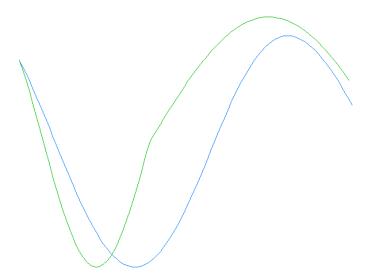
Warping time

- What of time-warping?
- Abbott and Hrycak (1990) use the term to suggest non-linear time scales
- OMv "warps time" by weighting it differently in different spells
- In turn informed by Sankoff and Kruskal (1983), Time Warps, String Edits and Macromolecules
- But time-warping refer to a specific set of algorithms

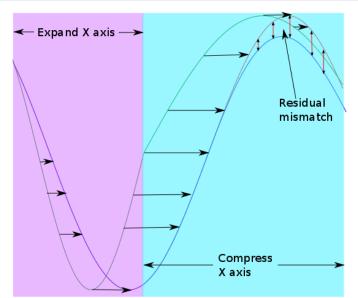
Time warping algorithms

- Formally, time warping is a family of algorithms that do "continuous time-series to time-series correction" while OM et al do "string to string correction" (Marteau, 2007)
- Focus on comparing pairs of continuous-time high-dimensional time-series in \mathbb{R}^n
- Operates by locally compressing or expanding the time scale of one trajectory to minimise the distance to the other
- Distance is usually Euclidean in \mathbb{R}^n or other simple distance

TWED: Matching 1D series



TWED: Compress and expand



TW algorithms

- TW used widely: was used for speech recognition, signature verification, other machine learning tasks
- Typically used to match a high-dimensional time-series to a "dictionary" of standard elements
- Conceptually it is a continuous time approach but implementations must be discrete – sampling or periodic summaries:
 - e.g., sound sampled at 41 kHz
 - rainfall summarised daily
 - employment history reported monthly
- Kruskal and Liberman (1983) show that the continuous time logic can be faithfully implemented with discretised series

Discrete time-warping

TW with stiffness penalty: TWED

- Violation of the triangle inequality is due to TW usually having no cost to expansion or compression, only to the residual point-by-point distance
- Marteau (2007, 2008) proposes a TW algorithm that has a "stiffness" penalty
- Satisfies the triangle inequality
- Can be programmed very similarly to OM (recursive algorithm)
- Stiffness penalty like but not like indel cost squeezing/stretching, not inserting/deleting
- Point-to-point distance just like substitution

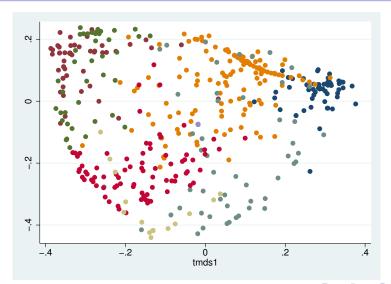
TWED: Recursive algorithm

TW distance,
$$\delta(A^p, B^q) =$$

$$\min \left\{ \begin{array}{l} \delta(A^{p-1},B^q) & + d_{LP}(a_p,a_{p-1}) + \gamma d_{LP}(t_{a_p},t_{a_{p-1}}) + \lambda \\ \delta(A^{p-1},B^{q-1}) + d_{LP}(a_p,b_q) & + \gamma d_{LP}(t_{a_p},t_{b_q}) \\ \delta(A^p,B^{q-1}) & + d_{LP}(b_q,b_{q-1}) + \gamma d_{LP}(t_{b_q},t_{b_{q-1}}) + \lambda \end{array} \right.$$

(Marteau, 2007)

MDS/Cluster with TWED



TWED attractive

- TWED has a completely different "narrative" from OM: warping time rather than editing token strings
- Nonetheless, gives results that are not radically different
- More noticeable differences for more complex sequences
- ullet For high values of λ and γ , tends to yield Hamming distance
- For very low values of λ and γ , closer (but still not that close) to X/t
- Distribution in sequence space more like OM than X/t

Dynamic Hamming

- Dynamic Hamming takes a completely different slant: no alignment
- Similarity at the same time only, where similarity is defined by time-dependent transition patterns
 - While changes are common differences matter less
 - While change is rare, differences are more marked
- Naturally appropriate for "clock" time, e.g., daily, weekly, annual patterns
- Less obviously appropriate for "developmental" time, where a common feature is people taking the same route at different speeds
- Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard (2010), implemented by him (seqcomp), in Traminer and SADI

Combinatorial approaches

- Combinatorial methods are a completely different approach to sequence comparison
- Proposed by Elzinga (2003, 2005)
- Compare sequences in terms of common "subsequences" rather than string-edits

Counting sequences

- The sequence ABC has as subsequences:
 - the null (empty) string
 - A, B and C
 - AB, AC and BC
 - and ABC itself
- A sequence of length / has 2^l subsequences
- If elements are repeated not all subsequences are distinct

Combinatorial measures

- Elzinga has proposed a number of measures that count subsequences
 - Longest common subsequence
 - Number of common subsequences
 - Number of matching subsequences
- A completely different logic, combinatorial rather than string-editing: "the same states in the same order"
- One particularly attractive approach: number of matching spell-subsequences weighted by duration (I refer to it as "X/t")

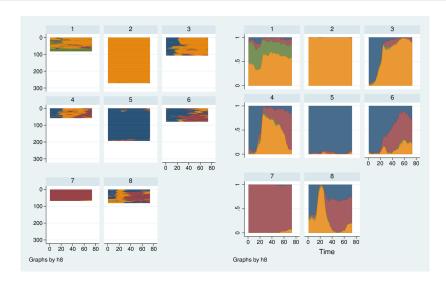
use bsseq

Code to run all the measures

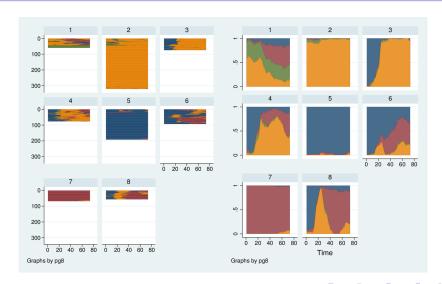
```
set matsize 1000
matrix sm = (0,1,2,3\backslash1,0,1,2\backslash2,1,0,1\backslash3,2,1,0)
matrix fl = (0,1,1,1,1,0,1,1,1,0,1,1,1,1,0)
hamming
           state1-state72, subs(sm) pwd(ham)
oma
           state1-state72, subs(sm) indel(1.5) pwd(om) len(72)
           state1-state72, subs(sm) nu(0.5) lambda(0.5) pwd(twd) len(72)
twed
hamming
           state1-state72, subs(fl) pwd(haf)
           state1-state72, subs(fl) indel(0.5) pwd(of) len(72)
oma
           state1-state72, subs(f1) nu(0.5) lambda(0.5) pwd(twf) len(72)
t.wed
dynhamming state1-state72, pwd(dyn)
preserve
combinprep, state(state) length(l) nspells(nsp) idvar(pid)
combinadd state1-1'r(maxspells)', pws(xtd) nsp(nsp) nstates('r(nels)') rtype(d)
restore
```

Comparing the measures, BSSEQ

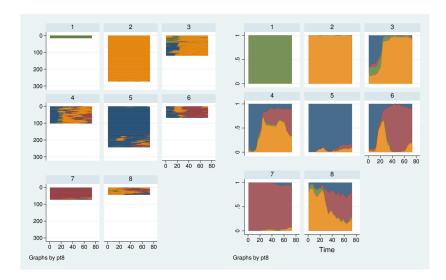
Hamming, linear matrix



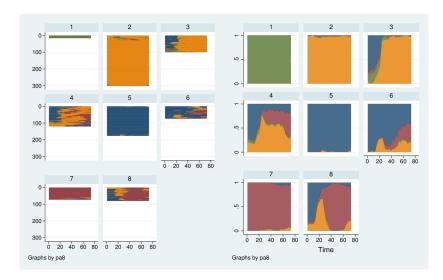
OM, linear matrix



TWED, linear matrix

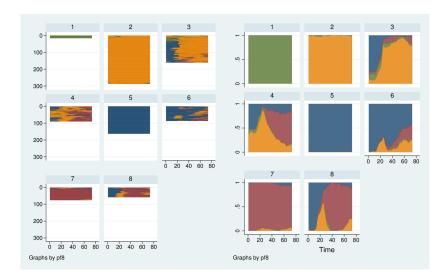


Hamming, flat matrix

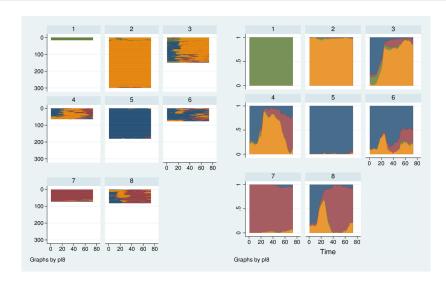


Comparing the measures, $\ensuremath{\mathsf{BSSEQ}}$

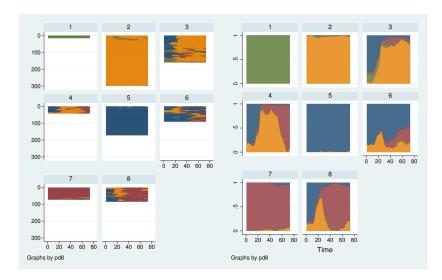
OM, flat matrix



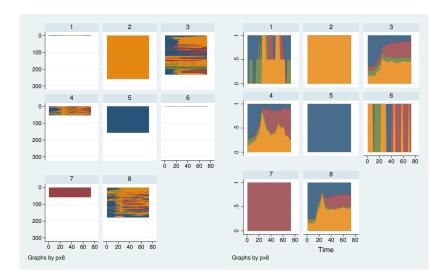
TWED, flat matrix



Dynamic Hammming



Comparing the measures, $\ensuremath{\mathsf{BSSEQ}}$



Multiple domains

- Lifecourse analysis recognises the interrelatedness of domains
- Somewhat hard to handle in many approaches: a potential strength of SA?
- In practice, not very well developed; most research on single domains
- Some work (Dijkstra and Taris (1995), Pollock (2007), Gauthier et al. (2010))

Combined distance versus combining distances

- How to proceed?
- Conduct parallel analyses and combine results?
- Combine domains into a single variable?
- The former is easy but will be less sensitive to the synchronisation of domains
- The latter involves a large state space and problem in defining distances
- However, better sensitivity to cross-domain features makes it attractive

Combine by cross-tabulation

- The simplest approach is to create a new state space that is the cross-tabulation of the two (or more) domains
- This yields a large number of states, one for each combination
- How then to determine costs?

Determining costs

- Simplest strategy is to sum across the domains
- $\bullet \ \ \text{In short,} \ d^{AB}_{ik,jl} = d^A_{i,j} + d^B_{k,l}$
- There may be justification for imposing other patterns, for instance,
 - imposing a ceiling
 - changing d^A for certain values in domain B
 - weighting the domains differentially
- Note that with two different substitution matrices it can be difficult to weight equally
 - equalise by max substitution cost?
 - equalise by average substitution cost?
 - equalise by average substitution cost weighted by occurrence in the data?

Implementation

- We take a simple case (four parity levels and five employment statuses)
- First step is to create the interaction or crosstabulation of the states

```
// Reshape long to work on all months simultaneously
reshape long parx emp, i(pid) j(month)
// Create a variable that is the interaction of the two
gen cross = emp+(parx-1)*5
// Verify the state interaction variable
tab cross
table parx emp, c(mean cross)
// Back to wide, fix the variable order
reshape wide parx emp cross, i(pid) j(month)
order pid parx* emp* cross*
```

Create the substitution cost matrix

• We have two substitution cost matrices, 4x4 and 5x5:

• Both have a max of 3, otherwise perhaps divide each by its max

Combine into 20x20

```
// Use Mata to combine the two matrices
mata:
spar = st_matrix("spar")
semp = st_matrix("semp")
// each element becomes a 5x5 block
sparx = spar # J(1,5,1) # J(5,1,1)
// replicate the 5x5 matrix 4x4 times
sempx = semp
for (i=2; i<=4; i++) {
 sempx = sempx,semp
sempxy = sempx
for (i=2; i<=4; i++) {
  sempxy = sempxy\sempx
// The combined matrix is the element-wise sum; return it from Mata to Stata
st_matrix("mcsa", sempxy :+ sparx)
end
```

The combined matrix

```
symmetric mcsa[20,20]
    c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12c13c14c15c16c17c18c19c20
r1
     0
r2
        0
r3
     2
            0
 r4
     3
               0
r5
r6
            3
               4
                      0
r7
     2
            2
               3
                  3
                         0
r8
 r9
            2
                      3
                         2
                                0
               2
r10
                      3
                                   0
r11
     2
               5
                  5
                         2
                            3
                                   4
r12
     3
            3
               4
                      2
                         1
                            2
                                3
                                   3
                                          0
r13
            2
               3
                      3
                         2
                                             0
r14
            3
                         3
r15
            3
               3
                  2
                         3
                                2
                                                    0
                         3
r16
            5
               6
                  6
                      2
                            4
                                5
                                   5
                                             3
                                                       0
r17
            4
                      3
                         2
                            3
                                   4
                                      2
                                             2
                                                3
                                                    3
                                                       1
                                                          0
r18
               4
                      4
                         3
                                      3
                                             1
r19
                                      4
r20
```

Dyadic SA

- SA typically uses all-pair-wise distances, or distance to special cases
- Dyadic SA is also useful: distance between a specific pair
 - Couple time-diaries
 - Couple labour market histories
 - Mother-daughter fertility histories, etc.

Research questions

- Allows testing hypotheses about dyadic similarity
 - Are couples' time-use patterns or life-course histories aligned
 - Are fertility patterns inherited?
 - Under what conditions are dyadic distances smaller or larger?
 - How do couples arrange joint lifecourses?

Similarity and difference

- Couples may coordinate their lives under very different gender constraints
- Fertility patterns may be similar within the constraints of different cohort patterns of fertility
- The relationship between sequences may not be one of replication
 - some daughters may completely reject their mother's fertility pattern

Literature

- Off-scheduling (Lesnard, 2008) Dyadic in concept but actually creates combined sequences
- Robette et al. (2015): Mother-daughter labour market careers
- Fasang and Raab (2014): Intergenerational fertility; notes that focus on similarity ignores heterogeneity
- Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads, fertility

Practical issues

- We can calculate dyadic distances with standard software
- For efficiency it might better to just calculate dyads' distances
- But the cost of calculating all pairs is relatively small, and offers an advantage:
 - Compare dyadic distances with distances to all others

Strategy: Begin with dyad-ordered data

	Dyad	1	1	2	2	3	3	4	4
Type		М	D	М	D	М	D	М	D
М	1	11	12	13	14	15	16	17	18
D	1	21	22	23	24	25	26	27	28
М	2	31	32	33	34	35	36	37	38
D	2	41	42	43	44	45	46	47	48
М	3	51	52	53	54	55	56	57	58
D	3	61	62	63	64	65	66	67	68
М	4	71	72	73	74	75	76	77	78
D	4	81	82	83	84	85	86	87	88

Dyadic sequence analysis

Sort by types

	Dyad	1	2	3	4	1	2	3	4
Туре		D	D	D	D	М	М	М	Μ
D	1	22	24	26	28	21	23	25	27
D	2	42	44	46	48	41	43	45	47
D	3	62	64	66	68	61	63	65	67
D	4	82	84	86	88	81	83	85	87
М	1	12	14	16	18	11	13	15	17
M	2	32	34	36	38	31	33	35	37
M	3	52	54	56	58	51	53	55	57
M	4	72	74	76	78	71	73	75	77

Submatrices

- Two submatrices, with distances from each mother to each daughter (and transpose)
- Distance from mother to her own daughter on diagonal (and transpose)
- Use distance from mother to all daughters to assess whether distance to own daughter is unusual

Submatrices

	Pair	1	2	3	4
Type		М	М	М	М
D	1	21	23	25	27
D	2	41	43	45	47
D	3	61	63	65	67
D	4	81	83	85	27 47 67 87

	Pair	1	2	3	4
Type		D	D	D	D
М	1	12	14	16	18
M	2	32	34	36	38
M	3	52	54	56	58
M	4	72	14 34 54 74	76	78

Extract diagonals and other information

- The main info is on the diagonals: the dyad distances (repeated across the two submatrices since distance is symmetric)
- Other summaries are also interesting
 - mean distance of each daughter to all mothers (and vice versa)
 - variance, standard deviation of this distance
 - z-score of dyad distance relative to all distances
 - rank of dyad distance compared with all distances

- Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144–85.
- Barban, N. and Billari, F. (2012). Classifying life course trajectories: A comparison of latent class and sequence analysis. *Journal of the Royal Statistical Society Series C*, 61(5):765–784.
- Billari, F. C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing and quantum of life course events: A machine learning approach. European Journal of Population, 22:37-65.
- Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods and Research, 24(2):214–231.
- Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. Sociological Methods and Research, 32(1):3–29.
- Elzinga, C. H. (2005). Combinatorial representations of token sequences. *Journal of Classification*, 22(1):87–118.
- Elzinga, C. H. (2010). Complexity of categorical time series. Sociological Methods and Research, 38(3):463–481.
- Fasang, A. and Raab, M. (2014). Beyond transmission: Intergenerational patterns of family formation among middle-class american families. *Demography*, 51(5):1703–1728.
- Gabadinho, A. (2014). Package 'pst'. probabilistic suffix trees and variable length Markov chains. Technical report, CRAN.
- Gauthier, J.-A., Widmer, E. D., Bucher, P., and Notredame, C. (2010). Multichannel sequence analysis applied to social science data. Sociological Methodology, 40(1):1–38.
- Halpin, B. (2013). Sequence analysis. In Baxter, J., editor, Oxford Bibliographies in Sociology. Oxford University Press, New York.
- Halpin, B. (2014a). SADI: Sequence analysis tools for Stata. Working Paper WP2014-03, Dept of Sociology, University of Limerick, Ireland.
- Halpin, B. (2014b). Three narratives of sequence analysis. In Blanchard, P., Bühlmann, F., and Gauthier, J.-A., editors, *Advances in Sequence Analysis: Theory, Method, Applications*. Springer, Berlin.
- Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. *European Sociological Review*, 14(2).

- Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal (1983), pages 125–161.
- Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques, Paris.
- Lesnard, L. (2008). Off-scheduling within dual-earner couples: An unequal and negative externality for family time. American Journal of Sociology, 114(2):447–90.
- Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns. Sociological Methods and Research, 38(3):389–419.
- Lesnard, L. and de Saint Pol, T. (2009). Patterns of workweek schedules in France. Social Indicators Research, 93:171–176.
- Lovaglio, P. G. and Mezzanzanica, M. (2013). Classification of longitudinal career paths. Quality and Quantity, 47(2):989–1008.
- Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching. ArXiv Computer Science e-prints.
- Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints.
- McVicar, D. and Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions from school to work using sequence methods. *Journal of the Royal Statistical Society (Series A)*, 165:317–334.
- Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. *Journal of the Royal Statistical Society: Series A*, 170(1):167–183.
- Raab, M., Fasang, A. E., Karhula, A., and Erola, J. (2014). Sibling similarity in family formation. Demography, 51(6):2127–2154.
- Robette, N., Bry, X., and Éva Lelièvre (2015). A "global interdependence" approach to multidimensional sequence analysis. Sociological Methodology, Online advance copy.
- Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String Edits and Macromolecules. Addison-Wesley. Reading. MA.
- Studer, M. and Ritschard, G. (2014). A comparative review of sequence dissimilarity measures. Working Paper 2014-33, LIVES, Geneva.
- Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of state sequences. Sociological Methods and Research, 40(3):471–510.