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Outline

What is sequence analysis?
Why it can be worth doing, and how it complements existing
approaches
How to do it, and how to think about it
Practical, hands-on focus, using (inter alia) my SADI add-on
for Stata (Halpin, 2014a)
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Sequence Analysis

What is sequence analysis?
Large, growing and ramifying research area
From Abbott and Hrycak (1990) to the 2015 edition of
Sociological Methodology
See Halpin (2013) for an annotated bibliography

Focus on lifecourse trajectories as sequences, as wholes
Usually proceed by defining distances between pairs of
sequences, classify, etc
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Why do Sequence Analysis?

Why would we want to do it
Holistic vs analytic?
Exploratory vs hypothesis testing?
Descriptive, visualisation

Complexity of longitudinal processes hard to capture
How should we think about d → D?
Complementary alternative to stochastic techniques which
model data generation process
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Sequences are messy

Lifecourse sequences are epiphenomena of more fundamental
underlying processes
The processes are potentially complex: difficult to predict
distribution of sequences
Other techniques (hazard rate models, models of late outcome
using history, models of the pattern of transition rates) give a
powerful but partial view
SA clearly allows us visualise complex data; possibly allows us
observe features that will otherwise be missed
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Potentially complex processes

The generating processes are complex:
individuals bring different characteristics from the beginning
history matters, including via duration dependence (individuals
accumulate characteristics)
time matters:

calendar time (e.g. economic cycle), state distribution may
change dramatically
developmental time (maturation)
processes in other lifecourse domains

Too many parameters to model, hard to visualise distribution
of life courses, also the possibility of emergent features

Clear exploratory advantages
possibility of detecting things that might not be detected
otherwise
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Timing, sequence, quantum

Different things can be interesting
Timing: when things happen
Sequence: in what order do things happen
Quantum: how much time is spent in different states (Billari
et al., 2006)

Many applications in longitudinal social science: annotated
bibliography in Halpin (2013)
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Non-holistic approaches

Numerous non-holistic approaches exist
Typically they will discard some aspect of the information in
the data, and focus powerfully on another
For instance, focus on

cumulated duration in states (how much but not when)
transition patterns between states (period-to-period but not
overall)
time-to-event of leaving spell (spells, perhaps pooled, but lose
sight of individual career).
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Cumulative duration

For instance, summarise trajectories in terms of cumulative
time in each state
Typically use as a predictor (e.g., proportion of time
unemployed predicting later ill-health)
Or as an outcome: variables measured earlier (e.g., school
performance) predicting proportion of time unemployed.
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Transition rate models

Model rates of period-to-period change: e.g., monthly
movement between labour market statuses
Model origin–destination patterns: e.g., transition between
class at entry to labour market, and class at age 35
Markov models
Very useful, good overview, can be descriptive or stochastic:
tables make categorical data digestible
Disadvantage: the focus on the t-1/t or t0/tT pattern means a
loss of individual continuity
Some potential to model longer Markov chains (Gabadinho,
2014)
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Hazard-rate modelling

Hazard-rate modelling is one of the dominant statistical
alternative
Either in terms of survival tables and curves (essentially
descriptive)
Or full stochastic models of the determinants of the hazard
rate (Cox and/or parametric)
Example: what characteristics speed up (or slow down) exit
from unemployment?
Very nice conceptual model of the temporal process
Can test hypotheses
Disadvantage: spell orientation, lack of whole-trajectory
overview
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Latent class analysis

Latent class growth curve models
Where theory allows a developmental model of a quantitative
outcome
Account for the structure of repeated measurement of
individuals
Not so suitable for categorical variables

Latent class models can be applied to careers
However, difficult to properly incorporate the longitudinality
Examples: Lovaglio and Mezzanzanica (2013); Barban and
Billari (2012)
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Holistic approaches

Holistic approaches by definition treat whole trajectories as
units
Classification of sequences is a typical goal
Usually achieved by defining inter-sequence similarity and
cluster analysis
But other aspects of similarity may be interesting

Variation of similarity by grouping variable (cohort, social class)
Dyad similarity (couples’ time use, mother–daughter fertility
etc)
Distance to pre-defined ideal types (empirical or theoretical)
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Defining similarity

Defining similarity the key challenge: must be
efficient
coherent, and
sociologically meaningful

We will consider a number of methods to do this
Hamming distance and Optimal Matching distance (today)
Dynamic Hamming, time-warping measures and combinatorial
subsequence measures (later)

14



Sequence analysis for social scientists
Session 1
OM and Hamming

Hamming distance and Optimal Matching

The simplest way to compare sequences is element-wise
Given a rule for d(a, b), project it onto D(A,B) as
D(A,B) =

∑
i d(Ai ,Bi )

Requires sequence of equal length
Hamming distance: recognises match or similarity at same time
Simple but important case of mapping d(a, b)→ D(A,B)
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Hamming distance example

Input four short sequences
input s1 s2 s3 s4 s5
1 2 3 2 3
2 3 2 3 1
4 2 3 2 3
1 1 1 1 1
end

// Define the state differences
matrix scost = (0,1,2,3 \ ///

1,0,1,2 \ ///
2,1,0,1 \ ///
3,2,1,0 )

hamming s1-s5, subs(scost) pwd(ham)

Resulting distances
. matrix list ham

symmetric ham[4,4]
c1 c2 c3 c4

r1 0
r2 1.2 0
r3 .6 1.4 0
r4 1.2 1.2 1.8 0
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Optimal Matching

Hamming recognises similarity at the same time
If sequences have similarity that is out of alignment this will
not be recognised
OM defines similarity like Hamming, but with insertion and
deletion to allow sequences to align
I.e., it cuts bits out in order to slide other parts along to match
Insertion/deletion also enables comparison of sequences of
different lengths
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OM example

OMA call
. oma s1-s5, subs(scost) indel(1.5) ///

pwd(oma) length(5)

Resulting distances
OM distances

symmetric oma[4,4]
c1 c2 c3 c4

r1 0
r2 .6 0
r3 .6 .6 0
r4 1.2 1.2 1.8 0

Hamming distances

symmetric ham[4,4]
c1 c2 c3 c4

r1 0
r2 1.2 0
r3 .6 1.4 0
r4 1.2 1.2 1.8 0
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OM vs Hamming

For most pairs the OM and Hamming distance is the same
For the pairs (1,2) and (2,3), OM distance is less because
"alignment" allows a better match
1 vs 2

Seq 1 1 2 3 2 3 -
Seq 2 - 2 3 2 3 1
Cost i 0 0 0 0 i

2 vs 3

Seq 2 - 2 3 2 3 1
Seq 3 4 2 3 2 3 -
Cost i 0 0 0 0 i
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A more general example

To convert ABCD into CDAAB the following set of operations gives
the cheapest path:
Operation Intermediate state Cost
Sequence 2 ABCD = 0

insert C CABCD +2

=

2
insert D CDABCD +2

=

4
const A = A CDABCD +0

=

4
subs B→A CDAACD +1

=

5
subs C→B CDAABD +1

=

6
delete D CDAAB- +2

=

8

Sequence 1 CDAAB =

8
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Programming OM

OM distance is defined as the cheapest set of "elementary
operations" that edit one sequence into another
Determining the cheapest set of “elementary operations” is
potentially complex – a large population of candidates
However, it can be stated as a recursive problem and
programmed very efficiently
Understanding how it is programmed can help understand the
principle of OM
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OM: Recursive problem

∆OM(Ap,Bq) =

min


∆OM(Ap−1,Bq) + indel
∆OM(Ap−1,Bq−1) + δ(ap, bq)
∆OM(Ap,Bq−1) + indel

(∆ represents distance between sequences, and δ differences within
the state space)
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Implementing the recursive algorithm

Cell value: min(ci−1,j−1 + ωi ,j , ci ,j−1 + ι, ci−1,j + ι)

= min(0 + 2, 2 + 2, 2 + 2) = 2
= min(2 + 1, 2 + 2, 4 + 2) = 3
= min(4 + 0, 3 + 2, 6 + 2) = 4
= min(6 + 1, 4 + 2, 8 + 2) = 6

s1

s2
A B C D

C 2 1 0 1
D 3 2 1 0
A 0 1 2 3
A 0 1 2 3
B 1 0 1 2

0 2 4 6 8
2

2 3 4 6

4

4 4 4 4

6

4 5 6 6

8

6 5 7 8

10

8 6 6 8
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Two example data sets

We will be primarily using two data sets as examples
MVAD: McVicar/Anyadike-Danes data on the school-to-work
transition in Northern Ireland (72 months, 6 states)
BSSEQ: 6 years of labour market history of women who have a
birth at end of year 2 (72 months, 4 states)
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Initial step: looking at life course data

It’s harder to get an overview of lifecourse that cross-sectional
data
However, a number of numeric and graphical techniques are
available

25



Sequence analysis for social scientists
Session 2
Descriptives

Numeric summaries

We can summarise lifecourse data in terms of:
Cumulative duration
Number of spells
Patterns of transition rates

month by month
start by finish

Durations to event (time to first job, first marriage, first child)
Useful to break down these measures by covariates, and model them
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Cumulative duration

use mvad
cumuldur state*, cd(cd) nstates(6)
reshape long cd, i(id) j(durtype)
label values durtype state
table male durtype, c(mean cd) format(%5.2f)
table grammar durtype, c(mean cd) format(%5.2f)

----------------------------------------------------
| durtype

male | E F H S T U
----------+-----------------------------------------

0 | 29.24 12.73 10.12 7.30 5.55 7.06
1 | 34.96 10.75 6.81 5.00 9.12 5.36

----------------------------------------------------

----------------------------------------------------
| durtype

grammar | E F H S T U
----------+-----------------------------------------

0 | 34.25 12.42 6.07 4.44 8.09 6.74
1 | 23.02 8.47 18.93 13.62 4.32 3.64

----------------------------------------------------
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Number of spells

. nspells state*, gen(nsp)

. tab nsp grammar, col nofreq

| grammar
nsp | 0 1 | Total

-----------+----------------------+----------
1 | 6.17 4.65 | 5.90
2 | 20.24 24.81 | 21.07
3 | 30.70 33.33 | 31.18
4 | 19.21 19.38 | 19.24
5 | 12.52 6.98 | 11.52
6 | 4.12 6.20 | 4.49
7 | 3.95 1.55 | 3.51
8 | 1.37 2.33 | 1.54
9 | 1.03 0.78 | 0.98

10 | 0.34 0.00 | 0.28
11 | 0.34 0.00 | 0.28

-----------+----------------------+----------
Total | 100.00 100.00 | 100.00
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Transition rates

use mvad

reshape long state, i(id) j(t)

by id: gen last = state[_n-1] if _n>1

label values last state

tab last state, row nofreq
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Transition rates

| state
last | E F H S T U | Total

-----------+------------------------------------------------------------------+----------
E | 22,039 115 56 39 58 146 | 22,453

| 98.16 0.51 0.25 0.17 0.26 0.65 | 100.00
-----------+------------------------------------------------------------------+----------

F | 227 7,927 54 8 33 73 | 8,322
| 2.73 95.25 0.65 0.10 0.40 0.88 | 100.00

-----------+------------------------------------------------------------------+----------
H | 60 1 5,787 0 3 11 | 5,862

| 1.02 0.02 98.72 0.00 0.05 0.19 | 100.00
-----------+------------------------------------------------------------------+----------

S | 59 50 74 4,120 19 23 | 4,345
| 1.36 1.15 1.70 94.82 0.44 0.53 | 100.00

-----------+------------------------------------------------------------------+----------
T | 197 21 0 4 4,973 69 | 5,264

| 3.74 0.40 0.00 0.08 94.47 1.31 | 100.00
-----------+------------------------------------------------------------------+----------

U | 182 120 9 39 64 3,892 | 4,306
| 4.23 2.79 0.21 0.91 1.49 90.39 | 100.00

-----------+------------------------------------------------------------------+----------
Total | 22,764 8,234 5,980 4,210 5,150 4,214 | 50,552

| 45.03 16.29 11.83 8.33 10.19 8.34 | 100.00

30



Sequence analysis for social scientists
Session 2
Descriptives

Graphs

Graphs give us an even better overview. Consider
Chronograms
Survival plots
Index plots
Transition rate time-series
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Chronograms
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Index plots
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Survival plots: time to first job
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Transition rate time-series
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Chronogram, mothers’ labour market history (BS)
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OM on BS data

use bsseq
matrix scost = (0,1,2,3 \ ///

1,0,1,2 \ ///
2,1,0,1 \ ///
3,2,1,0 )

oma state*, subs(scost) indel(1.5) pwd(oma) len(72)
matlist oma[1..5,1..5]
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OM output

. oma state*, subs(scost) indel(1.5) pwd(oma) len(72)
Normalising distances with respect to length
(0 observations deleted)
417 unique observations
nrefs: 0

. matlist oma[1..5,1..5]

| c1 c2 c3 c4 c5
-------------+-------------------------------------------------------

r1 | 0
r2 | 2.694444 0
r3 | .7777778 1.916667 0
r4 | 1.861111 .8333333 1.083333 0
r5 | 2.277778 .4583333 1.541667 .8333333 0
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Hamming for comparison

. hamming state*, subs(scost) pwd(ham)

. corrsqm ham oma
VECH correlation between ham and oma: 0.9946

. matlist ham[1..5,1..5]

| c1 c2 c3 c4 c5
-------------+-------------------------------------------------------

r1 | 0
r2 | 2.694444 0
r3 | .7777778 1.916667 0
r4 | 1.861111 .8333333 1.083333 0
r5 | 2.277778 .5 1.583333 1.222222 0
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First five sequences
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What to do with distances?

Pairwise distance matrices are an intermediate point
One useful thing: create a data-driven classification
Use cluster analysis, typically using Ward’s linkage
Number of clusters is a matter for thought, 8 is convenient for
exposition
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Clustering OM

clustermat wards oma, add
cluster generate g8=groups(8)
cluster dendrogram, cutnumber(32)
chronogram state*, by(g8)
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Dendrogram
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Chronogram by cluster
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Chronogram, proportional
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Indexplot

46



Sequence analysis for social scientists
Session 2
Cluster analysis: empirical typologies from distances

Indexplot in dendrogram order
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Details

clustermat wards oma, add
cluster generate g8 = groups(8)
cluster generate g999 = groups(800), ties(fewer)

chronogram state*, by(g8)
chronogram state*, by(g8) prop

reshape long state, i(pid) j(t)
sqset state pid t
sqindexplot, by(g8, legend(off))
sqindexplot, by(g8, legend(off)) order(g999)
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Compare Hamming (L) and OM (R) solutions
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ARI and permtab

Hamming
OM 1 2 3 4 5 6 7 8

1 273 0 1 0 0 1 48 0
2 0 192 0 0 0 0 0 0
3 0 0 85 0 1 16 32 0
4 0 0 10 69 0 0 0 16
5 0 0 0 0 68 0 0 0
6 0 1 0 0 0 44 0 0
7 0 0 0 0 0 16 0 0
8 0 0 10 4 0 14 0 39

Kappa-max: 0.7791
Adjusted Rand Index: 0.7818
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Complexity of sequences

Complexity of sequences is relevant: more complex means less
likely to be similar (and perhaps, similarity is more interesting)
How to measure? Number of spells is part of it
Also distribution of time
A single long spell is the simplest sequence
Many spells in many different states is very complex
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Shannon Entropy

Information theory relates complexity to "entropy"
More complex objects are harder to describe, cannot be
compressed
Shannon Entropy: ε = −

∑
pi log2 pi where pi is the

proportion of months in state i

Takes account of diversity of state but ABABAB counts as no
more complex than AAABBB

Perhaps add n-spells information: ε′ = ε× m
l where m is

number of spells and l is length
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Example: entropy

entropy state*, gen(ent) cd(pcd) nstates(4)
nspells state*, gen(nsp)
gen ent2 = ent*nsp/72
table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)

----------------------------------------------
g8 | mean(ent) mean(ent2) mean(nsp)

----------+-----------------------------------
1 | 0.150 0.008 1.536
2 | 0.100 0.004 1.359
3 | 1.143 0.061 3.560
4 | 1.053 0.057 3.684
5 | 0.074 0.003 1.235
6 | 1.252 0.091 4.844
7 | 0.000 0.000 1.000
8 | 1.489 0.097 4.597

----------------------------------------------
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Elzinga’s turbulence

In Elzinga (2010) a measure of complexity is proposed that is
more appropriate for spell data
It is based on duration weighted spells, and on subsequence
counting
It combines a measure based on the number of distince
subsequences, with a measure of the variance of their durations
It is (only) available in TraMineR
However, in practice the simpler Shannon entropy correlates
highly with it
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Regular expressions

If sequences are represented as text, text-processing tools such
as "regular expressions" can be used to sort between them
Refer to lab notes for more details

stripe state*, gen(seqst)
list seqst in 1/5,clean
count if regexm(seqst,"^A+$")
count if regexm(seqst,"^AAAAAA+.*DDDDDD.*AAAAAA.*$")
count if regexm(seqst,"AB.*AB")
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Multi-dimensional scaling

The other "obvious" thing to do with pairwise distances is
multi-dimensional scaling
The network of distances implies a coherent space: can we
re-construct it?
Preferably with dimensions much less than number of
sequences!
Standard MDS uses principal component analysis
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Example

. mdsmat oma, dim(3)
(row names of (dis)similarity matrix differ from column names; row names used)

Classical metric multidimensional scaling
dissimilarity matrix: oma

Number of obs = 940
Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556
Retained dimensions = 3 Mardia fit measure 2 = 0.9932

--------------------------------------------------------------------------
| abs(eigenvalue) (eigenvalue)^2

Dimension | Eigenvalue Percent Cumul. Percent Cumul.
-------------+------------------------------------------------------------

1 | 1205.3971 67.73 67.73 98.57 98.57
2 | 95.282325 5.35 73.08 0.62 99.19
3 | 44.082404 2.48 75.56 0.13 99.32

-------------+------------------------------------------------------------
4 | 28.932307 1.63 77.19 0.06 99.38
5 | 23.350698 1.31 78.50 0.04 99.41
6 | 12.040492 0.68 79.17 0.01 99.42
7 | 10.398137 0.58 79.76 0.01 99.43
8 | 8.8446418 0.50 80.26 0.01 99.44
9 | 6.3672493 0.36 80.61 0.00 99.44

10 | 6.1013343 0.34 80.96 0.00 99.44
--------------------------------------------------------------------------
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Scatterplot
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Scatterplot
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Scatterplot by cluster solution
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Avoid clustering: Indexplot ordered by 1st MDS
dimension
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Partitioning by MDS
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Are substitution costs a problem?

Repeated claims in the literature:
that sociologists don’t know how to set substitution costs,
that we can’t match the effectiveness of molecular biology

Yes, our analytical goals are often much less well defined than
those of the biologists
No, substitution costs are not an intractable problem
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Mapping states to sequences

The essence of SA is mapping a view of a state space onto a
view of a trajectory space: d(s)→ D(S)

We start with knowledge or a view of how states relate to each
other (what states are like each other, what states are
dissimilar)
With a suitable algorithm we map this perspective onto
trajectories through the state space: what trajectories are more
or less similar
The nature of the algorithm determines

Whether the mapping makes sense
Exactly how the structure of the state space affects the
structure of the trajectory space
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OMA coherent?

Can we expect OMA to provide a coherent d(s)→ D(S)
mapping?
Elementary operations are intuitively appealing:

1 D(ABC, ADC) = f (d(B, D))
2 D(ABCD, ABD) = f (indel)
3 minimising concatenation of these two operations to link any

pair of trajectories

If 3 is reasonable, 1 and 2 determine how state space affects
trajectory space
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Thinking about state spaces and distances

Costs can be thought of as distances between states
If state space is Rn, distance is intuitive
If state space is categorical, how define distance?

State space as efficient summary of clustered distribution in
Rn: distances are between cluster centroids
State space can be mapped onto specific set of quantitative
dimensions; each state located at the vector of its mean
values; Euclidean or other distances between vectors
States can be located relative to each other on theoretical
grounds
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Transitions and substitutions

Transition rates frequently proposed as basis for substitution
costs
Critics of OMA complain of substitution operations implying
impossible transitions (e.g., Wu)
Even proponents of OMA are sometimes concerned about
“impossible” transitions (e.g., Pollock)
But substitutions are not transitions, {not even a little bit!}

substitutions happen across sequences,
D(ABC, ADC) = f (d(B, D)) (similarity of states)
transitions happen within sequences (movement between state)

67



Sequence analysis for social scientists
Session 3
Substitution costs

Informative transition rates

No logical connection between substitutions and transition
rates
but under certain circumstances transition rates can inform us
about state distances
If state space is a partitioning of an unknown Rn, movement is
random (unstructured), and the probability of a move is
inversely related to its length, then
distance between states will vary inversely with the transition
rates
However, these conditions usually not met
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Deceptive transiton rates

Example: using voting intentions as a way of defining inter
party distances
UK: relatively high Con–LibDem two-way flows; ditto
Lab–LibDem
But Con–Lab transitions much lower: implies a potentially
incoherent space (non-metric, more below)

d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab)

Procedure confuses party state space and voter characteristics
Voter polarisation/loyalty is trajectory information, not state
information
Another type of problem: irrelevant distinctions can cause
similar states to have low transition rates
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Take “space” seriously

Very useful to think in spatial terms
1 State space as efficient summary of clustered distribution in Rn

2 State space mapped onto specific set of quantitative
dimensions

3 State space defined on theoretical grounds

For 1 and 2, explicitly multidimensional, in case 2 dimensions
are explicit
For 1 and 3, we can attempt to recover the implicit dimensions
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Looking at state spaces

Two very simple state spaces:
Single dimension, equally spaced:

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

All states equidistant – n − 1 dimensions

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

71



Sequence analysis for social scientists
Session 3
Substitution costs

More dimensions

E.g., 2D picture of inter-party distances: location on left–right
scale, plus on pro-/anti-EU scale
Distances are Euclidean or other metric (e.g., L1)

Euclidean:
√∑

i (ri − si )2

L1 (city block):
∑

i |ri − si |
Generalises easily to many dimensions
Problem: how to weight different dimensions?

Scale by standard deviation? Substantive importance?
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2-D example
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Spatial structure of theoretical spaces

We can analyse “theoretically-informed” or ad hoc state spaces
spatially
Principle components analysis of substitution matrix
Examples: Halpin and Chan (1998) McVicar and
Anyadike-Danes (2002):

I–II 0 2 2 2 2 3 3
III 2 0 1 1 1 2 2
IVab 2 1 0 1 1 2 2
IVcd 2 1 1 0 1 2 2
V–VI 2 1 1 1 0 2 2
VIIa 3 2 2 2 2 0 1
VIIb 3 2 2 2 2 1 0

E 0 1 1 2 1 3
F 1 0 1 2 1 3
H 1 1 0 2 1 2
S 2 2 2 0 1 1
T 1 1 1 1 0 2
U 3 3 2 1 2 0
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H&C, 1st two PCA dimensions
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H&C, dimensions 1 & 3

76



Sequence analysis for social scientists
Session 3
Substitution costs

MVAD, 1st two dimensions
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MVAD, dimensions 1 & 3
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Structure passes through

State space structure passes through to trajectory space
structure

Distances between states clearly affect distances between
trajectories containing high proportions of those states

If d(”A”, ”B”) << d(”A”, ”C”) then D(”..AAAA..”, ”..BBB..”)
will tend to be less than D(”..AAAA..”, ”..CCC..”)

Differential distances promote alignment: AADDAAA and
AAADDAA are more likely to be aligned to match the DD if
d(”A”, ”D”) is large
If the state distances are non-metric, the trajectory distances
may also be non-metric (at least between trajectories
consisting of near 100% one state)
Unidimensional states spaces will tend to be reflected strongly
in 1st principle component of trajectory space
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Comparing effects

80



Sequence analysis for social scientists
Session 3
Substitution costs

Correlations

Equidistant 1.00
1-D equal 0.85 1.00
1-D extremes 0.66 0.93 1.00
1-D polarised 0.83 0.94 0.81 1.00
2-D 0.87 0.98 0.91 0.90 1.00
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Equidistant relatively greater than 1-D
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Equidistant relatively less than 1-D
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Equidistant close to 1-D
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Designing state spaces

Be explicit about state spaces and what distances mean
Think spatially

Choose high or low dimensions, but have your reasons
Simplify state space as far as possible

Drop irrelevant distinctions
Drop longitudinal information: let the sequence encode the
temporal information, make state space cross-sectional
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Dropping temporal information

e.g., Simplify marital status:
Living alone Living with partner

Legally married Separated Married
Not legally married Single, never

married, post-
cohabitation,
divorced

Cohabiting

The sequence will distinguish adequately between the various
“single” states
Parity sequences: Women’s annual fertility history

in parity terms: 000112333344444
in birth event terms: 000101100010000
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Costing OM: a tractable problem

Substitution costs make a big difference
but largely understandable in operation
and an asset – more meaningful state space, more meaningful
trajectory space

Think spatially! Use data and geometric models
Simplify
Let the sequence do the temporal work
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SA and further analysis

With pairwise distances or a cluster solution we can move on
to conventional analysis:

Explain the clusters: who goes where?
Predict from the clusters: do they have consequences for the
future?

Approaches: tabular, ANOVA, regression, logit
Using clusters, MDS dimensions or other summaries of the
distances
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Explaining cluster membership, MVAD data

. tab g8 funemp, chi . tab g8 gcse5eq, chi

| funemp | gcse5eq
g8 | 0 1 | Total g8 | 0 1 | Total

--------+----------------------+---------- ---------+----------------------+----------
1 | 13.28 11.97 | 13.06 1 | 17.26 5.77 | 13.06
2 | 22.52 24.79 | 22.89 2 | 29.87 10.77 | 22.89
3 | 9.41 5.13 | 8.71 3 | 2.21 20.00 | 8.71
4 | 20.84 18.80 | 20.51 4 | 20.80 20.00 | 20.51
5 | 8.24 17.09 | 9.69 5 | 13.05 3.85 | 9.69
6 | 3.03 10.26 | 4.21 6 | 5.75 1.54 | 4.21
7 | 6.89 5.13 | 6.60 7 | 6.64 6.54 | 6.60
8 | 15.80 6.84 | 14.33 8 | 4.42 31.54 | 14.33

--------+----------------------+---------- ---------+----------------------+----------
Total | 100.00 100.00 | 100.00 Total | 452 260 | 712

Pearson chi2(7) = 28.5978 Pr = 0.000 Pearson chi2(7) = 209.0925 Pr = 0.000
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Association between covariates and clustering

Where we have outcome variables, we may want to see how
well they are predicted by the cluster solution
Here one question is whether the cluster solution has
additional explanatory power over and above simple summaries
such as cumulated duration
Nested model test (pretend, for the example, that grammar is
an outcome)

cumuldur state*, cd(cd) nstates(6)
logit grammar cd1-cd5
est store base
logit grammar cd1-cd5 i.g8
lrtest base

90



Sequence analysis for social scientists
Session 3
SA and further analysis

Beating cumulated duration

Logistic regression Number of obs = 712
LR chi2(12) = 107.71
Prob > chi2 = 0.0000

Log likelihood = -283.04946 Pseudo R2 = 0.1598

------------------------------------------------------------------------------
grammar | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cd1 | .0404702 .0259219 1.56 0.118 -.0103358 .0912761
cd2 | .0064551 .0278439 0.23 0.817 -.0481178 .0610281
cd3 | .0527723 .0262769 2.01 0.045 .0012706 .104274
cd4 | .0036833 .0259473 0.14 0.887 -.0471725 .0545391
cd5 | .0260562 .0278449 0.94 0.349 -.0285188 .0806312

|
g8 |
2 | .803025 .562242 1.43 0.153 -.2989491 1.904999
3 | 1.263318 .9776174 1.29 0.196 -.6527766 3.179413
4 | 1.752938 .6169286 2.84 0.004 .5437803 2.962096
5 | .9323015 .8809664 1.06 0.290 -.7943608 2.658964
6 | 2.599953 1.522719 1.71 0.088 -.3845203 5.584427
7 | 2.348554 .815007 2.88 0.004 .7511697 3.945939
8 | 3.368678 1.034953 3.25 0.001 1.340208 5.397148

|
_cons | -5.30223 1.884739 -2.81 0.005 -8.996251 -1.608209

------------------------------------------------------------------------------

Likelihood-ratio test LR chi2(7) = 21.03
(Assumption: base nested in .) Prob > chi2 = 0.0037
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MDS and modelling

It may make sense to model with the MDS dimensions

mdsmat oma, dim(3)
matrix dim=e(Y)
svmat dim
logit grammar cd1-cd5 dim1-dim3
lrtest base
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MDS dimensions and model

Logistic regression Number of obs = 712
LR chi2(8) = 95.84
Prob > chi2 = 0.0000

Log likelihood = -288.98292 Pseudo R2 = 0.1422

------------------------------------------------------------------------------
grammar | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cd1 | .0361684 .10541 0.34 0.732 -.1704313 .2427681
cd2 | .0529717 .1157715 0.46 0.647 -.1739364 .2798797
cd3 | .0727049 .094217 0.77 0.440 -.111957 .2573669
cd4 | .0083839 .0486104 0.17 0.863 -.0868908 .1036585
cd5 | .0172631 .0781496 0.22 0.825 -.1359074 .1704336

dim1 | -.9561052 2.407083 -0.40 0.691 -5.673902 3.761691
dim2 | 1.942324 .7237847 2.68 0.007 .5237325 3.360916
dim3 | 1.408145 1.796422 0.78 0.433 -2.112777 4.929068

_cons | -4.346376 6.378463 -0.68 0.496 -16.84793 8.155182
------------------------------------------------------------------------------

. lrtest base

Likelihood-ratio test LR chi2(3) = 9.16
(Assumption: base nested in .) Prob > chi2 = 0.0272
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MDS correlated?

. corr cd* dim*
(obs=712)

| cd1 cd2 cd3 cd4 cd5 cd6
-------------+------------------------------------------------------

cd1 | 1.0000
cd2 | -0.3075 1.0000
cd3 | -0.6320 0.0022 1.0000
cd4 | -0.4384 -0.2480 0.5044 1.0000
cd5 | -0.0393 -0.2969 -0.3062 -0.2696 1.0000
cd6 | -0.2772 -0.1232 -0.2111 -0.1194 0.0408 1.0000

dim1 | 0.7224 0.2218 -0.3431 -0.4694 -0.0406 -0.7369
dim2 | -0.0326 -0.3829 0.3578 0.7098 -0.0525 -0.4964
dim3 | 0.5810 -0.6630 -0.6685 -0.1359 0.3294 0.3453
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Studer et al’s discrepancy

Studer et al. (2011) propose a method for treating distances
matrices analogously to SS in regression and ANOVA
The average distance to the centre of the whole matrix is the
analogue of total sum of squares
With a grouping variable, the distance to the centre for each
groups is the residual sum of squares
This allows a pseudo-R2 and a pseudo-F test
Permutation is used to approximate the sampling distribution
of pseudo-F
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Discrepancy and MVAD

use mvad

matrix md = (0, 1, 1, 2, 1, 3\ ///
1, 0, 1, 2, 1, 3\ ///
1, 1, 0, 2, 1, 2\ ///
2, 2, 2, 0, 1, 1\ ///
1, 1, 1, 1, 0, 2\ ///
3, 3, 2, 1, 2, 0)

matrix rownames md = E F H S T U
matrix colnames md = E F H S T U

set matsize 1000
oma state*, subs(md) indel(1.5) pwd(oma) length(72)
discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)
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Discrepancy results

. discrepancy funemp, dist(oma) idvar(id) niter(100) dcg(d2c)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value
-------------+---------------------------------

funemp | .007956 5.694094 .17

----------------------------------------------------------
funemp | N(d2c) min(d2c) mean(d2c) max(d2c)

----------+-----------------------------------------------
0 | 595 .2215114 .463736 1.919831
1 | 117 .2757618 .5502117 1.518995

----------------------------------------------------------
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Alternatives to OM and Hamming

OMA is the dominant but not the only approach
It receives justified and unjustified criticism in terms of its fit
to lifecourse data
One axis of critique relates to costs: Dynamic Hamming
sidesteps this
Another relates to whether token strings are:

a good way to represent life-course processes (continuous time,
discrete state space, infrequent transitions)
and whether operations on token-strings match sociological
difference
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Alternatives

Hollister’s LOM and my OMv attempt to fix OM by paying
attention to the local context of operations (but fail:
non-metric)
TWED "warps time" and has more sensitivity to spell order
Lesnard’s Dynamic Hamming estimates substitution costs from
the data and does no alignment
Elzinga’s duration-weighted combinatorial measures pay strict
attention to spell order and duration
See Halpin (2014b) for a discussion
See Studer and Ritschard (2014) for a comprehensive review of
distance measures
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An aside: Metric spaces

To treat a dissimilarity as a distance, it must be compatible
with a "metric space"
Everyday 3D Euclidean space is metric, but we can relax many
of the characteristics of Euclidean space and still think in
spatial terms, using e.g., cluster analysis and MDS
Four conditions are required

d(x , x) = 0; identity
d(x , y) ≥ 0; non-negativity
d(x , y) = d(y , x); symmetry
d(x , y) ≤ d(x , z) + d(z , y); the "triangle inequality"

LOM and OMv do not satisfy the triangle inequality
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Hollister’s Localised OM

Hollister argues that OM’s elementary operations need to take
into account the context: the adjacent states, at least
Inserting a B between two Bs is cheaper than between an A and
a C

Operates very like OM, with substitution costs, but a modified
approch to indels
To insert element k between elements i and j the indel cost is:

ι = α
δi ,k + δj ,k

2
+ β

where α and β are chosen by the analyst
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LOM non-metric

Hollister’s measure violates the triangle inequality for the following
trio:

BBBBAB, CCCACC and BBBACC
For a substitution cost of 1, α 0.5 and β 0.5 (i.e.,
ι = 0.5 δi,k+δj,k2 + 0.5), the direct distance between sequences 1 and
2 is 6 units. However, the indirect distance passing through
sequence 3 is 5.5 (2.5 plus 3):

Distance
LOM OM

Pair δ = 1, α = β = 0.5 ι = 1.0 ι = 0.75
1, 2 6 6 5.5
1, 3 2.5 3 2.5
2, 3 3 3 3
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Halpin’s duration-adjusted OMv

My approach had a very similar motivation: operations should
be weighted less in big spells, more in short ones
Scale indel and substitution costs according to the square-root
of the spell length
Also non-metric: sequences with long spells are closer to all
other spells, without affecting distances between other spells
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Warping time

What of time-warping?
Abbott and Hrycak (1990) use the term to suggest non-linear
time scales
OMv “warps time” by weighting it differently in different spells
In turn informed by Sankoff and Kruskal (1983), Time Warps,
String Edits and Macromolecules
But time-warping refer to a specific set of algorithms
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Time warping algorithms

Formally, time warping is a family of algorithms that do
“continuous time-series to time-series correction” while OM et
al do “string to string correction” (Marteau, 2007)
Focus on comparing pairs of continuous-time high-dimensional
time-series in Rn

Operates by locally compressing or expanding the time scale of
one trajectory to minimise the distance to the other
Distance is usually Euclidean in Rn or other simple distance
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TWED: Matching 1D series
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TWED: Compress and expand
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TW algorithms

TW used widely: was used for speech recognition, signature
verification, other machine learning tasks
Typically used to match a high-dimensional time-series to a
“dictionary” of standard elements
Conceptually it is a continuous time approach but
implementations must be discrete – sampling or periodic
summaries:

e.g., sound sampled at 41 kHz
rainfall summarised daily
employment history reported monthly

Kruskal and Liberman (1983) show that the continuous time
logic can be faithfully implemented with discretised series
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Discrete time-warping

AAABBCC

ABCCCCC
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TW with stiffness penalty: TWED

Violation of the triangle inequality is due to TW usually having
no cost to expansion or compression, only to the residual
point-by-point distance
Marteau (2007, 2008) proposes a TW algorithm that has a
“stiffness” penalty
Satisfies the triangle inequality
Can be programmed very similarly to OM (recursive algorithm)
Stiffness penalty like but not like indel cost –
squeezing/stretching, not inserting/deleting
Point-to-point distance just like substitution
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TWED: Recursive algorithm

TW distance, δ(Ap,Bq) =

min


δ(Ap−1,Bq) + dLP(ap, ap−1) + γdLP(tap , tap−1) +λ
δ(Ap−1,Bq−1) + dLP(ap, bq) + γdLP(tap , tbq)
δ(Ap,Bq−1) + dLP(bq, bq−1) + γdLP(tbq , tbq−1) +λ

(Marteau, 2007)
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MDS/Cluster with TWED
−

.4
−

.2
0

.2

−.4 −.2 0 .2 .4

tmds1
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TWED attractive

TWED has a completely different "narrative" from OM:
warping time rather than editing token strings
Nonetheless, gives results that are not radically different
More noticeable differences for more complex sequences
For high values of λ and γ, tends to yield Hamming distance
For very low values of λ and γ, closer (but still not that close)
to X/t
Distribution in sequence space more like OM than X/t
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Dynamic Hamming

Dynamic Hamming takes a completely different slant: no
alignment
Similarity at the same time only, where similarity is defined by
time-dependent transition patterns

While changes are common differences matter less
While change is rare, differences are more marked

Naturally appropriate for "clock" time, e.g., daily, weekly,
annual patterns
Less obviously appropriate for "developmental" time, where a
common feature is people taking the same route at different
speeds
Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard
(2010), implemented by him (seqcomp), in Traminer and SADI
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Combinatorial approaches

Combinatorial methods are a completely different approach to
sequence comparison
Proposed by Elzinga (2003, 2005)
Compare sequences in terms of common “subsequences” rather
than string-edits
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Counting sequences

The sequence ABC has as subsequences:
the null (empty) string
A, B and C
AB, AC and BC
and ABC itself

A sequence of length l has 2l subsequences
If elements are repeated not all subsequences are distinct
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Combinatorial measures

Elzinga has proposed a number of measures that count
subsequences

Longest common subsequence
Number of common subsequences
Number of matching subsequences

A completely different logic, combinatorial rather than
string-editing: "the same states in the same order"
One particularly attractive approach: number of matching
spell-subsequences weighted by duration (I refer to it as "X/t")
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Code to run all the measures

use bsseq

set matsize 1000
matrix sm = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)
matrix fl = (0,1,1,1\1,0,1,1\1,1,0,1\1,1,1,0)

hamming state1-state72, subs(sm) pwd(ham)
oma state1-state72, subs(sm) indel(1.5) pwd(om) len(72)
twed state1-state72, subs(sm) nu(0.5) lambda(0.5) pwd(twd) len(72)

hamming state1-state72, subs(fl) pwd(haf)
oma state1-state72, subs(fl) indel(0.5) pwd(of) len(72)
twed state1-state72, subs(fl) nu(0.5) lambda(0.5) pwd(twf) len(72)
dynhamming state1-state72, pwd(dyn)

preserve
combinprep, state(state) length(l) nspells(nsp) idvar(pid)
combinadd state1-l‘r(maxspells)’, pws(xtd) nsp(nsp) nstates(‘r(nels)’) rtype(d)
restore
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Hamming, linear matrix
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OM, linear matrix
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TWED, linear matrix
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Hamming, flat matrix
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OM, flat matrix
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TWED, flat matrix
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Dynamic Hammming
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X/t
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Multiple domains

Lifecourse analysis recognises the interrelatedness of domains
Somewhat hard to handle in many approaches: a potential
strength of SA?
In practice, not very well developed; most research on single
domains
Some work (Dijkstra and Taris (1995), Pollock (2007),
Gauthier et al. (2010))
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Combined distance versus combining distances

How to proceed?
Conduct parallel analyses and combine results?
Combine domains into a single variable?
The former is easy but will be less sensitive to the
synchronisation of domains
The latter involves a large state space and problem in defining
distances
However, better sensitivity to cross-domain features makes it
attractive
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Combine by cross-tabulation

The simplest approach is to create a new state space that is
the cross-tabulation of the two (or more) domains
This yields a large number of states, one for each combination
How then to determine costs?
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Determining costs

Simplest strategy is to sum across the domains
In short, dAB

ik,jl = dA
i ,j + dB

k,l

There may be justification for imposing other patterns, for
instance,

imposing a ceiling
changing dA for certain values in domain B
weighting the domains differentially

Note that with two different substitution matrices it can be
difficult to weight equally

equalise by max substitution cost?
equalise by average substitution cost?
equalise by average substitution cost weighted by occurrence in
the data?
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Implementation

We take a simple case (four parity levels and five employment
statuses)
First step is to create the interaction or crosstabulation of the
states

// Reshape long to work on all months simultaneously
reshape long parx emp, i(pid) j(month)

// Create a variable that is the interaction of the two
gen cross = emp+(parx-1)*5

// Verify the state interaction variable
tab cross
table parx emp, c(mean cross)

// Back to wide, fix the variable order
reshape wide parx emp cross, i(pid) j(month)
order pid parx* emp* cross*
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Create the substitution cost matrix

We have two substitution cost matrices, 4x4 and 5x5:

matrix spar = (0,1,2,3\ /// matrix semp = (0,1,2,3,3\ ///
1,0,1,2\ /// 1,0,1,2,2\ ///
2,1,0,1\ /// 2,1,0,1,1\ ///
3,2,1,0) 3,2,1,0,1\ ///

3,2,1,1,0)

Both have a max of 3, otherwise perhaps divide each by its max
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Combine into 20x20

// Use Mata to combine the two matrices
mata:
spar = st_matrix("spar")
semp = st_matrix("semp")

// each element becomes a 5x5 block
sparx = spar # J(1,5,1) # J(5,1,1)

// replicate the 5x5 matrix 4x4 times
sempx = semp
for (i=2; i<=4; i++) {

sempx = sempx,semp
}
sempxy = sempx
for (i=2; i<=4; i++) {

sempxy = sempxy\sempx
}

// The combined matrix is the element-wise sum; return it from Mata to Stata
st_matrix("mcsa", sempxy :+ sparx)
end
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The combined matrix

symmetric mcsa[20,20]
c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12c13c14c15c16c17c18c19c20

r1 0
r2 1 0
r3 2 1 0
r4 3 2 1 0
r5 3 2 1 1 0
r6 1 2 3 4 4 0
r7 2 1 2 3 3 1 0
r8 3 2 1 2 2 2 1 0
r9 4 3 2 1 2 3 2 1 0

r10 4 3 2 2 1 3 2 1 1 0
r11 2 3 4 5 5 1 2 3 4 4 0
r12 3 2 3 4 4 2 1 2 3 3 1 0
r13 4 3 2 3 3 3 2 1 2 2 2 1 0
r14 5 4 3 2 3 4 3 2 1 2 3 2 1 0
r15 5 4 3 3 2 4 3 2 2 1 3 2 1 1 0
r16 3 4 5 6 6 2 3 4 5 5 1 2 3 4 4 0
r17 4 3 4 5 5 3 2 3 4 4 2 1 2 3 3 1 0
r18 5 4 3 4 4 4 3 2 3 3 3 2 1 2 2 2 1 0
r19 6 5 4 3 4 5 4 3 2 3 4 3 2 1 2 3 2 1 0
r20 6 5 4 4 3 5 4 3 3 2 4 3 2 2 1 3 2 1 1 0
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Dyadic SA

SA typically uses all-pair-wise distances, or distance to special
cases
Dyadic SA is also useful: distance between a specific pair

Couple time-diaries
Couple labour market histories
Mother–daughter fertility histories, etc.
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Research questions

Allows testing hypotheses about dyadic similarity
Are couples’ time-use patterns or life-course histories aligned
Are fertility patterns inherited?
Under what conditions are dyadic distances smaller or larger?
How do couples arrange joint lifecourses?
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Similarity and difference

Couples may coordinate their lives under very different gender
constraints
Fertility patterns may be similar within the constraints of
different cohort patterns of fertility
The relationship between sequences may not be one of
replication

some daughters may completely reject their mother’s fertility
pattern

137



Sequence analysis for social scientists
Session 5
Dyadic sequence analysis

Literature

Off-scheduling (Lesnard, 2008) Dyadic in concept but actually
creates combined sequences
Robette et al. (2015): Mother–daughter labour market careers
Fasang and Raab (2014): Intergenerational fertility; notes that
focus on similarity ignores heterogeneity
Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads,
fertility
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Practical issues

We can calculate dyadic distances with standard software
For efficiency it might better to just calculate dyads’ distances
But the cost of calculating all pairs is relatively small, and
offers an advantage:

Compare dyadic distances with distances to all others
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Strategy: Begin with dyad-ordered data

Dyad 1 1 2 2 3 3 4 4
Type M D M D M D M D
M 1 11 12 13 14 15 16 17 18
D 1 21 22 23 24 25 26 27 28
M 2 31 32 33 34 35 36 37 38
D 2 41 42 43 44 45 46 47 48
M 3 51 52 53 54 55 56 57 58
D 3 61 62 63 64 65 66 67 68
M 4 71 72 73 74 75 76 77 78
D 4 81 82 83 84 85 86 87 88
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Sort by types

Dyad 1 2 3 4 1 2 3 4
Type D D D D M M M M
D 1 22 24 26 28 21 23 25 27
D 2 42 44 46 48 41 43 45 47
D 3 62 64 66 68 61 63 65 67
D 4 82 84 86 88 81 83 85 87
M 1 12 14 16 18 11 13 15 17
M 2 32 34 36 38 31 33 35 37
M 3 52 54 56 58 51 53 55 57
M 4 72 74 76 78 71 73 75 77
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Submatrices

Two submatrices, with distances from each mother to each
daughter (and transpose)
Distance from mother to her own daughter on diagonal (and
transpose)
Use distance from mother to all daughters to assess whether
distance to own daughter is unusual
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Submatrices

Pair 1 2 3 4
Type M M M M
D 1 21 23 25 27
D 2 41 43 45 47
D 3 61 63 65 67
D 4 81 83 85 87

Pair 1 2 3 4
Type D D D D
M 1 12 14 16 18
M 2 32 34 36 38
M 3 52 54 56 58
M 4 72 74 76 78
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Extract diagonals and other information

The main info is on the diagonals: the dyad distances
(repeated across the two submatrices since distance is
symmetric)
Other summaries are also interesting

mean distance of each daughter to all mothers (and vice versa)
variance, standard deviation of this distance
z-score of dyad distance relative to all distances
rank of dyad distance compared with all distances

144



Sequence analysis for social scientists
References

Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching
analysis of musicians’ careers. American Journal of Sociology, 96(1):144–85.

Barban, N. and Billari, F. (2012). Classifying life course trajectories: A comparison of latent class and
sequence analysis. Journal of the Royal Statistical Society Series C, 61(5):765–784.

Billari, F. C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing and quantum of life course
events: A machine learning approach. European Journal of Population, 22:37–65.

Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods
and Research, 24(2):214–231.

Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. Sociological Methods and
Research, 32(1):3–29.

Elzinga, C. H. (2005). Combinatorial representations of token sequences. Journal of Classification,
22(1):87–118.

Elzinga, C. H. (2010). Complexity of categorical time series. Sociological Methods and Research,
38(3):463–481.

Fasang, A. and Raab, M. (2014). Beyond transmission: Intergenerational patterns of family formation
among middle-class american families. Demography, 51(5):1703–1728.

Gabadinho, A. (2014). Package ’pst’. probabilistic suffix trees and variable length Markov chains.
Technical report, CRAN.

Gauthier, J.-A., Widmer, E. D., Bucher, P., and Notredame, C. (2010). Multichannel sequence analysis
applied to social science data. Sociological Methodology, 40(1):1–38.

Halpin, B. (2013). Sequence analysis. In Baxter, J., editor, Oxford Bibliographies in Sociology. Oxford
University Press, New York.

Halpin, B. (2014a). SADI: Sequence analysis tools for Stata. Working Paper WP2014-03, Dept of
Sociology, University of Limerick, Ireland.

Halpin, B. (2014b). Three narratives of sequence analysis. In Blanchard, P., Bühlmann, F., and Gauthier,
J.-A., editors, Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin.

Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of
work-life histories. European Sociological Review, 14(2).

144



Sequence analysis for social scientists
Session 5
References

Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal
(1983), pages 125–161.

Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche
en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques,
Paris.

Lesnard, L. (2008). Off-scheduling within dual-earner couples: An unequal and negative externality for
family time. American Journal of Sociology, 114(2):447–90.

Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal
patterns. Sociological Methods and Research, 38(3):389–419.

Lesnard, L. and de Saint Pol, T. (2009). Patterns of workweek schedules in France. Social Indicators
Research, 93:171–176.

Lovaglio, P. G. and Mezzanzanica, M. (2013). Classification of longitudinal career paths. Quality and
Quantity, 47(2):989–1008.

Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching.
ArXiv Computer Science e-prints.

Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints.
McVicar, D. and Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions from

school to work using sequence methods. Journal of the Royal Statistical Society (Series A),
165:317–334.

Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by
using multiple-sequence analysis. Journal of the Royal Statistical Society: Series A, 170(1):167–183.

Raab, M., Fasang, A. E., Karhula, A., and Erola, J. (2014). Sibling similarity in family formation.
Demography, 51(6):2127–2154.

Robette, N., Bry, X., and Éva Lelièvre (2015). A “global interdependence” approach to multidimensional
sequence analysis. Sociological Methodology, Online advance copy.

Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String Edits and Macromolecules.
Addison-Wesley, Reading, MA.

Studer, M. and Ritschard, G. (2014). A comparative review of sequence dissimilarity measures. Working
Paper 2014-33, LIVES, Geneva.

Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of state
sequences. Sociological Methods and Research, 40(3):471–510.

144


