Sequence analysis for social scientists

Sequence analysis for social scientists

Brendan Halpin, Dept of Sociology, University of Limerick

Oslo June 16-18 2015

(□ > 4**□**

Outline

- What is sequence analysis?
- Why it can be worth doing, and how it complements existing approaches
- How to do it, and how to think about it
- Practical, hands-on focus, using (inter alia) my SADI add-on for Stata (Halpin, 2014a)

equence analysis for social scientists

ession 1

Sequence Analysis

- What is sequence analysis?
 - Large, growing and ramifying research area
 - From Abbott and Hrycak (1990) to the 2015 edition of Sociological Methodology
 - See Halpin (2013) for an annotated bibliography
- Focus on lifecourse trajectories as sequences, as wholes
- Usually proceed by defining distances between pairs of sequences, classify, etc

4□ > 4₫ > 4분 > 4분 > 분 90

guence analysis for social scientists

Jession 1

Why do Sequence Analysis?

- Why would we want to do it
 - Holistic vs analytic?
 - Exploratory vs hypothesis testing?
 - Descriptive, visualisation
- Complexity of longitudinal processes hard to capture
- How should we think about $d \rightarrow D$?
- Complementary alternative to stochastic techniques which model data generation process

4D> 4B> 4B> 4B> B 990

Sequence analysis for social scientists

Session 1
Why Sequence Analysis

Sequences are messy

- Lifecourse sequences are epiphenomena of more fundamental underlying processes
- The processes are potentially complex: difficult to predict distribution of sequences
- Other techniques (hazard rate models, models of late outcome using history, models of the pattern of transition rates) give a powerful but partial view
- SA clearly allows us visualise complex data; possibly allows us observe features that will otherwise be missed

Sequence analysis for social scientists
Session 1

Why Sequence Analysis

Potentially complex processes

- The generating processes are complex:
 - individuals bring different characteristics from the beginning
 - history matters, including via duration dependence (individuals accumulate characteristics)
 - time matters:
 - calendar time (e.g. economic cycle), state distribution may change dramatically
 - developmental time (maturation)
 - processes in other lifecourse domains
- Too many parameters to model, hard to visualise distribution of life courses, also the possibility of emergent features
 - Clear exploratory advantages
 - possibility of detecting things that might not be detected otherwise

Sequence analysis for social scientists

Why Sequence A

Timing, sequence, quantum

- Different things can be interesting
 - Timing: when things happen
 - Sequence: in what order do things happen
 - Quantum: how much time is spent in different states (Billari et al., 2006)
- Many applications in longitudinal social science: annotated bibliography in Halpin (2013)

Sequence analysis for social scientists

Non-holistic approach

Non-holistic approaches

- Numerous non-holistic approaches exist
- Typically they will discard some aspect of the information in the data, and focus powerfully on another
- For instance, focus on
 - cumulated duration in states (how much but not when)
 - transition patterns between states (period-to-period but not operall)
 - time-to-event of leaving spell (spells, perhaps pooled, but lose sight of individual career).

Sequence analysis for social scientists

Session 1

Non-holistic approaches

Cumulative duration

- For instance, summarise trajectories in terms of cumulative time in each state
- Typically use as a predictor (e.g., proportion of time unemployed predicting later ill-health)
- Or as an outcome: variables measured earlier (e.g., school performance) predicting proportion of time unemployed.

Session 1 Non-holistic approaches

Transition rate models

- Model rates of period-to-period change: e.g., monthly movement between labour market statuses
- Model origin-destination patterns: e.g., transition between class at entry to labour market, and class at age 35
- Markov models
- Very useful, good overview, can be descriptive or stochastic: tables make categorical data digestible
- \bullet Disadvantage: the focus on the t-1/t or t_0/t_T pattern means a loss of individual continuity
- Some potential to model longer Markov chains (Gabadinho, 2014)

Sequence analysis for social scientists

N. I. P. C.

Hazard-rate modelling

- Hazard-rate modelling is one of the dominant statistical alternative
- Either in terms of survival tables and curves (essentially descriptive)
- Or full stochastic models of the determinants of the hazard rate (Cox and/or parametric)
- Example: what characteristics speed up (or slow down) exit from unemployment?
- Very nice conceptual model of the temporal process
- Can test hypotheses
- Disadvantage: spell orientation, lack of whole-trajectory

4 D > 4 B > 4 E > 4 E > E 9 9 9 9

Sequence analysis for social scientists

Dession 1

Latent class analysis

- Latent class growth curve models
 - Where theory allows a developmental model of a quantitative outcome
 - Account for the structure of repeated measurement of individuals
 - Not so suitable for categorical variables
- Latent class models can be applied to careers
 - However, difficult to properly incorporate the longitudinality
 - Examples: Lovaglio and Mezzanzanica (2013); Barban and Billari (2012)

40 × 40 × 42 × 42 × 2 × 990

Sequence analysis for social scientists

What we do with holistic approaches

Holistic approaches

- Holistic approaches by definition treat whole trajectories as units
- Classification of sequences is a typical goal
- Usually achieved by defining inter-sequence similarity and cluster analysis
- But other aspects of similarity may be interesting
 - Variation of similarity by grouping variable (cohort, social class)
 - Dyad similarity (couples' time use, mother-daughter fertility etc.)
 - Distance to pre-defined ideal types (empirical or theoretical)

□ > 4₫ > 4 ≧ > 4 ≧ > 9 4 @

Sequence analysis for social scientists
Session 1

What we do with holistic approaches

Defining similarity

- Defining similarity the key challenge: must be
 - efficient
 - coherent, and
 - sociologically meaningful
- We will consider a number of methods to do this
 - Hamming distance and Optimal Matching distance (today)
 - Dynamic Hamming, time-warping measures and combinatorial subsequence measures (later)

10 × 40 × 42 × 42 × 2 × 990

Sequence analysis for social scientists

oession 1 OM and Hamming

Hamming distance and Optimal Matching

- The simplest way to compare sequences is element-wise
- Given a rule for d(a,b), project it onto D(A,B) as $D(A,B) = \sum_i d(A_i,B_i)$
- Requires sequence of equal length
- Hamming distance: recognises match or similarity at same time
- Simple but important case of mapping $d(a,b) \to D(A,B)$

Session 1

OM and Hammin

Hamming distance example

Input four short sequences

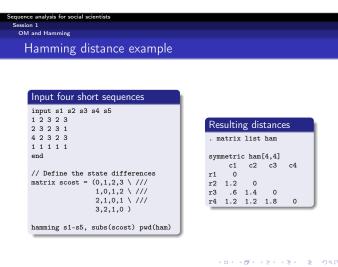
input s1 s2 s3 s4 s5 1 2 3 2 3 2 3 1

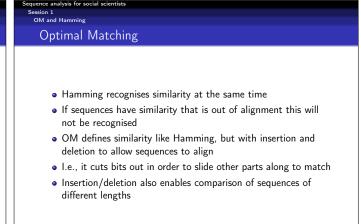
1 1 1 1 1

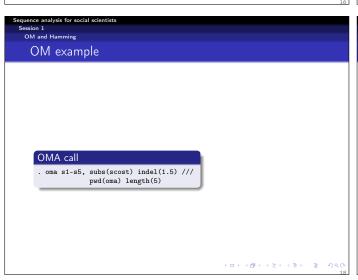
end
// Define the state differences

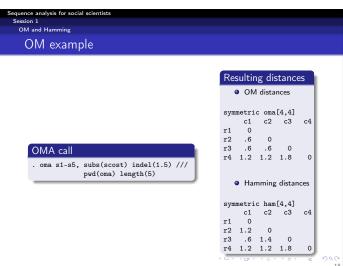
matrix scost = (0,1,2,3 \ /// 1,0,1,2 \ /// 2,1,0,1 \ /// 3,2,1,0)

hamming s1-s5, subs(scost) pwd(ham)

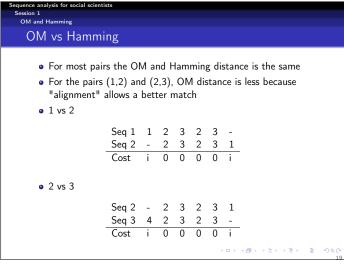


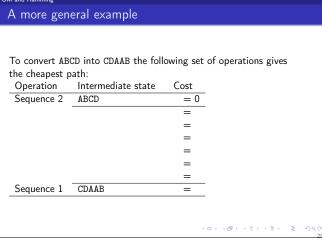


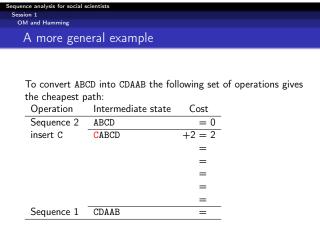


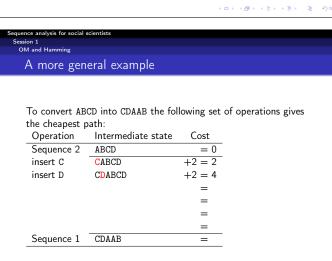


uence analysis for social scientist









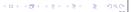
<□ > <**□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** <

Sequence analysis for social scientists

OM and Hamming

A more general example

Operation .	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
$const\ \mathtt{A}=\mathtt{A}$	CDABCD	+0 = 4
		=
		=
		=
Sequence 1	CDAAB	=



equence analysis for social scientists Session 1

OM and Hamming

A more general example

To convert ABCD into CDAAB the following set of operations gives the cheapest path:

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
subs $B{ ightarrow}A$	CDAACD	+1 = 5
		=
		=
Sequence 1	CDAAB	=

Sequence analysis for social scientists

Session 1

OM and Hamming

A more general example

To convert ABCD into CDAAB the following set of operations gives the cheapest path:

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
$const\ \mathtt{A}=\mathtt{A}$	CDABCD	+0 = 4
subs $\mathtt{B}{\to}\mathtt{A}$	CDAACD	+1 = 5
subs $C \rightarrow B$	CDAABD	+1 = 6
		=
Sequence 1	CDAAB	=



Sequence analysis for social scientists

A more general example

To convert ABCD into CDAAB the following set of operations gives the cheapest path:

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const $A = A$	CDABCD	+0 = 4
subs $\mathtt{B}{\to}\mathtt{A}$	CDAACD	+1 = 5
subs $C \rightarrow B$	CDAABD	+1 = 6
delete D	CDAAB-	+2 = 8
Sequence 1	CDAAB	= 8

Sequence analysis for social scientists

Session 1
Programming ON

Programming OM

- OM distance is defined as the cheapest set of "elementary operations" that edit one sequence into another
- Determining the cheapest set of "elementary operations" is potentially complex a large population of candidates
- However, it can be stated as a recursive problem and programmed very efficiently
- \bullet Understanding how it is programmed can help understand the principle of $\ensuremath{\mathsf{OM}}$

Sequence analysis for social scientis

Session 1
Programming Ol

OM: Recursive problem

$$\Delta_{OM}(A^p, B^q) =$$

$$\min \left\{ \begin{array}{ll} \Delta_{OM}(A^{p-1},B^q) & + \textit{indel} \\ \Delta_{OM}(A^{p-1},B^{q-1}) + \delta(a_p,b_q) \\ \Delta_{OM}(A^p,B^{q-1}) & + \textit{indel} \end{array} \right.$$

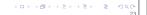
(Δ represents distance between sequences, and δ differences within the state space)

Sequence analysis for social scientists

Programming C

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

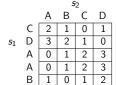


Sequence analysis for social scientists

Programming O

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$ = min(0 + 2, 2 + 2, 2 + 2) = 2



0	2	4	6	8
2				
4				
2 4 6 8				
8				
10				

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
10				
			•	

4 D > 4 D > 4 E > 4 E > E 999

Sequence analysis for social scientists Session 1

Programming O

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

$$= min(2+1, 2+2, 4+2) = 3$$

		s 2			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	A B	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
LO				

Sequence analysis for social scientists

Session 1

Programming OM

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

			_	2	
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

Sequence analysis for social scientists

Session 1

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

$$= min(4+0,3+2,6+2) = 4$$

			_	2	
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

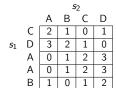
0	2	4	6	8
2	2	3		
2 4 6 8				
6				
8				
10				

Sequence analysis for social scientists

Session 1
Programming ON

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$



0	2	4	6	8
2	2	3	4	
4				
6				
2 4 6 8				
10				

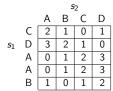
Sequence analysis for social scientists

Session 1
Programming Ol

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

$$= min(6+1,4+2,8+2) = 6$$



0	2	4	6	8	
2 4 6 8	2	3	4		
4					
6					
8					
10					ı

Sequence analysis for social scientists

Programming Of

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

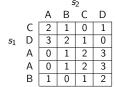
4□ > 4∰ > 4 ≣ > 4 ≣ > 9 Q (>

Sequence analysis for social scientists

Programming ON

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

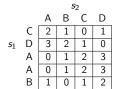


0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
2 4 6 8				
8				
10				

Programming OM

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$



0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
2 4 6 8	4	5	6	6
8				
10				

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

			5	2	
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	A B	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2 4 6 8	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8	6	5	7	8
10				

Implementing the recursive algorithm

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$

Two example data sets

- We will be primarily using two data sets as examples
 - \bullet MVAD: McVicar/Anyadike-Danes data on the school-to-work transition in Northern Ireland (72 months, 6 states)
 - BSSEQ: 6 years of labour market history of women who have a birth at end of year 2 (72 months, 4 states)



Initial step: looking at life course data

- It's harder to get an overview of lifecourse that cross-sectional data
- However, a number of numeric and graphical techniques are available

Numeric summaries

We can summarise lifecourse data in terms of:

- Cumulative duration
- Number of spells
- Patterns of transition rates
 - month by month
 - start by finish
- Durations to event (time to first job, first marriage, first child) Useful to break down these measures by covariates, and model them

Cumulative duration

use mvad use mwdd cumuldur state*, cd(cd) nstates(6) reshape long cd, i(id) j(durtype) label values durtype state table male durtype, c(mean cd) format(%5.2f) table grammar durtype, c(mean cd) format(%5.2f)

	1	durtype										
male	ı	E	F	H	S	T	U					
	+-											
0	I	29.24	12.73	10.12	7.30	5.55	7.06					
1	I	34.96	10.75	6.81	5.00	9.12	5.36					

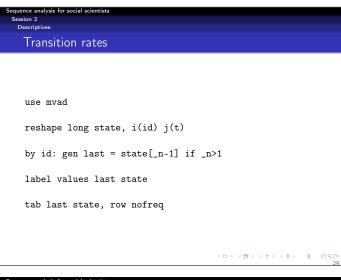
	1			durt	уре					
grammar	i	E	F			T	U			
	-+									
0	1	34.25	12.42	6.07	4.44	8.09	6.74			
1	1	23.02	8.47	18.93	13.62	4.32	3.64			
							4.00.5	(個) (差) (差)	3	90

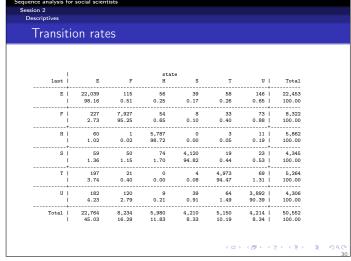
Number of spells

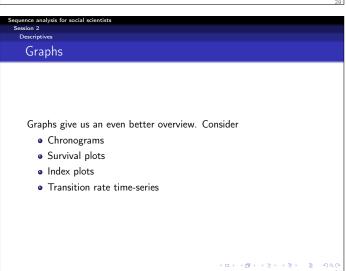
- . nspells state*, gen(nsp)
 . tab nsp grammar, col nofreq

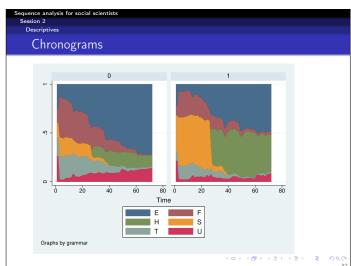
	gra	ammar	
nsp	1 0	1	Total
	-+		+
1	6.17	4.65	1 5.90
2	1 20.24	24.81	1 21.07
3	30.70	33.33	31.18
4	19.21	19.38	19.24
5	12.52	6.98	11.52
6	4.12	6.20	1 4.49
7	3.95	1.55	3.51
8	1.37	2.33	1.54
9	1.03	0.78	0.98
10	0.34	0.00	0.28
11	0.34	0.00	0.28
	+		+
Total	I 100 00	100 00	I 100 00

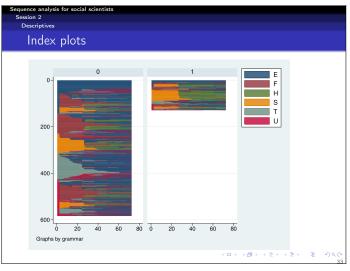
<□ > <**□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** <

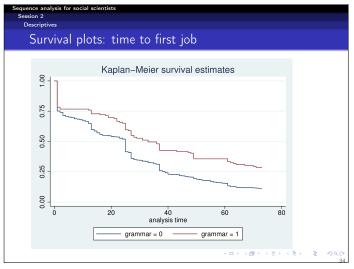


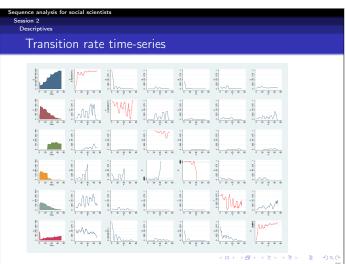


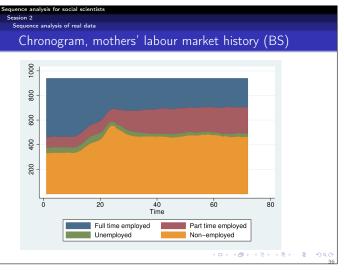




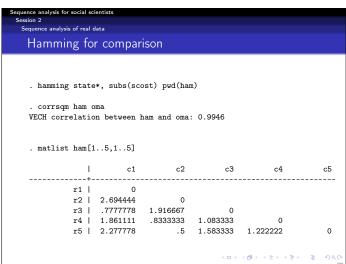


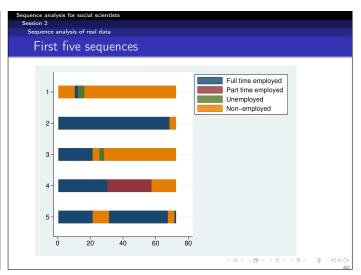






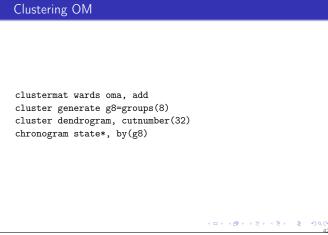
```
Sequence analysis of real data
OM output
  oma state*, subs(scost) indel(1.5) pwd(oma) len(72)
 Normalising distances with respect to length
 (0 observations deleted)
 417 unique observations
 . matlist oma[1..5,1..5]
          r1 |
          r2 | 2.694444
                                  0
          r3 | .7777778 1.916667
                1.861111
                           .8333333
                                      1.083333
           r5 | 2.277778
                           .4583333 1.541667
                                                 .8333333
                                                                   0
                                           ←□ → ←∅ → ← ½ → ← ½ → ○ ♀
```

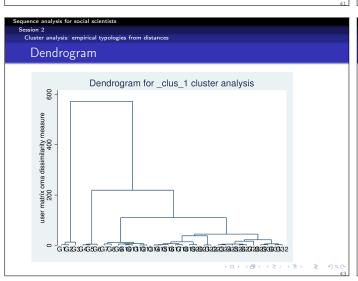


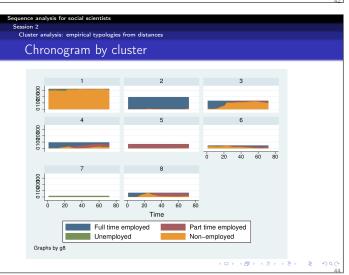


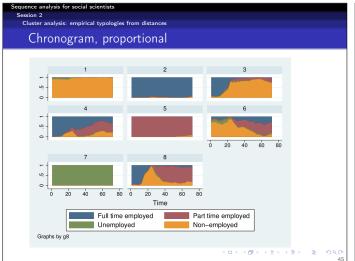
What to do with distances? Pairwise distance matrices are an intermediate point One useful thing: create a data-driven classification Use cluster analysis, typically using Ward's linkage Number of clusters is a matter for thought, 8 is convenient for exposition

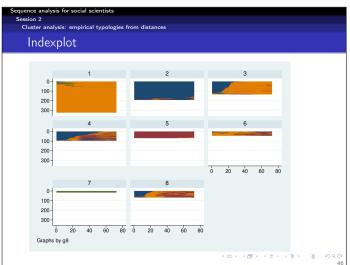
ence analysis for social scientists

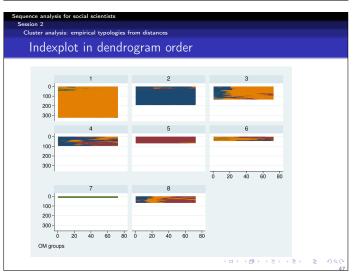


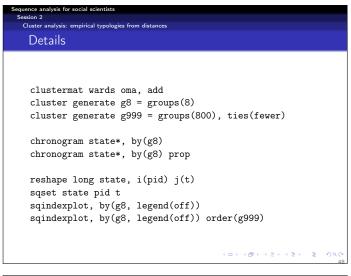


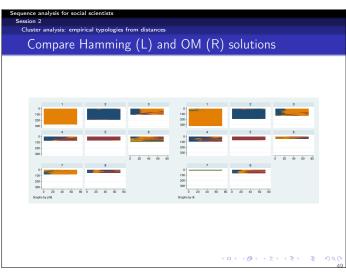












Hamming ОМ

• Kappa-max: 0.7791

ARI and permtab

• Adjusted Rand Index: 0.7818

Complexity of sequences

 Complexity of sequences is relevant: more complex means less likely to be similar (and perhaps, similarity is more interesting)

- How to measure? Number of spells is part of it
- Also distribution of time
- A single long spell is the simplest sequence
- Many spells in many different states is very complex

Shannon Entropy

- Information theory relates complexity to "entropy"
- More complex objects are harder to describe, cannot be compressed
- Shannon Entropy: $\epsilon = -\sum p_i \log_2 p_i$ where p_i is the proportion of months in state i
- Takes account of diversity of state but ABABAB counts as no more complex than AAABBB
- ullet Perhaps add n-spells information: $\epsilon' = \epsilon imes rac{m}{l}$ where m is number of spells and I is length

ing sequences: Duration, number of spells, entropy Example: entropy entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f) g8 | mean(ent) mean(ent2) mean(nsp) 0.150 0.008 2 | 0.100 0.004 1.359 3 I 1.143 0.061 3.560 1.053 0.057 3.684 0.074 0.003 1.235 6 | 1.252 0.091 4.844 0.000 0.000 1.000 8 | 1.489 0.097 4.597

Elzinga's turbulence • In Elzinga (2010) a measure of complexity is proposed that is

rising sequences: Duration, number of spells, entropy

- more appropriate for spell data
- It is based on duration weighted spells, and on subsequence counting
- It combines a measure based on the number of distince subsequences, with a measure of the variance of their durations
- It is (only) available in TraMineR
- However, in practice the simpler Shannon entropy correlates highly with it

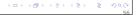
Regular expressions

- If sequences are represented as text, text-processing tools such as "regular expressions" can be used to sort between them
- Refer to lab notes for more details

```
stripe state*, gen(seqst)
list seqst in 1/5, clean
count if regexm(seqst,"^A+$")
count if regexm(seqst,"^AAAAAA+.*DDDDDD.*AAAAAAA.*$")
count if regexm(seqst,"AB.*AB")
```

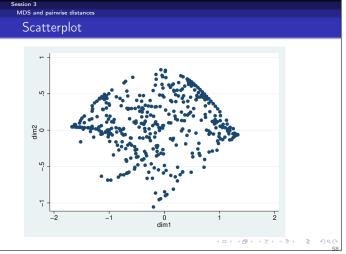

Multi-dimensional scaling

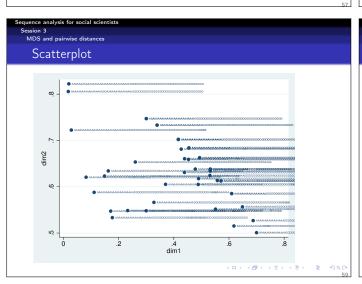
- The other "obvious" thing to do with pairwise distances is multi-dimensional scaling
- The network of distances implies a coherent space: can we re-construct it?
- Preferably with dimensions much less than number of
- Standard MDS uses principal component analysis

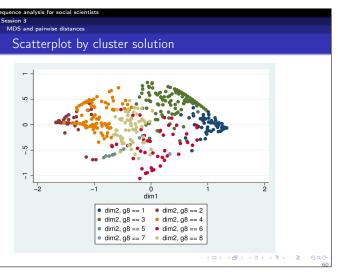


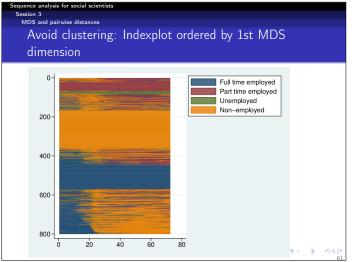
Example . mdsmat oma, dim(3) (row names of (dis)similarity matrix differ from column names; row names used) Classical metric multidimensional scaling dissimilarity matrix: oma (eigenvalue)^2 Percent Cumul Dimension | Eigenvalue 1 | 1205.3971 67.73 67.73 98.57 98.57

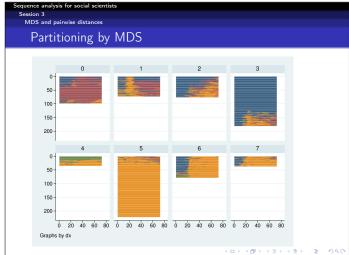
2	- 1	95.282325	5.35	73.08	0.62	99.19
3	- 1	44.082404	2.48	75.56	0.13	99.32
	-+-					
4	- 1	28.932307	1.63	77.19	0.06	99.38
5	- 1	23.350698	1.31	78.50	0.04	99.41
6	- 1	12.040492	0.68	79.17	0.01	99.42
7	- 1	10.398137	0.58	79.76	0.01	99.43
8	- 1	8.8446418	0.50	80.26	0.01	99.44
9	- 1	6.3672493	0.36	80.61	0.00	99.44
10	- 1	6.1013343	0.34	80.96	0.00	99.44











Sequence analysis for social scientists

Substitution costs

Are substitution costs a problem?

- Repeated claims in the literature:
 - that sociologists don't know how to set substitution costs,
 - that we can't match the effectiveness of molecular biology
- Yes, our analytical goals are often much less well defined than those of the biologists
- No, substitution costs are not an intractable problem

Sequence analysis for social scientists

C. L. . L. . L

Mapping states to sequences

- ullet The essence of SA is mapping a view of a state space onto a view of a trajectory space: d(s) o D(S)
- We start with knowledge or a view of how states relate to each other (what states are like each other, what states are dissimilar)
- With a suitable algorithm we map this perspective onto trajectories through the state space: what trajectories are more or less similar
- The nature of the algorithm determines
 - Whether the mapping makes sense
 - Exactly how the structure of the state space affects the structure of the trajectory space

Sequence analysis for social scientists Session 3

Substitution costs

OMA coherent?

- Can we expect OMA to provide a coherent $d(s) \rightarrow D(S)$ mapping?
- Elementary operations are intuitively appealing:

 - ② D(ABCD, ABD) = f(indel)
 - minimising concatenation of these two operations to link any pair of trajectories
- $\bullet\,$ If 3 is reasonable, 1 and 2 determine how state space affects trajectory space

Sequence analysis for social scientists
Session 3

Session 3
Substitution cost

Thinking about state spaces and distances

- Costs can be thought of as distances between states
- ullet If state space is \mathbb{R}^n , distance is intuitive
- If state space is categorical, how define distance?
 - State space as efficient summary of clustered distribution in \mathbb{R}^n : distances are between cluster centroids
 - State space can be mapped onto specific set of quantitative dimensions; each state located at the vector of its mean values; Euclidean or other distances between vectors
 - States can be located relative to each other on theoretical grounds

Sequence analysis for social scientists

Substitution cost

Transitions and substitutions

- Transition rates frequently proposed as basis for substitution costs
- Critics of OMA complain of substitution operations implying impossible transitions (e.g., Wu)
- \bullet Even proponents of OMA are sometimes concerned about "impossible" transitions (e.g., Pollock)
- But substitutions are not transitions, {not even a little bit!}
 - substitutions happen across sequences, D(ABC, ADC) = f(d(B, D)) (similarity of states)
 - transitions happen within sequences (movement between state)

Sequence analysis for social scientists

Substitution cost

Informative transition rates

- No logical connection between substitutions and transition rates
- but under certain circumstances transition rates can inform us about state distances
- If state space is a partitioning of an unknown \mathbb{R}^n , movement is random (unstructured), and the probability of a move is inversely related to its length, then
- distance between states will vary inversely with the transition rates
- However, these conditions usually not met

Deceptive transiton rates

- Example: using voting intentions as a way of defining inter party distances
- UK: relatively high Con-LibDem two-way flows; ditto Lab-LibDem
- But Con-Lab transitions much lower: implies a potentially incoherent space (non-metric, more below)
 - d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab)
- Procedure confuses party state space and voter characteristics
- Voter polarisation/loyalty is trajectory information, not state
- Another type of problem: irrelevant distinctions can cause similar states to have low transition rates

Take "space" seriously

- Very useful to think in spatial terms
 - **9** State space as efficient summary of clustered distribution in \mathbb{R}^n State space mapped onto specific set of quantitative dimensions
 - State space defined on theoretical grounds
- For 1 and 2, explicitly multidimensional, in case 2 dimensions are explicit
- For 1 and 3, we can attempt to recover the implicit dimensions

Looking at state spaces

- Two very simple state spaces:
 - Single dimension, equally spaced:

0	1	2	3
1	0	1	2
2	1	0	1
3	2	1	0

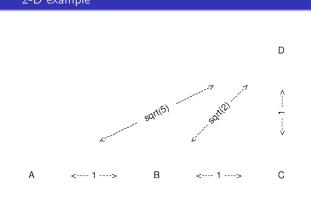
• All states equidistant -n-1 dimensions

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

More dimensions

- E.g., 2D picture of inter-party distances: location on left-right scale, plus on pro-/anti-EU scale
- Distances are Euclidean or other metric (e.g., L1)
 - Euclidean: $\sqrt{\sum_i (r_i s_i)^2}$ L1 (city block): $\sum_i |r_i s_i|$
- Generalises easily to many dimensions
- Problem: how to weight different dimensions?
 - Scale by standard deviation? Substantive importance?

2-D example



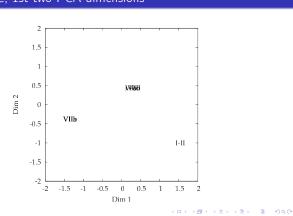
Spatial structure of theoretical spaces

- We can analyse "theoretically-informed" or ad hoc state spaces spatially
- Principle components analysis of substitution matrix
- Examples: Halpin and Chan (1998) McVicar and Anyadike-Danes (2002):

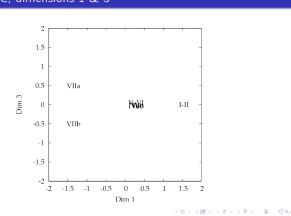
I–II	0	2	2	2	2	3	3
Ш	2	0	1	1	1	2	2
lVab	2	1	0	1	1	2	2
l <i>Vcd</i>	2	1	1	0	1	2	2
V–VI	2	1	1	1	0	2	2
VIIa	3	2	2	2	2	0	1
VIIb	3	2	2	2	2	1	0

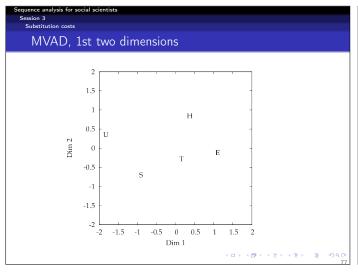
Ξ	0	1	1	2	1	3
=	1	0	1	2	1	3
Н	1	1	0	2	1	2
5	2	2	2	0	1	1
Γ	1	1	1	1	0	2
J	3	3	2	1	2	0

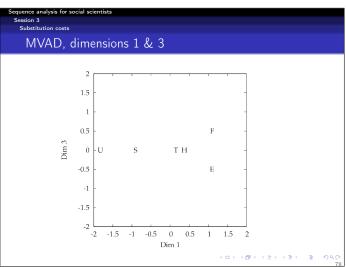
H&C, 1st two PCA dimensions



H&C, dimensions 1 & 3

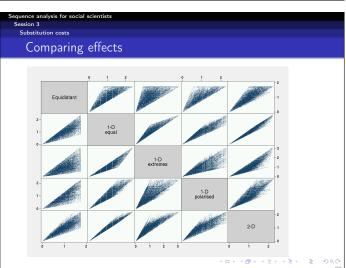




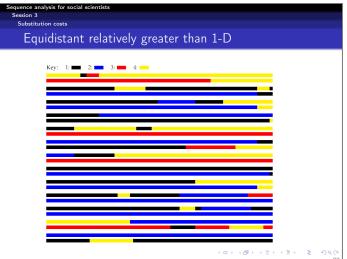


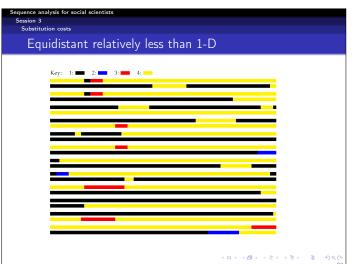
Structure passes through

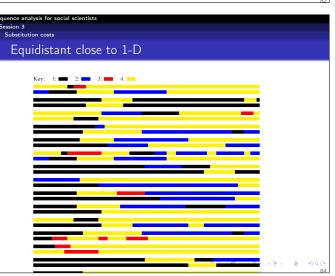
- State space structure passes through to trajectory space
 - Distances between states clearly affect distances between
 - trajectories containing high proportions of those states • If d("A","B") << d("A","C") then D("..AAAA.","..BBB.") will tend to be less than D("..AAAA.","..CCC.")
 - Differential distances promote alignment: AADDAAA and AAADDAA are more likely to be aligned to match the DD if d("A","D") is large
 - If the state distances are non-metric, the trajectory distances may also be non-metric (at least between trajectories consisting of near 100% one state)
 - Unidimensional states spaces will tend to be reflected strongly in 1st principle component of trajectory space



Correlations Equidistant 1.00 1-D equal 0.85 1.00 1-D extremes 0.66 0.93 1.00 1-D polarised 0.83 0.94 0.81 1.00 2-D $0.87 \quad 0.98 \quad 0.91 \quad 0.90 \quad 1.00$

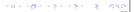






Designing state spaces

- Be explicit about state spaces and what distances mean
- Think spatially
 - Choose high or low dimensions, but have your reasons
- Simplify state space as far as possible
 - Drop irrelevant distinctions
 - Drop longitudinal information: let the sequence encode the temporal information, make state space cross-sectional



Dropping temporal information

• e.g., Simplify marital status:

Living alone Living with partner Legally married Separated Married Single, Not legally married Cohabiting never married. postcohabitation, divorced

- The sequence will distinguish adequately between the various "single" states
- Parity sequences: Women's annual fertility history

000112333344444 in parity terms: • in birth event terms: 000101100010000

Costing OM: a tractable problem

- Substitution costs make a big difference
 - but largely understandable in operation
 - and an asset more meaningful state space, more meaningful trajectory space
- Think spatially! Use data and geometric models
- Simplify
- \bullet Let the sequence do the temporal work

SA and further analysis

- With pairwise distances or a cluster solution we can move on to conventional analysis:
 - Explain the clusters: who goes where?
 - Predict from the clusters: do they have consequences for the future?
- Approaches: tabular, ANOVA, regression, logit
- Using clusters, MDS dimensions or other summaries of the distances

nce analysis for social scientists

Explaining cluster membership, MVAD data

. tab g8 funemp, chi

g8	1	funemp 0	1	į	Tota
1	Ī	13.28	11.97	ī	13.0
2	1	22.52	24.79	1	22.8
3	1	9.41	5.13	1	8.7
4	1	20.84	18.80	1	20.5
5	1	8.24	17.09	1	9.6
6	1	3.03	10.26	1	4.2
7	1	6.89	5.13	1	6.6
8	I	15.80	6.84	I	14.3
	-+-			+-	
Total		100.00	100.00		100.0

Pearson chi2(7) = 28.5978 Pr = 0.000

. tab g8 gcse5eq, chi

1	gcse5	eq	
g8	0	1	Total
+		+	
1	17.26	5.77	13.06
2	29.87	10.77	22.89
3	2.21	20.00	8.71
4	20.80	20.00	20.51
5	13.05	3.85	9.69
6 I	5.75	1.54	4.21
7	6.64	6.54	6.60
8	4.42	31.54	14.33
+		+	
Total I	452	260	712

Pearson chi2(7) = 209.0925 Pr = 0.000

Association between covariates and clustering

- Where we have outcome variables, we may want to see how well they are predicted by the cluster solution
- Here one question is whether the cluster solution has additional explanatory power over and above simple summaries such as cumulated duration
- Nested model test (pretend, for the example, that grammar is an outcome)

cumuldur state*, cd(cd) nstates(6) logit grammar cd1-cd5 est store base logit grammar cd1-cd5 i.g8 1rtest base

ce analysis for social scientists

Beating cumulated duration

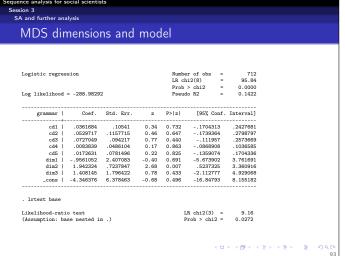
ogistic regres:	sion			Numbe	r of obs	=	712
				LR ch	i2(12)	=	107.71
				Prob	> chi2	=	0.0000
og likelihood :	= -283.0494	5		Pseud	lo R2	=	0.1598
grammar	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
cd1	. 0404702	.0259219	1.56	0.118	010335	8	.0912761
cd2	.0064551	.0278439	0.23	0.817	048117	8	.0610281
cd3	.0527723	.0262769	2.01	0.045	.001270)6	.104274
cd4	.0036833	.0259473	0.14	0.887	047172	25	.0545391
cd5	.0260562	.0278449	0.94	0.349	028518	88	.0806312
g8							
2	.803025	.562242	1.43	0.153	298949	1	1.904999
3	1.263318	.9776174	1.29	0.196	652776	66	3.179413
4	1.752938	.6169286	2.84	0.004	.543780	3	2.962096
5 I	.9323015	.8809664	1.06	0.290	794360	8	2.658964
6 I	2.599953	1.522719	1.71	0.088	384520)3	5.584427
7	2.348554	.815007	2.88	0.004	.751169	7	3.945939
8	3.368678	1.034953	3.25	0.001	1.34020	8	5.397148
_cons	-5.30223	1.884739	-2.81	0.005	-8.99625	51	-1.608209

LR chi2(7) = 21.03 Prob > chi2 = 0.0037

MDS and modelling

• It may make sense to model with the MDS dimensions

mdsmat oma, dim(3) matrix dim=e(Y) symat dim logit grammar cd1-cd5 dim1-dim3 1rtest base



S	uence analysis for ession 3 SA and further an	nalysis													
	MD3 CO	пеш	eu!												
	. corr cd* dim	1*													
	(008-712)	cd1	cd2	cd3	cd4	cd5	cd6								
	cd1	1.0000													
		-0.3075													
		-0.6320 -0.4384			1 0000										
		-0.0393				1.0000									
	cd6	-0.2772	-0.1232	-0.2111	-0.1194	0.0408	1.0000								
		0.7224													
		-0.0326 0.5810													
	dim3	0.5810	-0.6630	-0.6685	-0.1359	0.3294	0.3453								
							< □ →	4 🗇	F 4	-	F	∢ ∄	•	- 8	200

Studer et al's discrepancy

- Studer et al. (2011) propose a method for treating distances matrices analogously to SS in regression and ANOVA
- The average distance to the centre of the whole matrix is the analogue of total sum of squares
- With a grouping variable, the distance to the centre for each groups is the residual sum of squares
- This allows a pseudo-R² and a pseudo-F test
- Permutation is used to approximate the sampling distribution of pseudo-F

Session 3 Discrepancy and MVAD matrix md = (0, 1, 1, 2, 1, 3\ /// 1, 0, 1, 2, 1, 3\ /// 1, 1, 0, 2, 1, 2\ /// 2, 2, 2, 0, 1, 1\ /// 1, 1, 1, 1, 0, 2\ /// $\label{eq:condition} \mbox{3, 3, 2, 1, 2, 0)} \\ \mbox{matrix rownames md} = \mbox{E F H S T U}$ matrix colnames md = E F H S T U set matsize 1000 oma state*, subs(md) indel(1.5) pwd(oma) length(72) discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)

Discrepancy results

. discrepancy funemp, dist(oma) idvar(id) niter(100) dcg(d2c)

p-value

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 | pseudo F

funemp	.007956	5.694094	.17	
funemp	N(d2c)	min(d2c)	mean(d2c)	max(d2c)
0 1	595 117	.2215114 .2757618	.463736 .5502117	1.919831 1.518995

Alternatives to OM and Hamming

- OMA is the dominant but not the only approach
- It receives justified and unjustified criticism in terms of its fit to lifecourse data
- One axis of critique relates to costs: Dynamic Hamming sidestens this
- Another relates to whether token strings are:
 - a good way to represent life-course processes (continuous time, discrete state space, infrequent transitions)
 - and whether operations on token-strings match sociological difference

Alternatives

- Hollister's LOM and my OMv attempt to fix OM by paying attention to the local context of operations (but fail: non-metric)
- TWED "warps time" and has more sensitivity to spell order
- Lesnard's Dynamic Hamming estimates substitution costs from the data and does no alignment
- Elzinga's duration-weighted combinatorial measures pay strict attention to spell order and duration
- See Halpin (2014b) for a discussion
- See Studer and Ritschard (2014) for a comprehensive review of distance measures

• Four conditions are required

An aside: Metric spaces

with a "metric space"

- d(x,x) = 0; identity • $d(x,y) \ge 0$; non-negativity
- d(x, y) = d(y, x); symmetry
- $d(x,y) \le d(x,z) + d(z,y)$; the "triangle inequality"

To treat a dissimilarity as a distance, it must be compatible

of the characteristics of Euclidean space and still think in

• Everyday 3D Euclidean space is metric, but we can relax many

LOM and OMv do not satisfy the triangle inequality

spatial terms, using e.g., cluster analysis and MDS

←□ > ←Ø > ← E > ← E → O

Hollister's Localised OM

- Hollister argues that OM's elementary operations need to take into account the context: the adjacent states, at least
- Inserting a B between two Bs is cheaper than between an A and
- Operates very like OM, with substitution costs, but a modified approch to indels
- To insert element k between elements i and j the indel cost is:

$$\iota = \alpha \frac{\delta_{i,k} + \delta_{j,k}}{2} + \beta$$

where α and β are chosen by the analyst

LOM non-metric

Hollister's measure violates the triangle inequality for the following trio:

BBBBAB, CCCACC and BBBACC

For a substitution cost of 1, α 0.5 and β 0.5 (i.e., $\iota = 0.5 \frac{\delta_{i,k} + \delta_{j,k}}{2} + 0.5$), the direct distance between sequences 1 and 2 is 6 units. However, the indirect distance passing through sequence 3 is 5.5 (2.5 plus 3):

	Distance									
	LOM OM									
Pair	$\delta = 1, \alpha = \beta = 0.5$	$\iota = 1.0$	$\iota = 0.75$							
1, 2	6	6	5.5							
1, 3	2.5	3	2.5							
2, 3	3	3	3							

Halpin's duration-adjusted OMv

- My approach had a very similar motivation: operations should be weighted less in big spells, more in short ones
- Scale indel and substitution costs according to the square-root of the spell length
- Also non-metric: sequences with long spells are closer to all other spells, without affecting distances between other spells

Warping time

- What of time-warping?
- Abbott and Hrycak (1990) use the term to suggest non-linear time scales
- OMv "warps time" by weighting it differently in different spells
- In turn informed by Sankoff and Kruskal (1983), Time Warps, String Edits and Macromolecules
- But time-warping refer to a specific set of algorithms

Time warping algorithms

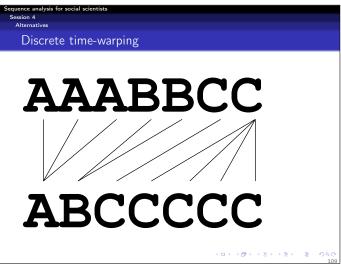
- Formally, time warping is a family of algorithms that do "continuous time-series to time-series correction" while OM $\it et$ al do "string to string correction" (Marteau, 2007)
- Focus on comparing pairs of continuous-time high-dimensional time-series in \mathbb{R}^n
- Operates by locally compressing or expanding the time scale of one trajectory to minimise the distance to the other
- ullet Distance is usually Euclidean in \mathbb{R}^n or other simple distance

TWED: Matching 1D series

TWED: Compress and expand — Expand X axis — Residual mismatch Compress

TW algorithms

- TW used widely: was used for speech recognition, signature verification, other machine learning tasks
- Typically used to match a high-dimensional time-series to a "dictionary" of standard elements
- Conceptually it is a continuous time approach but implementations must be discrete - sampling or periodic summaries:
 - e.g., sound sampled at 41 kHz
 - · rainfall summarised daily
 - employment history reported monthly
- Kruskal and Liberman (1983) show that the continuous time logic can be faithfully implemented with discretised series



TW with stiffness penalty: TWED

- Violation of the triangle inequality is due to TW usually having no cost to expansion or compression, only to the residual point-by-point distance
- Marteau (2007, 2008) proposes a TW algorithm that has a "stiffness" penalty
- Satisfies the triangle inequality
- Can be programmed very similarly to OM (recursive algorithm)
- Stiffness penalty like but not like indel cost squeezing/stretching, not inserting/deleting
- Point-to-point distance just like substitution

TWED: Recursive algorithm

TW distance, $\delta(A^p, B^q) =$

$$\min \left\{ \begin{array}{ll} \delta(A^{p-1},B^q) & + d_{LP}(a_p,a_{p-1}) + \gamma d_{LP}(t_{a_p},t_{a_{p-1}}) + \lambda \\ \delta(A^{p-1},B^{q-1}) + d_{LP}(a_p,b_q) & + \gamma d_{LP}(t_{a_p},t_{b_q}) \\ \delta(A^p,B^{q-1}) & + d_{LP}(b_q,b_{q-1}) + \gamma d_{LP}(t_{b_q},t_{b_{q-1}}) + \lambda \end{array} \right.$$

(Marteau, 2007)

MDS/Cluster with TWED

TWED attractive

- TWED has a completely different "narrative" from OM: warping time rather than editing token strings
- Nonetheless, gives results that are not radically different
- More noticeable differences for more complex sequences
- \bullet For high values of λ and $\gamma,$ tends to yield Hamming distance
- \bullet For very low values of λ and $\gamma,$ closer (but still not that close) to X/t
- Distribution in sequence space more like OM than X/t

Dynamic Hamming

- Dynamic Hamming takes a completely different slant: no
- Similarity at the same time only, where similarity is defined by time-dependent transition patterns
 - While changes are common differences matter less
 - While change is rare, differences are more marked
- Naturally appropriate for "clock" time, e.g., daily, weekly, annual patterns
- Less obviously appropriate for "developmental" time, where a common feature is people taking the same route at different
- Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard (2010), implemented by him (seqcomp), in Traminer and SADI

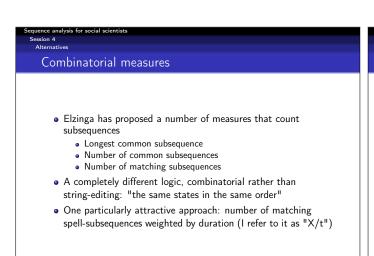
Combinatorial approaches

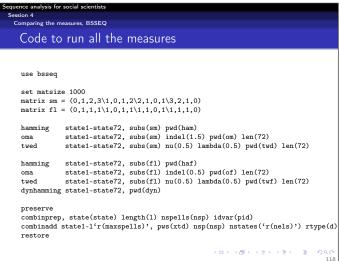
- Combinatorial methods are a completely different approach to sequence comparison
- Proposed by Elzinga (2003, 2005)
- Compare sequences in terms of common "subsequences" rather than string-edits

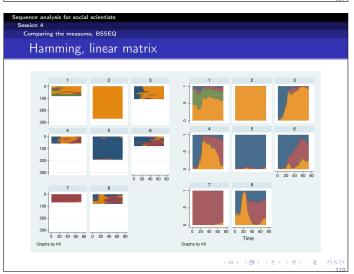
4□ > 4∰ > 4 E > 4 E > E 90

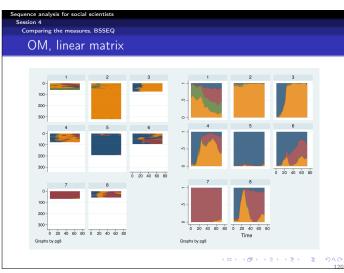
Counting sequences

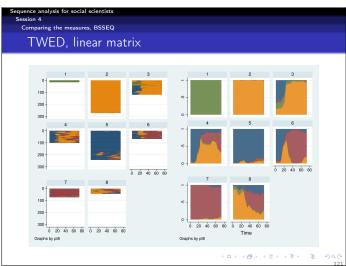
- The sequence ABC has as subsequences:
 - the null (empty) string
 - A, B and C
 - AB, AC and BC
 - and ABC itself
- A sequence of length I has 2^l subsequences
- If elements are repeated not all subsequences are distinct













equence analysis for social scientists

Multiple domains

- Lifecourse analysis recognises the interrelatedness of domains
- Somewhat hard to handle in many approaches: a potential strength of SA?
- In practice, not very well developed; most research on single domains
- Some work (Dijkstra and Taris (1995), Pollock (2007), Gauthier et al. (2010))

(ロ) (西) (三) (三) (西) (ロ)

Sequence analysis for social scientists

Multichannel S

Combined distance versus combining distances

- How to proceed?
- Conduct parallel analyses and combine results?
- Combine domains into a single variable?
- The former is easy but will be less sensitive to the synchronisation of domains
- The latter involves a large state space and problem in defining distances
- However, better sensitivity to cross-domain features makes it attractive

Sequence analysis for social scientists
Session 4

Session 4 Multichannel SA

Combine by cross-tabulation

- The simplest approach is to create a new state space that is the cross-tabulation of the two (or more) domains
- This yields a large number of states, one for each combination
- How then to determine costs?

Sequence analysis for social scientists
Session 4

Session 4 Multichannel S

Determining costs

- Simplest strategy is to sum across the domains
- $\bullet \ \, \text{In short,} \,\, d^{AB}_{ik,jl} = d^A_{i,j} + d^B_{k,l} \,\,$
- There may be justification for imposing other patterns, for instance,
 - imposing a ceiling
 - changing d^A for certain values in domain B
 - weighting the domains differentially
- Note that with two different substitution matrices it can be difficult to weight equally
 - equalise by max substitution cost?
 - equalise by average substitution cost?
 - equalise by average substitution cost weighted by occurrence in the data?

Sequence analysis for social scientists

Multichannel SA

Implementation

- We take a simple case (four parity levels and five employment statuses)
- First step is to create the interaction or crosstabulation of the states

// Reshape long to work on all months simultaneously reshape long parx emp, i(pid) j(month)

// Create a variable that is the interaction of the two gen cross = emp+(parx-1)*5

// Verify the state interaction variable
tab cross
table parx emp, c(mean cross)

// Back to wide, fix the variable order
reshape wide parx emp cross, i(pid) j(month)
order pid parx* emp* cross*

| (ロ) (個) (差) (差) (2) (2) (13]

Sequence analysis for social scientist

Multichannel S

Create the substitution cost matrix

• We have two substitution cost matrices, 4x4 and 5x5:

matrix spar = $(0,1,2,3 \setminus ///$ matrix semp = $(0,1,2,3,3 \setminus ///$ $1,0,1,2,2 \setminus ///$ $2,1,0,1 \setminus ///$ $2,1,0,1,1 \setminus ///$ $3,2,1,0,1 \setminus ///$ $3,2,1,0,1 \setminus ///$ $3,2,1,0,1 \setminus ///$

• Both have a max of 3, otherwise perhaps divide each by its max

```
// Use Mata to combine the two matrices
mata:
spar = st_matrix("spar")
semp = st_matrix("semp")

// each element becomes a 5x5 block
sparx = spar # J(1,5,1) # J(5,1,1)

// replicate the 5x5 matrix 4x4 times
sempx = semp
for (i=2; i<=4; i++) {
    sempx = sempx,semp
}
sempxy = sempx
for (i=2; i<=4; i++) {
    sempxy = sempx
}
// The combined matrix is the element-wise sum; return it from Mata to Stata
st_matrix("mcsa", sempxy :+ sparx)
end</pre>
```

```
Multichannel SA
 The combined matrix
  symmetric mcsa[20,20]
        c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12c13c14c15c16c17c18c19c20
   r1 0
        1 0
2 1
            1 0
   r3
                 1 0
1 1 0
3 4 4
2 3 3
1 2 2
        3
3
        1 2
2 1
3 2
                         4
3
2
                              0
   r6
                                   0
1
2
2
2
1
2
   r8
        4 3
4 3
2 3
3 2
4 3
   r9
                      1
2
5
                         2
1
5
4
3
                                            0
1
4
3
2
                                       1
1
3
2
1
  r11
                  3
2
                      4
                                                     1
  r13
                                            1
2
5
                                                         2 2
  r14
r15
        5
5
             4
4
                  3
                      2
3
6
5
4
                          3
2
                                   3
3
2
3
                                       2
4
3
2
                                                     3
1
2
3
4
4
                                                                  0
1
4
3
2
                                                                      4 0
3 1
2 2
                          6
5
4
  r16
        3
                                                                               0
1 0
                  4
3
                                            4
3
                                                         1
  r18
                      3
4
                                    4
                                        3
                                                         3
                                                                       2
                                                                           3
```

Sequence analysis for social scientists Session 5

ession o Dvadic seguence analysis

Multichannel SA

Dyadic SA

- SA typically uses all-pair-wise distances, or distance to special cases
- Dyadic SA is also useful: distance between a specific pair
 - Couple time-diaries
 - Couple labour market histories
 - Mother-daughter fertility histories, etc.

Sequence analysis for social scientists Session 5

Dvadic sequence analys

Research questions

- Allows testing hypotheses about dyadic similarity
 - Are couples' time-use patterns or life-course histories aligned
 - Are fertility patterns inherited?
 - Under what conditions are dyadic distances smaller or larger?
 - How do couples arrange joint lifecourses?

Sequence analysis for social scientists

Session 5 Dvadic sequence analysi

Similarity and difference

- Couples may coordinate their lives under very different gender constraints
- Fertility patterns may be similar within the constraints of different cohort patterns of fertility
- The relationship between sequences may not be one of replication
 - some daughters may completely reject their mother's fertility pattern

Sequence analysis for social scientists Session 5

Dyadic sequence analys

Literature

- Off-scheduling (Lesnard, 2008) Dyadic in concept but actually creates combined sequences
- Robette et al. (2015): Mother-daughter labour market careers
- Fasang and Raab (2014): Intergenerational fertility; notes that focus on similarity ignores heterogeneity
- Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads, fertility

Sequence analysis for social scientists

Session 5

Practical issues

- We can calculate dyadic distances with standard software
- For efficiency it might better to just calculate dyads' distances
- But the cost of calculating all pairs is relatively small, and offers an advantage:
 - Compare dyadic distances with distances to all others

Sequence analysis for social scientists

Dyadic sequence analysi

Strategy: Begin with dyad-ordered data

	Dyad	1	1	2	2	3	3	4	4
Type		М	D	М	D	Μ	D	М	D
М	1	11	12	13	14	15	16	17	18
D	1	21	22	23	24	25	26	27	28
M	2	31	32	33	34	35	36	37	38
D	2	41	42	43	44	45	46	47	48
M	3	51	52	53	54	55	56	57	58
D	3	61	62	63	64	65	66	67	68
M	4	71	72	73	74	75	76	77	78
D	4	81	82	83	84	85	86	87	88

Dvadic sequence analysis

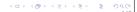
Sort by types

	Dyad	1	2	3	4	1	2	3	4
Type		D	D	D	D	М	М	М	М
D	1	22	24	26	28	21	23	25	27
D	2	42	44	46	48	41	43	45	47
D	3	62	64	66	68	61	63	65	67
D	4	82	84	86	88	81	83	85	87
М	1	12	14	16	18	11	13	15	17
M	2	32	34	36	38	31	33	35	37
M	3	52	54	56	58	51	53	55	57
М	4	72	74	76	78	71	73	75	77

- - Dvadic sequence analysis

Submatrices

- Two submatrices, with distances from each mother to each daughter (and transpose)
- Distance from mother to her own daughter on diagonal (and
- Use distance from mother to all daughters to assess whether distance to own daughter is unusual



Submatrices

	Pair	1	2	3	4
Type		М	М	М	М
D	1	21	23	25	27
D	2	41	43	45	47
D	3	61	23 43 63	65	67
D	4	81	83	85	87

	Pair	1	2	3	4
Type		D	D	D	D
М	1	12	14	16	18
M	2	32	34	36	38
M	3	52	14 34 54	56	58
М	4	72	74	76	78

Extract diagonals and other information

- The main info is on the diagonals: the dyad distances (repeated across the two submatrices since distance is symmetric)
- Other summaries are also interesting
 - mean distance of each daughter to all mothers (and vice versa)
 - · variance, standard deviation of this distance
 - z-score of dvad distance relative to all distances
 - rank of dyad distance compared with all distances

equence analysis for social scientists

Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144–85.

Barban, N. and Billari, F. (2012). Classifying life course trajectories: A comparison of latent class and sequence analysis. Journal of the Royal Statistical Society Series C, 61(5):765–784.

Billari, F. C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing and quantum of life course events: A machine learning approach. European Journal of Population, 22:37–65.

Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods and Research, 24(2):214–231.

Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. Sociological Methods and Research, 32(1):3–29.

Elzinga, C. H. (2005). Combinatorial representations of token sequences. *Journal of Classification*, 22(1):87–118.

Elzinga, C. H. (2010). Complexity of categorical time series. Sociological Methods and Research, 38(3):463–481.

Fasang, A. and Raab, M. (2014). Beyond transmission: Intergenerational patterns of family formation among middle-class american families. *Demography*, 51(5):1703–1728.

Gabadinho, A. (2014). Package 'pst'. probabilistic suffix trees and variable length Markov chains. Technical report, CRAN.

Technica: report, CAGN.

Gauthier, J.A., Widmer, E. D., Bucher, P., and Notredame, C. (2010). Multichannel sequence analysis applied to social science data. Sociological Methodology, 40(1):1–38.

Halpin, B. (2013). Sequence analysis. In Baxter, J., editor, Oxford Bibliographies in Sociology. Oxford University Press, New York.

Halpin, B. (2014a). SADI: Sequence analysis tools for Stata. Working Paper WP2014-03, Dept of Sociology, University of Limerick, Ireland.

Halpin, B. (2014b). Three narratives of sequence analysis. In Blanchard, P., Bühlmann, F., and Gauthier, J.-A., editors, Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin.

Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. European Sociological Review, 14(2).

Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal (1983), pages 125–161.

Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques, Paris.

Paris.

Lesnard, L. (2008). Off-scheduling within dual-earner couples: An unequal and negative externality for family time. American Journal of Sociology, 114(2):447–90.

Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns. Sociological Methods and Research, 38(3):389–419.

Lesnard, L. and de Saint Pol., T. (2009). Patterns of workweek schedules in France. Social Indicators Research, 93:171–176.

Lovaglio, P. G. and Mezzanzanica, M. (2013). Classification of longitudinal career paths. *Quality and Quantity*, 47(2):989–1008.

Quantity, 47(2):989–1008.

Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching.

ArXiv Computer Science e-prints.

Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints.

McVicar, D. and Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions from school to work using sequence methods. Journal of the Royal Statistical Society (Series A), 165:317–334.

Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. Journal of the Royal Statistical Society: Series A, 170(1):167–183. Raab, M., Fasang, A. E., Karhula, A., and Erola, J. (2014). Sibling similarity in family formation.

Demography, 51(6):2127–2154.

Demography, 51(6):2127–2154.
Robette, N., Bry, X., and Eva Lelièvre (2015). A "global interdependence" approach to multidimensional sequence analysis. Sociological Methodology. Online advance copy.
Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String Edits and Macromolecules.
Addison-Wesley, Reading, MA.
Studer, M. and Ritschard, G. (2014). A comparative review of sequence dissimilarity measures. Working Paper 2014-33, LIVES, Geneva.

Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of state sequences. Sociological Methods and Research, 40(3):471–510.