Understanding Substitution Costs: parameterising the Optimal Matching Algorithm

Brendan Halpin
Department of Sociology
University of Limerick
brendan.halpin@ul.ie

2 Sept 2008, RC33 Naples

1Work in progress! See http://teaching.sociology.ul.ie/seqanal/d2D.pdf shortly
The problem of substitution costs

- As sequence analysis (SA) becomes more common in sociology, increasing interest in its sociological meaningfulness
- Does the Optimal Matching Algorithm (OMA) make sense for sociological data?
 - Is the algorithm suitable? (see elsewhere)
 - How to parameterise it: substitution and indel costs
A problem?

- Repeated claims in the literature:
 - that sociologists don’t know how to set substitution costs,
 - that we can’t match the effectiveness of molecular biology
- Yes, our analytical goals are often much less well defined than those of the biologists
- No, substitution costs are not an intractable problem
- This paper explores substitution costs and attempts to clarify the issue
The essence of SA is mapping a view of a state space onto a view of a trajectory space: $d(s) \rightarrow D(S)$

We start with knowledge or a view of how states relate to each other (what states are like each other, what states are dissimilar)

With a suitable algorithm we map this perspective onto trajectories through the state space: what trajectories are more or less similar

The nature of the algorithm determines
 - Whether the mapping makes sense
 - Exactly how the structure of the state space affects the structure of the trajectory space
Can we expect OMA to provide a coherent $d(s) \rightarrow D(S)$ mapping?

Elementary operations are intuitively appealing:

1. $D(ABC, ADC) = f(d(B, D))$
2. $D(ABCD, ABD) = f(indel)$
3. minimising concatenation of these two operations to link any pair of trajectories

If 3 is reasonable, 1 and 2 determine how state space affects trajectory space
Thinking about state spaces and distances

- Costs can be thought of as distances between states
- If state space is \mathbb{R}^n, distance is intuitive
- If state space is categorical, how define distance?
 1. State space as efficient summary of clustered distribution in \mathbb{R}^n: distances are between cluster centroids
 2. State space can be mapped onto specific set of quantitative dimensions; each state located at the vector of its mean values; Euclidean or other distances between vectors
 3. States can be located relative to each other on theoretical grounds
Transitions and substitutions

- Transition rates frequently proposed as basis for substitution costs
- Critics of OMA complain of substitution operations implying impossible transitions (e.g., Wu)
- Even proponents of OMA are sometimes concerned about “impossible” transitions (e.g., Pollock)
- But substitutions are not transitions, not even a little bit!
 - substitutions happen across sequences,
 \[D(ABC, ADC) = f(d(B, D)) \] (similarity of states)
 - transitions happen within sequences (movement between state)
Informative transition rates

- No logical connection between substitutions and transition rates
- but under certain circumstances transition rates can inform us about state distances
- If state space is a partitioning of an unknown \mathbb{R}^n, movement is random (unstructured), and the probability of a move is inversely related to its length, then
- distance between states will vary inversely with the transition rates
- However, these conditions usually not met
Deceptive transition rates

- Example: using voting intentions as a way of defining inter party distances
- UK: relatively high Con–LibDem two-way flows; ditto Lab–LibDem
- But Con–Lab transitions much lower: implies a potentially incoherent space (non-metric, more below)
 - \(d(\text{Con}, \text{Lab}) > d(\text{Con}, \text{LibDem}) + d(\text{LibDem}, \text{Lab}) \)
- Procedure confuses party state space and voter characteristics
- Voter polarisation/loyalty is trajectory information, not state information
- Another type of problem: irrelevant distinctions can cause similar states to have low transition rates
Take “space” seriously

- Very useful to think in spatial terms
 1. State space as efficient summary of clustered distribution in \mathbb{R}^n
 2. State space mapped onto specific set of quantitative dimensions
 3. State space defined on theoretical grounds
- For 1 and 2, explicitly multidimensional, in case 2 dimensions are explicit
- For 1 and 3, we can attempt to recover the implicit dimensions
Looking at state spaces

- Two very simple state spaces:
 - Single dimension, equally spaced:

	0	1	2	3
1	0	1	2	
2	1	0	1	
3	2	1	0	

 - All states equidistant – $n - 1$ dimensions

	0	1	1	1
1	0	1	1	
1	1	0	1	
1	1	1	0	
More dimensions

- E.g., 2D picture of inter-party distances: location on left–right scale, plus on pro-/anti-EU scale
- Distances are Euclidean or other metric (e.g., L1)
 - Euclidean: $\sqrt{\sum_i (r_i - s_i)^2}$
 - L1 (city block): $\sum_i |r_i - s_i|$
- Generalises easily to many dimensions
- Problem: how to weight different dimensions?
 - Scale by standard deviation? Substantive importance?
Subs-costs: a problem?

2-D example

A <--- 1 ----> B <--- 1 ----> C

sqrt(2) sqrt(5)
Subs-costs: a problem?

Spatial structure of theoretical spaces

- We can analyse “theoretically-informed” or *ad hoc* state spaces spatially
- Principle components analysis of substitution matrix
- Examples: Halpin and Chan, 1998; McVicar/Anyadike-Danes 2002:

<table>
<thead>
<tr>
<th>I–II</th>
<th>0</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IV_{ab}</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IV_{cd}</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>V–VI</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VII_{a}</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VII_{b}</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Subs-costs: a problem?

H&C, 1st two PCA dimensions
Subs-costs: a problem?

H&C, dimensions 1 & 3

![Graph showing H&C dimensions 1 & 3 with points labeled VIIa, VIIb, IVab, IVcd, V-VI, and VIIa, VIIb.](image-url)
Subs-costs: a problem?

MVAD, 1st two dimensions

![MVAD, 1st two dimensions graph](image-url)
Subs-costs: a problem?

MVAD, dimensions 1 & 3
Subs-costs: a problem?

Structure passes through

- State space structure passes through to trajectory space structure
 - Distances between states clearly affect distances between trajectories containing high proportions of those states
 - If $d(\"A\", \"B\") << d(\"A\", \"C\")$ then $D(\"..AAAA..\", \"..BBB..\")$ will tend to be less than $D(\"..AAAA..\", \"..CCC..\")$
 - Differential distances promote alignment: AADDAAA and AAADDAA are more likely to be aligned to match the DD if $d(\"A\", \"D\")$ is large
 - If the state distances are non-metric, the trajectory distances may also be non-metric (at least between trajectories consisting of near 100% one state)
 - Unidimensional states spaces will tend to be reflected strongly in 1st principle component of trajectory space
Comparing effects

Equidistant

1-D equal

1-D extremes

1-D polarised

2-D

Subs-costs: a problem?
<table>
<thead>
<tr>
<th>Type</th>
<th>1.00</th>
<th>0.85</th>
<th>0.66</th>
<th>0.83</th>
<th>0.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D equal</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-D extremes</td>
<td>0.93</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-D polarised</td>
<td>0.94</td>
<td>0.81</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2-D</td>
<td>0.98</td>
<td>0.91</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Correlations

Subs-costs: a problem?
Equidistant relatively greater than 1-D

Key: 1: 2: 3: 4:
Equidistant relatively less than 1-D

Key: 1: 2: 3: 4:
Equidistant close to 1-D

Key: 1: 2: 3: 4:

Subs-costs: a problem?
Designing state spaces

- Be explicit about state spaces and what distances mean
- Think spatially
 - Choose high or low dimensions, but have your reasons
- Simplify state space as far as possible
 - Drop irrelevant distinctions
 - Drop longitudinal information: let the sequence encode the temporal information, make state space cross-sectional
Dropping temporal information

- e.g., Simplify marital status:
<table>
<thead>
<tr>
<th>Living alone</th>
<th>Living with partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separated</td>
<td>Married</td>
</tr>
<tr>
<td>Single, never married, post-cohabitation, divorced</td>
<td>Cohabiting</td>
</tr>
</tbody>
</table>

- The sequence will distinguish adequately between the various “single” states

- Parity sequences: Women’s annual fertility history
 - in parity terms: 00011233344444
 - in birth event terms: 000101100010000
Conclusions

- Substitution costs make a big difference
 - but largely understandable in operation
 - and an asset – more meaningful state space, more meaningful trajectory space
- Think spatially! Use data and geometric models
- Simplify
- Let the sequence do the temporal work