
Sequence Analysis
Essex Summer School

Brendan Halpin
University of Limerick1

July 13-15 2007

1Contact: brendan.halpin@ul.ie

Contents

1 Friday afternoon 3
1.1 Start here! . 3
1.2 A simple example . 3
1.3 Looking at the internals . 4
1.4 Costs . 4
1.5 Using SQ . 4
1.6 Using TDA . 5
1.7 Using real data . 5

2 Saturday morning 6
2.1 Reminder . 6
2.2 Hamming distance . 6

2.2.1 Compare with OM . 6
2.3 Clustering with OM distances . 6

2.3.1 Representing sequences as strings 7
2.3.2 Regular expressions . 7

2.4 Cluster Hamming distances and compare 8
2.5 Clustering with TDA . 8
2.6 Saving distance matrices . 8

3 Saturday afternoon 10
3.1 Multidimensional scaling . 10

3.1.1 Run a PCA . 10
3.1.2 Examine the dimensions graphically 10
3.1.3 Examine the dimensions in Stata 10
3.1.4 Attempt to interpret the dimensions 11

3.2 Exploring substitution matrices 11
3.3 Methods for comparison . 12

4 Sunday morning 14
4.1 Degenne’s method . 14
4.2 Duration-sensitive OM . 14
4.3 Elzinga’s combinatorial spell-wise method 15
4.4 Summarising clusters graphically 16

4.4.1 Sequence vector graphs 16
4.4.2 State-distribution graphs 18

4.5 Defining modal sequences . 19

5 Sunday afternoon 21
5.1 Comparing clustering algorithms 21
5.2 Comparing methods . 22
5.3 Multiple domain analysis . 22

1

CONTENTS 2

5.4 Analysing, and analysing with, SA-derived typologies and di-
mensions . 22

1 Friday afternoon

1.1 Start here!
Each time you start Stata, you will need to issue two commands:

cd s:/sequence/practicals/lab1
adopath +s:/sequence/practicals/utilities

The location s:/sequence/practicals/ is just for example; the precise lo-
cation will not be known until after these notes are printed, but will be given
to you. (Note that Stata treats backslashes (\) as special, and accepts forward
slashes (/) in their place.)

1.2 A simple example
Use the code example below to calculate OM distances. It first reads in a
small number of short sequences (variables s1 to s5 are the elements, len is
the length, maximum 5, there are four states – examine the data file). It then
sets up the substitution matrix as a Stata matrix.

#delimit ;
infile id len s1 s2 s3 s4 s5 using lab1small.dat;

matrix subsmat = (0,1,2,3 \
1,0,1,2 \
2,1,0,1 \
3,2,1,0);

The “#delimit ;” statement allows us to have multi-line commands in
Stata do-files, terminated with a semi-colon. Note the syntax for the matrix:
comma joins elements within rows, backslash joins rows.

The oma command calculates all pairwise distances. It takes the list of se-
quence elements as its parameters (s1-s5) and has four mandatory options
(i.e., after the comma):
• subs(matrixname) for the substitution cost matrix
• indel(number) for the indel cost
• pwdist(matrixname) for the matrix in which the results are to be returned

(will be created)
• length(len) for sequence length (a variable or a number)
Since the highest substitution cost is 3, the indel cost must be ≥ 1.5.

oma s1-s5, subs(subsmat) indel(2)
pwdist(distmat)
length(len);

matrix list distmat;

We follow the oma command by matrix list distmatwhich lists the result
matrix. Since this is symmetric, only the lower triangle is shown.

3

SESSION 1. FRIDAY AFTERNOON 4

For small data sets, the svmat command is useful. svmat distmat, names(dist)
appends the results to the data set. (A fuller discussion of saving matrices is at
section 2.6.)

Saving the distances as variables can be useful for comparison with a small
number of reference sequences.

1.3 Looking at the internals
The oma command has fifth option, workspace(yes), which is optional and will
cause the working matrices to be displayed (do not use for big data sets!). This
prints out the matrix of actual substitution costs between the pair of sequences,
and the m + 1 by n + 1 matrix of calculations (where m and n are the lengths of
the two sequences). Note that column 1 and row 1 of the substitution matrix
are filled with zeroes to correspond.

oma s1-s5, subs(subsmat)
indel(2)
pwdist(distmat)
length(len)
workspace(yes);

See if you can make sense of the operation of the OM algorithm as it works
through the workspace matrix.

1.4 Costs
Experiment with the code: add your own sequences (by editing the data file or
changing values in the data editor), change the substitution costs, change the
indel cost, and see what happens.

1.5 Using SQ
Kohler et al’s SQ add-on is also easy to use. It needs the sequences in “long”
rather than “wide” format (one record per person–month, for example, rather
than one record per person with one variable per month). For this we need to
“reshape” the data: list the data before and after issuing the command, to be
sure you understand what it does.

#delimit ;
infile id len s1 s2 s3 s4 s5 using lab1small.dat;

reshape long s, i(id) j(m);

In the data, where sequences are shorter than 5 elements, the remaining
variables are set to -1. After reshape, these are now cases, and we can drop
them, prior to telling Stata that the data are sequences (sqset) with state in s,
sequence identifier in id and the sequence order in m:

drop if s==-1;
sqset s id m;

SQ has a number of useful utilities: sqdes describes the sequenes, and sqtab
tabulates them.

SESSION 1. FRIDAY AFTERNOON 5

sqdes;
sqtab;

Finally, to run OM:

matrix subsmat = (0,1,2,3 \
1,0,1,2 \
2,1,0,1 \
3,2,1,0);

sqom, subcost(subsmat) indelcost(2) full standard(longer);
matrix list SQdist;

Note a major difference: SQ spots that sequences 1 and 4 are identical, and
drops sequence 4. For more information on SQ, do help sq and help sqom.

SQ has a lot of advantages, and I recommend you explore its capabilities.
Start with help sq. However, it has a single important limitation: it uses
Stata’s “Mata” matrix language to calculate the OM distances, and this is sub-
stantially slower than using C plugins, as the oma command does. With Stata
9 the time difference is of the order of a factor of 40, though that is likely to
reduce as Mata matures.

1.6 Using TDA
TDA has a fast implementation of OM, and has clustering capabilities on a par
with Stata. To calculate OM distances with TDA, use code like the following:

nvar(dfile = exampleprog.dat,
ID = c1, S1 = c2, S2 = c3, S3 = c4, S4 = c5, S5 = c6,);

seqdef()=S1,,S5;

This reads in ID and S1 to S5 from a file, and then declares S1 to S5 to be
sequence data.

mdef(SCOST,4,4)=
0.0, 1.0, 2.0, 3.0,
1.0, 0.0, 1.0, 2.0,
2.0, 1.0, 0.0, 1.0,
3.0, 2.0, 1.0, 0.0;

seqm(scost = SCOST,
icost = 2)=exampleprog.dist;

This defines the substitution cost matrix (SCOST) and fits all pairwise OM
distances. icost = 2 sets the indel cost, and the distances are written to exampleprog.dist.

1.7 Using real data
If you would like to fit OM to a real data set, ../birthseq.dta contains 73
months of labour market experience of women who have a birth in month
25, with a 4-state state space (full-time employed, part-time employed, unem-
ployed and non-employed). Using the syntax above, carry out an OM analysis
on the two-year period between months 13 and 36.

2 Saturday morning

2.1 Reminder
Each time you start Stata, you will need to issue two commands:

cd s:/sequence/practicals/lab2
adopath +s:/sequence/practicals/utilities

Note that each lab has its own subdirectory.

2.2 Hamming distance
Hamming distance compares sequences of equal length, element by element.
It can use a substitution matrix like OM but because it does not do indels, it can
only recognise similarity at the same location. The example file, hamming.do,
calculates Hamming distances for all pairwise combinations of sequences in
the hsmall.dat file. It uses the file hamming.ado, which contains Mata code
(Stata’s powerful new matrix language) to do this.

Verify one or two of the pairwise distances by hand: they are the sum of the
element-wise substitution costs, divided by the length.

2.2.1 Compare with OM
Using syntax from lab 1, generate OM pairwise distances for the same data
set, using the same substitution matrix and an indel cost of 2. Compare your
results, and see if you can explain the similarities and differences.

Re-fit the OM distances using an indel cost of 20. Explain the results.

2.3 Clustering with OM distances
We can easily run cluster analyses on our distance matrices in Stata, using its
clustermat command. Generate an OM distance matrix using the birthseq
data set, which contains labour market histories before and after a birth for a
sample of women (drawn from the BHPS). The four states are full-time em-
ployed, part-time, unemployed and out of the labour market. Use months 13
to 36 (the birth happens at month 25):

set matsize 700;
use pid state13-state36 using ../birthseq;
oma state13-state36, subsmat(subsmat) indel(2)

pwdist(bsdist) length(24);

Matrix size needs to be increased to deal with the 675×674
2 distances that will

be calculated, and the results end up in matrix bsdist.
The clustermat command takes two parameters, the type of clustering to

be done (for now we will use Wards’ method) and the matrix. We also need
the option add, to add the cluster results to the data set:

clustermat wards bsdist, add;

6

SESSION 2. SATURDAY MORNING 7

This creates no output but we can get dendrograms and cluster groupings
easily.

cluster dendrogram, cutnumber(40);

The cluster dendrogram will draw a dendrogram, but it has to be limited
in the number of groups (cutnumber) since it can’t manage 675 cases.

We can create a cluster grouping readily as follows;

cluster g8=groups(8);

The number of clusters is to be chosen by the analyst – 8 may be too big or
small.

Create a 16-group solution also, and crosstabulate them:

tab g16 g8;

Relate the structure in the table to the dendrogram.

2.3.1 Representing sequences as strings
Sequences can be difficult to view when they are spread over so many vari-
ables. We can collapse them into a single string variable with code like the
following:

gen str24 stripe = "";
foreach x of varlist state13-state36 {;
replace stripe = stripe + "F" if ‘x’==1;
replace stripe = stripe + "p" if ‘x’==2;
replace stripe = stripe + "U" if ‘x’==3;
replace stripe = stripe + "n" if ‘x’==4;
};

With this variable it becomes easier to look at the cluster contents. Experi-
ment:
sort g8 g16 stripe
list g8 g16 stripe if g8==4,clean

2.3.2 Regular expressions
Regular expressions (or “regexes”) are representations of patterns in strings.
• a*b: zero or more as followed by a b
• a+b: at least one a followed by a b
• a?b: zero or one as followed by a b
• a.+b: an a followed by at least one character, followed by a b
• (ab)+c: one or more abs followed by a c
• ^abc: a string starting with abc
• abc$: a string ending with abc
• a[bcd]+e: a followed by at least one of b, c or d, followed by e

Stata has regex capability. Combined with string-representations of se-
quences, regexes provide a very powerful way of selecting sequences for view-
ing or further processing.

Try the following:

SESSION 2. SATURDAY MORNING 8

list stripe if regexm(stripe,"^F.+n$")
list stripe if regexm(stripe,"^F+p+n")
list stripe if regexm(stripe,"^FFFFFFFFFFFF.+pn")

This can be a very useful way of characterising cluster groups.

2.4 Cluster Hamming distances and compare
Calculate Hamming distances for the same data, and compare the resulting
clusters with those from OM. Which sorts of sequence sort similarly, and which
differently? Use crosstabs of the cluster grouping and the stripe variable, and
perhaps the regexm function, to examine the results.

2.5 Clustering with TDA
TDA will conduct a cluster analysis directly on the exampleprog.dist file of
pairwise distances. This file has a particular structure. There is a line for each
distinct pair of sequences, with five columns: sequence 1 id, sequence 2 id,
sequence 1 length, sequence 2 length, OM distance. In TDA the OM distance
is not automatically standardised to sequence length.

nvar(
dfile = examplebstda.dist,

noc = 4950,
A = c1, B = c2, C = c3, E = c4, D = c5,
);

This code reads in distances from a file. Column 5 has the distances and
this is put into variable D. There are 4950 pairwise distances in the example,
representing 100 sequences.

gdd(opt=4) = D;

hcls(
opt = 2,
pcf = cl1plot.cf,
df = cluster1.df,

) = d2;

The gdd command creates a graph structure, and the hcls command con-
ducts the cluster analysis, writing a set of graphics commands to cl1plot.cf.
Running TDA on this file will create a Postscript graphic of the dendrogram, in
cl1plot.cf.ps. The underlying clustering information is written to cluster1.df.

If you want to create cluster groups, you need to use the hclsp command.
Full information is available in the TDA manuals (section 7.5.1).

2.6 Saving distance matrices
OM can take a long time to run, for large numbers of long sequences, and it is
sometimes useful to save its output for future use. There are a number of ways
to do this.
svmat distmat, names(d)

SESSION 2. SATURDAY MORNING 9

svmat takes a Stata matrix (in this case, distmat) and appends it to the data
set, with columns of the matrix becoming variables, named d1 to dn where n is
the number of sequences.

We can save this data set and re-read it later, recreating the matrix using the
Stata command mkmat:
mkmat d1-d675, matrix(distmat)

This technique has limitations where there are high numbers of sequences.
A second technique uses Mata, which is much less limited, which can save

individual matrices to files. First we need to use the Mata function st matrix
to read the Stata matrix into a Mata matrix, and then the mata matsave com-
mand to save it:
mata:
DM = st_matrix("distmat")
mata matsave distances DM, replace
end

This saves the matrix as the file distances.mmat. This file can be read at a
later time as follows:
mata:
mata matuse distances
st_matrix("distmat", DM)
end

The st_matrix("distmat", DM) command puts the Mata matrix DM into
the Stata matrix distmat, which is then accessible to commands like clustermat.

3 Saturday afternoon

3.1 Multidimensional scaling
The “other” thing to do with similarity or dissimilarity matrices, after cluster-
ing, is multidimensional scaling. A simple and robust form of MDS is princi-
pal components analysis. This attempts to construct an N-dimensional space
so that the distances between the cases can be represented by their locations in
this space. N is ideally small.

Stata takes a dissimilarity matrix, say rom, and does PCA on it as follows:

mdsmat rom, dim(3)

The dim(3) saves the three largest principal components (more can be saved
but it is difficult to interpret more than three).

3.1.1 Run a PCA
Run PCA on the distance matrix from an optimal matching run, and examine
the results. How well do the first three components summarise the distances?

The components can be copied into variables with the commands:

matrix D=e(Y);
svmat D;

This will create variables D1, D2 and D3.

3.1.2 Examine the dimensions graphically
Plot them against each other:

graph matrix D1 D2 D3

Plot pairs with labels:

twoway (scatter D1 D2,mlabel(stripe));
twoway (scatter D1 D3,mlabel(stripe));
twoway (scatter D2 D3,mlabel(stripe));

3.1.3 Examine the dimensions in Stata
Examine the data within Stata: how do the sequences change as you go from
one end to the other end of a dimension?
sort D1 D2 D3
list stripe D1 D2 D3,clean
sort D2
list stripe D1 D2 D3,clean
sort D3
list stripe D1 D2 D3,clean

You should notice that the extreme values of the dimensions often corre-
spond to the simplest sequences, i.e., those with one or very few spells.

10

SESSION 3. SATURDAY AFTERNOON 11

3.1.4 Attempt to interpret the dimensions
Sometimes the dimensions are interpretable. In the case of the birthseq data,
the original substitution matrix defines the state space as uni-dimensional. In-
deed it puts the four states on an equally spaced linear scale, with full-time
employment at one end and non-employment on the other. If we treat these
as scores and simply sum the values for a sequence (so that two years of non-
employment is worth 24, and 2 years of full-time is worth 96), the resulting
variable is strongly collinear with the first dimension of the PCA.

3.2 Exploring substitution matrices
Using the birthseq data, fit OM distances for a number of different substitu-
tion matrices. The default we have used to date implies a linear, interval state
space. At least compare the default with the other two matrices proposed here,
but feel free to try your own too:

matrix subsmat1 = (0,1,2,3 \
1,0,1,2 \
2,1,0,1 \
3,2,1,0);

matrix subsmat2 = (0,1,1,1 \
1,0,1,1 \
1,1,0,1 \
1,1,1,0);

matrix subsmat3 = (0,1,2,4 \
1,0,2,4 \
2,2,0,1 \
4,4,1,0);

subsmat2 has a different implication: each state is different from each other
state, but they are all equally different. This implies the four states are lo-
cated at the apices of a regular tetrahedron in 3-dimensionial space. subsmat3
has a different structure. FT-employment is different from PT-employment,
more different from unemployment but far more different from non-empl-
oyment. PT-employment, however, is no more closer to unemployment and
non-employment than full-time is, while unemployment remains one unit from
non-employment.

If you cluster the solutions, and generate groups, the solutions will be broadly
similar. However, the order of the clusters may be different so a simple tabu-
lation will be difficult to interpret. Instead use the permtab command, which
will permute the columns of the table in order to find the best match (highest
excess of observed over expected on the diagonal). For example, if a8 and b8
are your cluster group variables, permtab a8 b8 will tabulate them, and report
κmax, an indicator of agreement (Reilly et al., 2005)).

You can use the information from permtab to examine the off-diagonal cases
and attempt to understand why they cluster separately under different substi-
tution cost regimes, for example as follows:

sort a8 b8 stripe
list a8 b8 stripe if b8==2,clean

SESSION 3. SATURDAY AFTERNOON 12

3.3 Methods for comparison
The permtab command and κmax represent one way of comparing different
analyses of the same sequences. Comparison of multidimensional scaling anal-
yses is also very informative, particularly if one can find ways of interpreting
the dimensions. Another direct method for comparison is to look at the cor-
relation between the distances for two analyses. To get the distances into a
form where we can calculate correlations and create scatterplots, we need to
use Mata. In the following example, OM distances are calculated for two dif-
ferrent substitution matrices, one implying a uni-linear distance structure, and
the other an equal distance between each state. The drop _all is needed be-
cause we want to create a new data set but retain the distance matrices.
#delimit ;
use birthseq;

set matsize 700;
matrix subsmat1 = (0,1,2,3 \

1,0,1,2 \
2,1,0,1 \
3,2,1,0);

matrix subsmat2 = (0,1,1,1 \
1,0,1,1 \
1,1,0,1 \
1,1,1,0);

oma state7-state42, subsmat(subsmat1) pwdist(rom1) indel(1.5) length(36);
oma state7-state42, subsmat(subsmat2) pwdist(rom2) indel(0.5) length(36);

drop _all;

The following Mata code reads the two Stata matrices into the Mata matri-
ces D1 and D2, and then translates them into column vectors using the vech()
function. This takes one triangle of a symmetric matrix and maps it onto a
single column.

mata:;
D1 = st_matrix("rom1");
D2 = st_matrix("rom2");
V1 = vech(D1);
V2 = vech(D2);
st_addobs(length(V1));
st_addvar("double","V1");
st_addvar("double","V2");
st_view(V=.,.,.);
V[.,.]=V1,V2;
end

The remaining Mata commands create a new data set and map the column
vectors into it. We can then calculate Pearson and Spearman correlations, and
examine the scatterplot:

SESSION 3. SATURDAY AFTERNOON 13

corr V1 V2;
spearman V1 V2;
scatter V1 V2,msize(0.1);

4 Sunday morning

4.1 Degenne’s method
Degenne et al. (1996) suggested – but did not implement – a method focusing
on comparing vectors of cumulated duration. Sequence similarity is defined as
a function of the vectors of cumulated duration in each state, measured at each
time point. In geometric terms, Degenne’s suggestion is to measure the angle
between the vectors at each time point (i.e., in N-dimensional space where the
dimensions are the cumulated duration in each of N states, the angle defined
by the location of one individual at time t, the origin, and the location of the
other). While two sequences with the same cumulated duration at the end will
necessarily end up at the same point, their progress through this space will be
different if the order in which they do things is not the same.

Dij = ∑
t

cos−1(Xit, Xjt)

where Xti is the vector of cumulated duration, at time t, for person i.
In practice this seems to give more weight to earlier observations, so I also

present a version which weights later observations higher:

Dw
ij = ∑

t
1.215i cos−1(Xit, Xjt)

This weight is derived by trial and error, and has not been tested widely, so
I present it only as an illustration.

It is also possible to calculate the Euclidean distance between the vector
elements, rather than the angle. This will perhaps privilege later elements, in
that different careers will diverge more as time goes on.

These methods are available in degenne.ado, programmed in Mata. To fit
them use syntax like this:

set matsize 700;

degenne state1-state73, pwdist(resdeg1) length(73)
nstates(4) degtype("plain");

degenne state1-state73, pwdist(resdeg2) length(73)
nstates(4) degtype("w");

degenne state1-state73, pwdist(resdeg3) length(73)
nstates(4) degtype("e");

Compare the results with OM results (e.g., generate clusters or do MDS and
compare).

4.2 Duration-sensitive OM
Standard OM treats sequences as strings of tokens. Duration in spells is present
in the form of repeated tokens, but no allowance is made for the fact that, so-
ciologically, deleting a month from a long spell is a much smaller change than

14

SESSION 4. SUNDAY MORNING 15

deleting all of a one-month spell. I present a variation on OM which takes ac-
count of the presence of runs of the same token in a sequence when calculating
indel and substitution costs. The cost of deleting an element from a run (an
indel is necessarily a deletion in one sequence, and a substitution can be con-
sidered a deletion–insertion pair) is reduced by a factor of 1√

l
where l is the

length of the run. Thus to delete one of a 2-element run, the cost is 1√
2

= 0.71

times the normal cost, for a 3-element run, 1√
3

= 0.58, for a 10-element run,
0.31 and so on.
omav a-e, subs(subsmat) indel(2)

pwdist(distmat2)
length(len)
workspace(yes)
facexp(0.5);

The one new option is facexp(0.5), which allows varying the adjustment
factor from the default square root. A value of zero reduces the method to
standard OM (1

x0 = 1.0) and a value of 1 means the total cost of deleting a
whole run is the same as deleting one element in OM. facexp(0.5) gives the
square root.

Fit OM and variant-OM to the omav.dat data, examining the work-space
matrices to see how they differ when runs are present.

4.3 Elzinga’s combinatorial spell-wise method
Elzinga has proposed a range of “combinatorial” distance measures (Elzinga,
2003, 2005). They focus on ordered sub-sequences (e.g., where “a, c, e” is a sub-
sequence of “a, b, c, d, e”) and have the sociologically intuitive interpretation
that sequences are more similar the more they have the same elements in the
same order. The key notion in his measures is to count the number of subse-
quences (of lengths from 1 up to the whole of the shorter sequence) that both
sequences contain. These methods can be computationally intensive for longer
sequences, but he has written an efficient implementation in his CHESA soft-
ware. Also, for spell data, he proposes a method (sometimes referred to as the
X,T method) which counts commonalities in sequences of spells, weighting by
their length. This can be quite fast, since even relatively long histories usually
contain relatively small numbers of spells.

A version of his spell-oriented method is available as a Stata plugin. This
requires data in the format, s1, l1, s2, l3, . . . snln where si and li are respectively
the state in spell i and the length of spell i, where n is the maximum number of
spells observed. The actual number of spells for each must also be known, and
given as an option.

The following example illustrates its use.

input id length m1 l1 m2 l2 m3 l3 m4 l4
1 3 1 4 2 4 3 2 -1 -1
2 2 1 4 2 4 -1 -1 -1 -1
3 3 1 14 2 4 3 4 -1 -1
4 3 1 13 2 4 3 4 -1 -1
5 3 1 12 2 4 3 4 -1 -1
6 3 1 12 2 4 3 4 -1 -1

SESSION 4. SUNDAY MORNING 16

7 4 5 12 5 4 5 5 5 5
end

combin m1-l4, pwdist(restuple) length(len) nstates(5)

matrix list restuple

Note first that this method generates similarities on a 0–1 scale. Identical
sequences have a similarity of 1, and sequences with no elements in common
have a similarity of 0. Cluster analysis usually requires dissimilarities so we
have to convert these values before proceding:

matrix diftuple = J(_N,_N,1) - restuple
clustermat wards diftuple, add

J(_N,_N,1) creates a square matrix (dimension being the number of cases)
full of ones, and the operation reverses the values (1 becomes 0, 0 becomes 1,
etc.).

Note: see spellbirthseq.do for Stata code to translate birthseq.dta into
a format suitable for Elzinga’s X,T method.

4.4 Summarising clusters graphically
Once a cluster solution has been settled on, how to present it graphically? Two
commonly used graphical devices are to represent the sequences as horizon-
tal lines on graphs where time is on the x-axis and the states are represented
by colours. For relatively small numbers of sequences, individual cases can
be distinguished easily, and for larger numbers of cases the structure within
clusters is clearly visible, if individuals are not. Let us call this a “sequence
vector graph”. The other commonly used device is a graph of the distribution
of states across time, by cluster group. We could call these “state distribution
graphs”.

Both types of graph require a certain amount of complex data manipulation.

4.4.1 Sequence vector graphs
The idea of a sequence vector graph is: first, to represent each sequence as a
horizontal line (vertical is possible too) where the x-axis represents sequence
time and the line’s colour the state at each timepoint; and second, to present
these lines vertically above each other in an appropriate way. The usual mean-
ing of appropriate here is to sort the lines by their cluster order, and to place
them ideally exactly a line’s thickness above each other (unless there are really
quite few lines, having white lines between sequences makes the graph hard to
read). It is additionally possible to insert gaps at chosen locations, for instance
to break the graph into a specific set of clusters.

The first task is to rearrange the data into a structure appropriate for vector
graphs. Vector graphs draw lines from (x1, y1) to (x2, y2). If y1 = y2 the line
will be horizontal. We can thus represent a sequence as a set of vectors, first
by representing it as a set of spells, (t0, t1, x1), (t1, t2, x2), . . . (tn−1, tn, xn) where
ti−1 and ti are start and end time, and xi is the state in spell i. The correspond-
ing vectors would look like [(t0, y), (t1, y)], [(t1, y), (t2, y)] and so on.

If we use the birthseq data as an example, where g8 and g99 are group-
ings from a cluster analysis, we would proceed as follows, first reshapeing

SESSION 4. SUNDAY MORNING 17

the wide state1-state73 format into a long format, with 73 observations per
individual.
reshape long state, i(id) j(t);

We then proceed to examine this “long calendar” format to determine its
“spell” structure, that is, where consecutive series of observations are in the
same state. We number such spells consecutively from 1 within individu-
als, determine their start-time, end-time and length and then drop all but one
record per spell.

gen spellno=1;
by id: replace spellno=spellno[_n-1]+(state~=state[_n-1]) if _n>1;
sort id spellno t;
by id spellno: gen length = _N;
by id spellno: gen x = t[1];
by id spellno: gen x2 = t[_N]+1;
by id spellno: gen mark = _n==1;
keep if mark;
drop mark;

At this point the data set contains a variable number of records per individ-
ual, with start and end-time and state information.

We now sort by the nested cluster structure, and by id and time within.
We can now calculate a y value for each individual, where each individual is
a fixed quantity (6 in this example) above the previous, and each cluster is
additionally higher (by 20 in the example).

sort g8 g99 id t;
gen y=1;
replace y = y[_n-1]+6*(id!=id[_n-1]) if _n>1;
replace y = y + (g8-1)*20;
gen y2=y;

We can now draw the graph, using Stata’s pcspike vector-format graph. To
get separate colours for the states, we superimpose four graphs, one for each
state. Since the linewidth option needs to be the same in each of the four, and
needs to be chosen by trial and error, it is easiest to put it in a local macro.

local lw = 0.2;
twoway pcspike y x y2 x2 if state==1,

lwidth(*‘lw’) legend(label(1 "FTE"))
ylabel("") ytitle("") xtitle("Months")||

pcspike y x y2 x2 if state==2, lwidth(*‘lw’)
legend(label(2 "PTE")) ||

pcspike y x y2 x2 if state==3, lwidth(*‘lw’)
legend(label(3 "UE")) ||

pcspike y x y2 x2 if state==4, scheme(s2color)
lwidth(*‘lw’) legend(label(4 "NonE"));

That will plot the entire set of clusters. We can also plot individual clusters
as follows:
local clnum 1;

SESSION 4. SUNDAY MORNING 18

local lw;
twoway pcspike y x y2 x2 if state==1 & g8==‘clnum’,

lwidth(*‘lw’) legend(label(1 "FTE")) ylabel("")
ytitle("") xtitle("Months")||

pcspike y x y2 x2 if state==2 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(2 "PTE")) ||

pcspike y x y2 x2 if state==3 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(3 "UE")) ||

pcspike y x y2 x2 if state==4 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(4 "NonE")) scheme(s2color);

A tip Given that this can be repetitive, it helps to wrap the graph code in a
program definition:

capture program drop clusgr;
program define clusgr;
args clnum lw;
twoway pcspike y x y2 x2 if state==1 & g8==‘clnum’,

lwidth(*‘lw’) legend(label(1 "FTE")) ylabel("")
ytitle("") xtitle("Months")||

pcspike y x y2 x2 if state==2 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(2 "PTE")) ||

pcspike y x y2 x2 if state==3 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(3 "UE")) ||

pcspike y x y2 x2 if state==4 & g8==‘clnum’,
lwidth(*‘lw’) legend(label(4 "NonE")) scheme(s2color) ;

end;

clusgr 1 1.0;
clusgr 1 0.5;
clusgr 1 0.65;
clusgr 2 2.5;

4.4.2 State-distribution graphs
State distribution graphs are perhaps simpler, presenting the distribution across
the state space of each cluster at each time-point. It nonetheless requires rel-
atively substantial data manipulation. What we need is a set of time series,
showing the numbers in each state at each time point, for each cluster.

We load a data file containing the state information and a series of cluster
membership variables, and reshape it long, so that observations are person
months:
use graphbs;
gen id=_n;
keep id g5 state*;
reshape long state, i(id) j(m);

We then use the tab command to generate four dummy variables, a1 to a4,
to represent state. After sorting by cluster and month, we collapse by cluster
and month, calculating the totals for the four state dummy variables.

SESSION 4. SUNDAY MORNING 19

tab state, gen(a);
sort g5 m;
collapse (sum) a1 a2 a3 a4, by(g5 m);

We now have one observation per cluster per month, with four variables
indicating totals in the states. To graph these in the same figure we need to
cumulate them. In the following example we also label them and write the
graph code as a little program for convenience.

gen b2=a1+a2;
gen b3=b2+a3;
gen b4=b3+a4;

label variable a1 "FTE";
label variable b2 "PTE";
label variable b3 "UE";
label variable b4 "NonE";

capture program drop tgr;
program define tgr;
args clnum;
/* NB Graph in reverse order of cumulation, to overwrite

appropriately */
graph twoway area b4 m if g5==‘clnum’, lw(0.1) yscale(range(0))

||area b3 m if g5==‘clnum’, lw(0.1)
||area b2 m if g5==‘clnum’, lw(0.1)
||area a1 m if g5==‘clnum’, lw(0.1) ;

end;

tgr 1;
tgr 2;

4.5 Defining modal sequences
Another approach to summarising clusters is to define typical sequences for
each one. Aasave et al. (2007 (forthcoming) propose a good one: the observed
sequence closest to the centroid of each cluster. Unfortunately, I haven’t im-
plemented a way of doing this in Stata, but propose a simpler summary: the
“modal sequence”. This is the sequence composed, element by element, of
the most common state at that time point. This is conceptually and program-
matically simple but is artificial: it is not a real sequence and can indeed rep-
resent an impossible sequence. Moreover, transitions within the sequence do
not necessarily reflect transitions in the data – for instance the modal sequence
may have a transition from never-married to married while the data is show-
ing never-married to cohabiting to married, without cohabiting ever being the
modal state. However, it is simple and intuitive.

To generate a modal sequence, we can use Stata’s egen command, with the
by prefix to operate on the separate cluster groups. The code by g8: egen t1
= mode(state1) will set t1 to the modal state at time 1. By wrapping it in a

SESSION 4. SUNDAY MORNING 20

loop we can do it for all 73 months:

#delimit ;
use graphbs;

sort g8;
forvalues x=1/73 {;
by g8: egen t‘x’ = mode(state‘x’);
};

We can generate a string representation of the sequence as follows. Note
the special treatment of tx==.: if the mode can’t be determined (e.g., two equal
largest categories) egen gives a missing value, and we insert this in the string
as a blank.
gen str73 typ="";
foreach x of varlist t1-t73 {;
qui replace typ = typ + "F" if ‘x’==1;
qui replace typ = typ + "p" if ‘x’==2;
qui replace typ = typ + "U" if ‘x’==3;
qui replace typ = typ + "n" if ‘x’==4;
qui replace typ = typ + " " if ‘x’==.;
};

Finally, to display one sequence per cluster:

by g8: gen clfirst = _n==1;
list g8 typ if clfirst, clean;

5 Sunday afternoon

5.1 Comparing clustering algorithms
Cluster analysis is a problematic facet of sequence analysis. CA will give a
solution even if there is no cluster structure in the data. That is not necessar-
ily a show-stopper, as it can still be a useful means of partitioning complex
data. We are not engaged in molecular biology, however, where the patterns
of similarity between sequences map directly onto processes that are naturally
represented in a tree structure. We are instead attempting to develop a data
driven typology. In this, it is important to understand what we are doing.

There are numerous methods of cluster analysis. Even if we restrict our-
selves to SAHN methods (Rohwer and Pötter, 2005, section 7.5.1) – sequential,
agglomerative, hierarchical, non-overlapping – there are many methods. These
have in common the notion of starting with a partitioning of the data where
each case forms a cluster, looking for the pair of clusters that are “closest” to
each other (by a method to be specified) and joining them to form a bigger clus-
ter. This process iterates, until the number of partitions is reduced to a target
number, or to one which contains the whole data set. It is thus sequential, and
aggolmerative, and generates a tree structure composed of mutually exclusive
clusters. What varies between SAHN methods is the method used to define
inter-cluster distance, which is to say the definition of distance, and the how
this maps to distance between clusters as distince from distance between pairs
of cases.

Stata provides the following hierarchical agglomerative methods:
• Single linkage: clustermat singlelinkage
• Complete linkage: clustermat completelinkage
• Average linkage: clustermat averagelinkage
• Weighted average linkage: clustermat waveragelinkage
• Median linkage: clustermat medianlinkage
• Centroid linkage: clustermat centroidlinkage
• Ward’s linkage: clustermat wardslinkage

They have different characteristics and will form different sorts of clusters.
Single linkage, for instance, defines inter-cluster distance as the smallest dis-
tance between a case in one cluster and a case in the other. This is very use-
ful where clusters may have irregular shapes but are relatively separate from
each other. However, it can “chain” clusters together, such that very different
cases can end up in the same group. Complete linkage, on the other hand, de-
fines inter-cluster distance as the largest distance between pairs of cases. The
other methods take more of the pairs into account: average linkage calculates
inter-cluster distance as the average distance between all possible pairs formed
between cases in one cluster and the other. Weighted average weights this cal-
culation to avoid large clusters dominating smaller ones. (See section 4.2 of
Everitt et al. (2001) for more information.)

Wards’ method also uses information from all elements of the clusters. The
criterion for choosing which pair of clusters to amalgamate, is to minimise the

21

SESSION 5. SUNDAY AFTERNOON 22

increase in the intra-cluster sum of squares, taking account of cluster size.

5.2 Comparing methods
A number of different methods are available to you (Hamming, Degenne (an-
gle, weighted, Euclidean), OM, duration-sensitive OM, and Elzinga’s XT method).
Moreover, some of these have variable cost structures. You also have a number
of ways of comparing the results of different algorithms: cluster groupings,
dendrograms, correlation, multidimensional scaling. As an exercise, pick a
small number of algorithms and/or cost structures, and use a small number
of methods for comparing their results. The question to answer is how much,
and in what ways, does the algorithm (and its weighting) affect the substantive
results achieved.

5.3 Multiple domain analysis
Individual sequences, even in simple state spaces, are complex enough that
SA can provide an overview not otherwise available. If we wish to consider
multiple state spaces, for example labour market combined with fertility, the
complexity increases. SA offers particular advantages for following multiple
domain life-course processes.

The simplest strategy to use is to generate a new state space variable as the
crosstabulation of the original variables. Thus we might combine an employed–
not-employed variable with partnered–single to create the following combined
state space:
• employed–single
• employed–partnered
• not employed–single
• not employed–partnered
We can then proceed with SA exactly as before. In reality, we are likely

to end up with a combined state space with many more states in it than this
example, but this not a difficulty in itself. Where the difficulty arises is, for
those algorithms that have substitution cost matrices, how to define the joint
cost structure.

5.4 Analysing, and analysing with, SA-derived typologies and
dimensions

What follows are some notes on analysis with, and of, the results of sequence
analysis. Time does not permit working through examples in the PC-lab.

The goal of sequence analysis is usually to inform more conventional analy-
sis, bringing in “holistic” information from longitudinal data. The typical anal-
ysis will consist in using the empirical typology as an explanatory variable in
models predicting some outcome which takes place after the trajectories have
completed. For instance, one might use include a classification of the first five
years of labour market experience in a model predicting wage at age 30. In
this case, the classification will enter the model as a set of dummy variables,
alongside conventional variables. It is also possible to consider the trajecto-
ries as outcomes, however, and predict the classification, using models such as
multinomial logistic regression, and variables measured before the start of the
trajectory. To continue with the early labour market example, we may wish to

SESSION 5. SUNDAY AFTERNOON 23

understand why some people have difficult, chaotic periods of insertion in the
world of work, and others have relatively easy paths.

A third form of analysis is possible, and this is to use the sequence infor-
mation itself to predict the empirical typology. This may serve as a way of
understanding what drives the typology. The “true” nature of the clusters is
not really available to us, as they are created by a complex computational pro-
cess, but we may be able to derive systematic statements about the classifica-
tion by a combination of inspection and modelling. “Explanatory” variables in
this context can include the individual state variables, and summaries thereof,
such as the pattern of cumulated duration in the various states, the frequence
of transition between states, and so on.

Parallel with analyses exploiting the empirical typology as a dependent or
independent variable we can also consider using the dimensions extracted by
MDS, particularly if these have ready interpretations. Use of the dimensions
of the space implied by the pairwise distances can avoid some of the problems
arising from cluster analysis, where for some sequences the cluster of which
they are a member is relatively unstable – small changes in the parameterisa-
tion could put them in different clusters. In this respect, if the cluster analysis
is considered in some sense as recovering a true “latent” classification, the re-
sult actually achieved is subject to measurement error. Use of the dimensions
will avoid cluster-derived measurement error, though it will still be subject to
errors arising earlier in the process. Furthermore, to the extent that there is a
natural cluster structure, the cluster grouping might be more informative.

Bibliography

Aasave, A., Billari, F. and Piccarreta, R. (2007 (forthcoming)) Strings of adult-
hood: Analyzing work-family trajectories using sequence analysis, European
Journal of Population.

Abbott, A. (1983) Sequences of social events: Concepts and methods for the
analysis of order in social processes, Historical Methods, 16(4), 129–147.

Abbott, A. (1988) Transcending general linear reality, Sociological Theory, 6, 169–
186.

Abbott, A. (1990) Conceptions of time and events in social science methods,
Historical Methods, 23(4), 140–150.

Abbott, A. (1991) History and sociology: the lost synthesis, Social Science His-
tory, 15(2), 201–238.

Abbott, A. (1992) From causes to events: Notes on narrative positivism, Socio-
logical Methods and Research, 20(4), 428–455.

Abbott, A. (1995a) A comment on “Measuring the agreement between se-
quences”, Sociological Methods and Research, 24(2), 232–243.

Abbott, A. (1995b) Sequence analysis: New methods for old ideas, Annual Re-
view of Sociology, 21, 93–113.

Abbott, A. (2000) Reply to Levine and Wu, Sociological Methods and Research,
29(1), 65–76.

Abbott, A. and Forrest, J. (1986) Optimal matching methods for historical se-
quences, Journal of Interdisciplinary History, XVI(3), 471–494.

Abbott, A. and Hrycak, A. (1990) Measuring resemblance in sequence data:
An optimal matching analysis of musicians’ careers, American Journal of Soci-
ology, 96(1), 144–85.

Abbott, A. and Tsay, A. (2000) Sequence analysis and optional matching meth-
ods in sociology, Sociological Methods and Research, 29(1), 3–33.

Anyadike-Danes, M. and McVicar, D. (2005) You’ll never walk alone: Child-
hood influences and male career path clusters, Labour Economics, 12(4), 511–
530.

Blair-Loy, M. (1999) Career patterns of executive women in finance: An optimal
matching analysis, American Journal of Sociology, 104(5), 1346–1397.

Bradley, D. W. and Bradley, R. A. (1983) Application of sequence comparison
to the study of bird songs, in Sankoff and Kruskal (1983), chapter 6.

Brüderl, J. and Scherer, S. (2004) Methoden zur analyse von sequenzdata,
Kölner Zeitschrift für Soziologie und Sozialpsychologie, 44, 330–347.

Buchmann, M. and Sacchi, S. (1995) Mehrdimensionale Klassifikation beru-
flicher Verlaufsdaten: Eine Anwendung auf Berufslaufbahnen zweier
Schweizer Geburtskohorten, Kölner Zeitschrift für Soziologie und Sozialpsy-
chologie, 47(3), 413–442.

Chan, T. W. (1995) Optimal Matching Analysis: A methodological note on
studying career mobility, Work and Occupations, 22, 467–490.

Clark, W. A. V., Deurloo, M. C. and Dieleman, F. (2003) Housing careers in the
United States, 1968-93: Modelling the sequencing of housing states, Urban

24

BIBLIOGRAPHY 25

Studies, 40(1), 143–160.
Degenne, A., Lebeaux, M.-O. and Mounier, L. (1996) Typologies d’itinéraires

comme instrument d’analyse du marché du travail. Troisièmes journées
d’études Céreq-Cérétim-Lasmas IdL, Rennes, 23–24 May 1996.

Dijkstra, W. and Taris, T. (1995) Measuring the agreement between sequences,
Sociological Methods and Research, 24(2), 214–231.

Elzinga, C. H. (2003) Sequence similarity: A non-aligning technique, Sociologi-
cal Methods and Research, 32(1), 3–29.

Elzinga, C. H. (2005) Combinatorial representations of token sequences, Journal
of Classification, 22(1), 87–118.

Everitt, B. S., Landau, S. and Leese, M. (2001) Cluster Analysis, 4th edn. London,
Arnold.

Halpin, B. (2003) Tracks through time and continuous processes: Transitions,
sequences, and social structure, Working paper 2003-01, Dept of Sociology,
University of Limerick.

Halpin, B. and Chan, T. W. (1998) Class careers as sequences: An optimal
matching analysis of work-life histories, European Sociological Review, 14(2).

Kruskal, J. B. (1983) An overview of sequence comparison, in Sankoff and
Kruskal (1983).

Lesnard, L. (2006) Optimal matching and social sciences, Document du travail
du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de
la Statistique et des Études Économiques, Paris.

Levine, J. H. (2000) But what have you done for us lately? Commentary on
Abbott and Tsay, Sociological Methods and Research, 29(1), 34–40.

Levy, R., Gauthier, J.-A. and Widmer, E. (2006) Entre contraintes institution-
nelle et domestique : les parcours de vie masculins et féminins en Suisse,
Canadian Journal of Sociology, 31(4), 461–489.

Malo, M. A. and Muñoz-Bullón, F. (2003) Employment status mobility from a
life-cycle perspective: A sequence analysis of work-histories in the BHPS,
Demographic Research, 9, 119–162.

McVicar, D. and Anyadike-Danes, M. (2002) Predicting successful and unsuc-
cessful transitions from school to work using sequence methods, Journal of
the Royal Statistical Society (Series A), 165, 317–334.

Pollock, G. (2007) Holistic trajectories: A study of combined employment,
housing and family careers by using multiple-sequence analysis, Journal of
the Royal Statistical Society: Series A, 170(1), 167–183.

Reilly, C., Wang, C. and Rutherford, M. (2005) A rapid method for the compar-
ison of cluster analyses, Statistica Sinica, 15(1), 19–33.

Rohwer, G. and Pötter, U. (2005) TDA User’s Manual. Universität Bochum.
Sankoff, D. and Kruskal, J. B. (eds) (1983) Time Warps, String Edits and Macro-

molecules. Reading, MA, Addison-Wesley.
Scherer, S. (2001) Early career patterns: A comparison of Great Britain and West

Germany, European Sociological Review, 17(2), 119–144.
Stovel, K. and Bolan, M. (2004) Residential trajectories: Using optimal align-

ment to reveal the structure of residential mobility, Sociological Methods and
Research, 32(4), 559–598.

Wang, W. and Zaı̈ane, O. R. (2002) Clustering web sessions by sequence align-
ment, Proceedings, 13th International Workshop on Database and Expert Systems
Applications, IEEE, IEEE, 394–398.

Wilson, C. (2006) Reliability of sequence-alignment analysis of social pro-

BIBLIOGRAPHY 26

cesses: Monte carlo tests of ClustalG software, Environment and Planning A,
38(1), 187.

Wu, L. L. (2000) Some comments on “Sequence analysis and optimal match-
ing methods in sociology: Review and prospect”, Sociological Methods and
Research, 29(1), 41–64.

	Friday afternoon
	Start here!
	A simple example
	Looking at the internals
	Costs
	Using SQ
	Using TDA
	Using real data

	Saturday morning
	Reminder
	Hamming distance
	Compare with OM

	Clustering with OM distances
	Representing sequences as strings
	Regular expressions

	Cluster Hamming distances and compare
	Clustering with TDA
	Saving distance matrices

	Saturday afternoon
	Multidimensional scaling
	Run a PCA
	Examine the dimensions graphically
	Examine the dimensions in Stata
	Attempt to interpret the dimensions

	Exploring substitution matrices
	Methods for comparison

	Sunday morning
	Degenne's method
	Duration-sensitive OM
	Elzinga's combinatorial spell-wise method
	Summarising clusters graphically
	Sequence vector graphs
	State-distribution graphs

	Defining modal sequences

	Sunday afternoon
	Comparing clustering algorithms
	Comparing methods
	Multiple domain analysis
	Analysing, and analysing with, SA-derived typologies and dimensions

