

Time-Warping Life Courses

Brendan Halpin Department of Sociology University of Limerick brendan.halpin@ul.ie¹

Sept 2 2008, RC33 Naples

¹Work in progress! See http://teaching.sociology.ul.ie/seqanal/naplestw.pdf

Appropriate algorithms for life-course data

- Sequence analysis is increasingly popular in sociology
 - For many sorts of data, including "life-course"
 - Nearly always uses optimal matching algorithm
- The OM algorithm works naturally with discrete-time/discrete-state sequences
- Life-course is usually continuous-time, discrete-state spell data
- Is OM valid for such data?
- This paper discusses "time warping" as an alternative algorithm

Tokens and spells

• OM operates on strings that are sequences of tokens, e.g.,

 $\delta(\text{ABCD}, \text{ABBD}) = d(\text{C}, \text{B})$

- But life-course data is best considered sequences of spells
 - Usual strategy: respresent spells as runs of tokens, as for many analyses
- But does OM do justice to this?
 - For instance, OM says **AAAB** is as distant from **AACB** as from **AABB** (given $sub_{A,B} = sub_{A,C}$)
 - Substantively, the first and third are very similar while the second introduces a completely new spell

(日)

Alternatives?

- Alternatives to OM exist
- Elzinga's X/t method counts common subsequences of spells, weighted by their duration (Elzinga, 2003, 2005)
- In previous work (Halpin, 2008) I proposed a variant on OM, "OMv"
 - Cost of elementary operations depends on the length of the spell
 - Comparable speed to OM
 - Results depend on amount of variability in sequences

(日)

Warping time

- OMv "warps time" by weighting it differently in different spells
- Harks back to Abbott's use of the term to suggest non-linear time scales (Abbott and Hrycak, 1990)
- In turn informed by Sankoff and Kruskal (1983), Time Warps, String Edits and Macromolecules

Testing TW

Time warping algorithms

- Formally, time warping is a family of algorithms that do "continuous time-series to time-series correction" while OM *et al* do "string to string correction" (Marteau, 2007)
- Focus on comparing pairs of continuous-time high-dimensional time-series in Rⁿ
- Operates by locally compressing or expanding the time scale of one trajectory to minimise the distance to the other
- Distance is usually Euclidean in **R**ⁿ or other simple distance

・ロッ ・雪 ・ ・ ヨ ・ ・

1-dimensional time-warping

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TW algorithms

- TW used widely: was used for speech recognition, signature verification, other machine learning tasks
- Typically used to match a high-dimensional time-series to a "dictionary" of standard elements
- Conceptually it is a continuous time approach but implementations must be discrete – sampling or periodic summaries:
 - e.g., sound at 44 kHz
 - rainfall daily
 - employment history monthly
- Kruskal and Liberman (1983) show that the continuous time logic can be faithfully implemented with discretised series

Testing TW

Conclusion

References

Discrete time-warping

AAABBCC

ABCCCCC

TW for general SA?

- Sociological sequence analysis often uses cluster analysis to generate data-driven typologies
 - Also multi-dimensional scaling
 - Also comparing sequences to "typical" sequences
- For cluster and MDS, distance needs to be a "metric":

$$\begin{array}{l} \bullet & d(R,S) = 0 \implies R = S \\ \hline oldsymbol{2} & d(R,S) \ge 0 \\ \hline oldsymbol{3} & d(R,S) = d(S,R) \\ \hline oldsymbol{4} & d(R,T) \le d(R,S) + d(S,T) \text{ (triangle inequality)} \end{array}$$

 Conventional TW satisfies 1-3, not 4, thus usually limited to matching against a "dictionary"

(日)

TW with stiffness penalty

- Violation of the triangle inequality is due to TW usually having no cost to expansion or compression, only to the residual point-by-point distance
- Marteau (2007, 2008) proposes a TW algorithm that has a "stiffness" penalty
- Satisfies the triangle inequality
- Can be programmed very similarly to OM (recursive algorithm)
- Stiffness penalty like but not like indel cost squeezing/stretching, not inserting/deleting
- Point-to-point distance just like substitution

(日)

Testing TW

Conclusion

References

Recursive algorithm

TW distance, $\delta(A^p, B^q) =$

$$\min \begin{cases} \delta(A^{p-1}, B^{q}) + d_{LP}(a_{p}, a_{p-1}) + \gamma d_{LP}(t_{a_{p}}, t_{a_{p-1}}) + \lambda \\ \delta(A^{p-1}, B^{q-1}) + d_{LP}(a_{p}, b_{q}) + \gamma d_{LP}(t_{a_{p}}, t_{b_{q}}) \\ \delta(A^{p}, B^{q-1}) + d_{LP}(b_{q}, b_{q-1}) + \gamma d_{LP}(t_{b_{q}}, t_{b_{q-1}}) + \lambda \end{cases}$$

(Marteau, 2007)

Implementation

- Implemented as a Stata plugin
 - ${\ensuremath{\, \bullet }}$ alongside similar implementations of OM and OMv
 - fast, comparable to OM plugin
 - but not platfrom independent
- NB experimental implementation, tentative results!
- Will be made available once stable

- Test data consists of 5 years of monthly labour market history of females who have a birth at end of year 2
- BHPS, 675 cases, 223 excluding duplicates

• State space: -	Full-time employed	■ 0 1 2 3
	Part-time employed	 1 0 1 2
	Unemployed	 2 1 0 1
	Not in labour market	3 2 1 0

- *indel* cost is 2 for OM and OMv
- Range of γ "stiffness" parameters used (0.33 to 2.00)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Correlations

	TW				OM	OMv	Ham.
	0.33	0.67	1.00	2.00			
TW, $\gamma = 0.33$	1.00	0.98	0.93	0.87	0.86	0.85	0.87
TW, $\gamma = 0.67$	0.98	1.00	0.98	0.93	0.92	0.88	0.93
TW, $\gamma = 1.00$	0.93	0.98	1.00	0.96	0.95	0.90	0.96
TW, $\gamma = 2.00$	0.87	0.93	0.96	1.00	0.98	0.92	1.00
OMA	0.86	0.92	0.95	0.98	1.00	0.89	0.92
OMv	0.85	0.88	0.90	0.92	0.89	1.00	0.92
Hamming	0.87	0.93	0.96	1.00	0.98	0.92	1.00

First impressions

- Generally very close in pattern to OM
- The higher γ is, the closer to OM. . .
- Up to a point: at γ = 2 and above, yields Hamming distance; i.e., "warping" completely suppressed
- Analogously, high indel costs suppress indels in OM...
- But at a rather higher threshold: warping and *indels* are not the same; *indel* costs and γ are not on the same scale relative to substitution costs

TW, stiffness 0.33 vs OM

17

TW, stiffness 0.67 vs OM

TW, stiffness 1 vs OM

Testing TW

TW, stiffness 2 vs OM (Hamming!)

20

OMv vs OM

21

TW relatively bigger than OM

50

TW relatively smaller than OM

_
. .
SOCIO
30010
UNIVERSITY OF LIN
E. 1. E. 1

Testing TW

Conclusion

References

TW relatively close to OM

		•
	50	
		STIT OF LIMERICK

24

Testing TM

Regressing TW/OM difference

Summary

- TW tends to be higher than OM distance, where there are moderate to high numbers of spells
- TW tends to be lower than OM when there are relatively few spells, in high-distance states
- Results are similar when the sequences have similar numbers of spells, usually well matching
- Also evidence that TW is greater where the number of spells is unequal

Conclusion

- TW is different, but not hugely affinity between compression/expansion and *indels*
- A different "narrative" behind the algorithm, more suited to continuous time phenomena
- An alternative to the "edit operations" narrative
- Agreement is reassuring: OM is not very wrong!
- Intriguing in the differences more choice in the SA toolbox!

Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144–85.

Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. *Sociological Methods and Research*, 32(1):3–29.

Elzinga, C. H. (2005). Combinatorial representations of token sequences. *Journal of Classification*, 22(1):87–118.

Halpin, B. (2008). Optimal Matching Analysis and life course data: The importance of duration. Working paper 2008-01, Dept of Sociology, University of Limerick.

Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal (1983), pages 125–161. **sociolog**

Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness

Adjustment for Time Series Matching. *ArXiv Computer Science e-prints.*

Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints, 802.

Sankoff, D. and Kruskal, J. B., editors (1983). *Time Warps, String Edits and Macromolecules*. Addison-Wesley, Reading, MA.

