Sequence Analysis for Life Course Data Modifying the OM Algorithm for better duration handling

Brendan Halpin

Dept of Sociology, University of Limerick

12 May 2007, SAI Conference, UL¹

¹RCS: omavsai.tex,v 1.3 2007/05/11 16:09:50 brendan Exp brendan

Introduction

- Today I will present a new algorithm for comparing longitudinal trajectory data such as work or life histories
- A modification of the Optimal Matching algorithm, the dominant method in most current sequence analysis
- Very preliminary work, first test of the modified algorithm
- Thanks to comments from Cees Elzinga, and participants in the Geary Institute Seminar, April 2007.

What is Sequence Analysis?

- Sequence Analysis (SA) treats sequences as units, and compares them holistically
- Sequences in this sense are longitudinal structures, e.g.,
 - dance (series of steps)
 - conversation (series of utterances)
 - macromolecules like DNA (series of CAGT "bases")
 - life course histories (series of time-units in life course state space)
 - that is, typically linear sequences of observations in a discrete state space
- Note the distinction between discrete sequences in discrete spaces and continuous-time sequences in discrete spaces: the latter we represent as sequences by discrete-ising time

What is Sequence Analysis?

- SA works by defining pairwise distances between sequences according to some metric
- It typically proceeds by using the pairwise distances to generate data-driven typologies using cluster analysis
- Comparing sequences to reference sequences, and multidimensional scaling are also possible
- This holistic approach is an alternative to more conventional techniques which often focus on transition rates:
 - focus on the outcome (epiphenomenon?)
 - rather than the underlying generative processes

Descriptive, exploratory

- Of descriptive, exploratory value rather than analytic/stochastic
- Can provide an digestible overview of complex longitudinal data
- Of particular promise with multi-domain data
- Or where generative processes are complex and changing (*e.g.*, along the lifecourse)
- However, when you want to test clearly specified hypotheses about the generative processes, conventional stochastic techniques such as hazard rate modelling are often much more powerful

Defining pairwise distance

- Defining the pairwise distance is the foundation of SA
- Many possibilities:
 - Hamming: $D_{AB} = \sum_{i Ai} B_i \text{ or } \sum_{i} d(A_i, B_i)$
 - Degenne: $D_{AB} = \sum_{i} \cos^{-1}(\mathbf{X}_{Ai}, \mathbf{X}_{Bj})$ where \mathbf{X}_{Ai} the cumulated duration
 - Dijkstra–Taris (1995): delete repeats, delete non-common elements, count matches
 - Optimal matching algorithm (OMA): count number of "edits" to change one sequence into another, extensive use in molecular biology
 - Elzinga (2003, 2005): count the number of times the same states occur in the same order in two sequences

Hamming distance

- Hamming distance is very simple but limited
 - ABABAB and BABABA maximally different temporal rigidity
 - Less of a problem with life course data, typically has long runs in same state
 - Buchmann and Sacchi (1995) factor analyse occupational characteristics to define inter-occupational distances
 - Lesnard (2006) proposes a "dynamic" Hamming distance for time-diary data: distances defined by transition rates between activities, varying throughout the day
 - If time has a meaningful ruler (as with daily time use) Hamming's time-rigidity is a positive advantage
 - For more elastic "developmental" time, perhaps less appropriate

- Degenne's method promising but untried
- Dijkstra-Taris more or less directly superseded by OMA
- Elzinga's method shows a lot of promise, plus has strong intuitive basis

- Given two sequences, *s*₁ and *s*₂, drawn from an "alphabet" *S*, the Optimal Matching Algorithm generates a distance measure based on "elementary operations":
 - substitution and
 - insertion and deletion
- Substitution replaces an element in *s*₁ with the corresponding element in *s*₂
- Insertions and deletions equivalently delete an element in s_1 or insert an element in s_2 (or vice versa); because of the equivalence they are known as *indels*

The Optimal Matching Algorithm-distance

- The distance between *s*₁ and *s*₂ is defined as the least expensive path from one to the other using the elementary operations
- OMA allows a matrix of costs for all pairwise substitutions, and an indel cost to be specified
- The OM algorithm is a dynamic programming technique which finds the "cheapest" path in a time- and memory-efficient manner

- Andrew Abbott has been the main evangelist for OMA in sociology
- A string of articles from Abbott and Forrest (1986), Abbott and Hrycak (1990) *etc.*to a retrospective review (Abbott and Tsay, 2000) with a related debate (Levine, 2000; Wu, 2000; Abbott, 2000)
- In Abbott (1995a), demonstrates OMA to be more general than Dijkstra–Taris

- OM is becoming widely used, particularly since Götz Rohwer incorporated it in TDA
 - Class careers: Halpin and Chan (1998)
 - Women's careers in finance: Blair-Loy (1999)
 - Transition from school to work: Scherer (2001), McVicar and Anyadike-Danes (2002)
 - Methods paper: Brüderl and Scherer (2004)
 - Male careers: Anyadike-Danes and McVicar (2005)
 - Time use: Wilson (2006)
 - Gendered careers: Levy et al. (2006)
 - Housing, employment, marriage, fertility: Pollock (2007)
- More recently, Kohler et al have released a Stata package, SQ, for OMA

Problems with OM for lifecourse data

- For sequences that are naturally discrete in time, OM works well
- But life course sequences are have highly variable spell lengths, and the discrete representation may not suit OM as well
- For instance, given $s_1 = ABBD$, $s_2 = ABCD$, $s_3 = ABDD$, all three sequences will be equidistant
- But sociologically, *s*¹ and *s*³ are clearly closer
- OM doesn't recognise the continuity; a slight adjustment of spell length is treated as being as expensive as the introduction of another spell

Change the time scale?

- One suggestion (Abbott made it in early work) is to change the time scale: use log time, for instance
- However, this exacerbates the discretisation

- I propose instead a modification of the OM algorithm that has an analogous effect: scale the costs of elementary operations according to the length of the affected spells
- There are limits to what we can change in the algorithm without degrading its performance
- In particular, the algorithm has no memory (*e.g.*, "now deleting an element from this spell for the second time")
- However, we can take account of spell length in setting costs

- I begin by outlining the operation of the OM algorithm
- It uses dynamic programming techniques to efficiently determine the cheapest set of edits to transform one sequence into another hence "optimal"
- Operates by calculating the elements of a matrix where each element $C_{ij} = min(c_{i-1,j-1} + ! i_{i,j}, c_{i,j-1} + ., c_{i-1,j} + .)$,
- ! is the substitution matrix, and the first row and column are filled with the cumulative insertion/deletion costs
- A diagonal move represents a substition, right represents deletion, down represents insertion
- Bottom right cell eventually contains the optimal cost

Working through OM

Cell value:
$$min(c_{i-1,j-1} + !_{i,j}, c_{i,j-1} + , c_{i-1,j} +)$$

= $min(0 + 2, 2 + 2, 2 + 2) = 2$
= $min(2 + 1, 2 + 2, 4 + 2) = 3$
= $min(4 + 0, 3 + 2, 6 + 2) = 4$
= $min(6 + 1, 4 + 2, 8 + 2) = 6$

А В С D С D *s*₂ А А В

 s_1

0	2	4	6	8	
2	2	3	4	6	
4	4	4	4	4	
6	4	5	6	6	
8	6	5	7	8	
10	8	6	6	8	

To convert ABCD into CDAAB the following set of operations gives the cheapest path:

Operation	Intermediate state	Cost
	ABCD	= 0
insert C	CABCD	+2 = 2
insert D	CDABCD	+2 = 4
const A = A	CDABCD	+0 = 4
subs $B \rightarrow A$	CDAACD	+1 = 5
subs $C \rightarrow B$	CDAABD	+1 = 6
delete D	CDAAB-	+2 = 8

Where sequence lengths are variable the distance is often scaled inversely with the longer of the pair: 8 units thus become an pairwise distance of 1.6

Efficient

- This strategy calculates the optimum path efficiently
- Memory requirements are proportional to $l_1 \times l_2$
- Time requirement is $a + b(l_1 \times l_2)$
- Both are small relative to the $O(N^2)$ required to process every pairwise comparison between N sequences
- Nonetheless, for realistic data sets the procedure completes acceptably fast
- **However**, adaptations of the algorithm risk destroying its efficiency, for instance by requiring exponentially growing memory or processing time

Variant OMA

- The modified algorithm I propose treats spell length in the following manner
 - single unit spell costed as per OM
 - total cost of a multiple unit spell to be strictly increasing in length
 - cost of each unit to be strictly decreasing with length of spell
- Costing units at *basecost* $\times \frac{1}{\sqrt{len}}$ achieves this:
 - Cost of 1 unit spell: *basecost* × 1
 - Cost of 2 unit spell: basecost × (0.707 + 0.707) = basecost × 1.414, etc.
- So will other exponents, other functions

- Insertion and deletion costs are modified directly and equally, as they are equivalent: an insertion in s_1 is equivalent to a deletion in s_2
- Substitution costs must also be modified, as a substitution is a deletion followed by an insertion
- The direction of the substitution is unimportant, so we cost it as if it involved a deletion in the longer subsequence
- If s_{1i} is unique, and s_{2j} is part of a run of two, the substitution cost is divided by $\sqrt{2}$
- If s_{1i} is one of three and s_{2i} one of two, division is by $\sqrt{3}$

The matrix operations

0	2	4	6	8
2.0	2.0	3.0	4.0	6.0
4.0	4.0	4.0	4.0	4.0
5.4	4.0	4.7	5.4	5.4
6.8	5.4	4.7	6.1	6.8
8.8	7.4	5.4	5.7	7.7

22

Sequences		OMA	New variant		
А	В		exp = 0.5	exp = 0.75	
12343	23414	1.00	1.00	1.00	
12343	22213	1.00	0.83	0.78	
12343	22222	1.00	0.45	0.30	
23414	22213	0.80	0.55	0.46	
23414	22222	1.20	0.54	0.36	
22213	22222	0.40	0.18	0.12	

- Implemented in Stata
- C plugin, platform dependent, fast, relatively simple code
- Platform independent Mata implementation also possible, but very slow by comparison

Simulated data

- Tests are run with simulated data, 4 states, 20 time-units, with
 - a low probability of multiple observations in sequence (82% of cases have max run of \leq 2)
 - a medium probability (79% \leq 5)
 - and a higher probability (79% \leq 11)
- As expected, the higher the presence of runs the lower the mean scores
- But correlations remain high, even excluding matches between identical sequences (distance zero)

Correlations

		All	Non-identical
Low	Pearson	0.9978	0.9496
	Spearman	0.9984	0.9420
Med	Pearson	0.9931	0.8092
	Spearman	0.9946	0.7985
High	Pearson	0.9821	0.8128
	Spearman	0.9949	0.8132

Correlation of OMA and OMAv: low level of runs

Correlation of OMA and OMAv: medium level of runs

Correlation of OMA and OMAv: high level of runs

- But what about real data and the "end product"?
- Typically "empirical typologies" generated by cluster analysis
- Using BHPS fertility and labour market histories, I construct 5-year labour market histories for women: 2 years before and 3 years after a birth
- Encoded as monthly status, 4 states:
 - Full-time employed
 - Part-time employed
 - Unemployed
 - Not in labour market

OM costings

• Substitution matrix:

FTE PTE UE NonE

	0	1	2	3
	1	0	1	2
	2	1	0	1
Ε	3	2	1	0

• *Indel* cost: 2 units

Correlation of OMA and OMAv: labour market data

Results

- Correlation of 0.97 between OMA and OMAv, excluding identical sequences higher than expected
- Spearman correlation similar

- Fit an 8 cluster solution to both data sets
- By inspection gives an acceptable result
- Very high level of agreement, especially for "low entropy" sequences (*i.e.*, near 100% dominated by a single state)
- Less agreement where more is "going on"

Comparing the eight-cluster solution

OMAv	OMA					Total			
	1	2	3	4	5	6	7	8	
1 (slide 32)	263	27	0	0	0	2	1	0	293
2 (slide 33)	0	39	7	0	2	0	0	0	48
3 (slide 34)	0	0	18	0	0	0	0	0	18
4 (slide 35)	0	0	19	54	1	0	0	0	74
5 (slide 36)	0	0	0	0	33	0	0	0	33
6 (slide 37)	0	1	0	0	0	21	0	0	22
7 (slide 38)	0	0	0	0	0	3	18	0	21
8 (slide 39)	0	0	27	0	0	0	0	139	166
Total	263	67	71	54	36	26	19	139	675
(41,42)									

8 cluster solution – OMA (left) and OMAv (right)

Cluster 1 – OMA (left) and OMAv (right)

Cluster 2 – OMA (left) and OMAv (right)

Cluster 3 – OMA (left) and OMAv (right)

Cluster 4 – OMA (left) and OMAv (right)

Cluster 5 – OMA (left) and OMAv (right)

Cluster 6 – OMA (left) and OMAv (right)

Cluster 7 – OMA (left) and OMAv (right)

Cluster 8 – OMA (left) and OMAv (right)

- High agreement
- Two major sources of disagreement
 - 27 cases move from OMA cluster 2 to OMAv cluster 1
 - OMA cluster 3 scattered across OMAv clusters 2, 3, 4 and 8
- The 27 OMA cluster 2 cases are arguably better off in cluster 1 (dominated by non-employment) than cluster 2, where early unemployment is matched to early FT-employment

OMA Cluster 1/2 split

OMA Cluster 3 split

OMA Cluster 3 details

- Cases moved to cluster 8 are initially FTE with lots of transitions in and out of employment later, and are moved to the predominant FTE cluster
- Those moved to cluster 4 transition from FTE to PTE around the birth, and largely stay there, and merge with the predominant PTE cluster
- Those that remain in cluster 3 are a distinct group: initially FTE, try to remain in the labour market but finally drop out
- to cluster 4: FTE with late shift to PTE, matched to predominant FTE cluster
- Those that move to cluster 2 are also initially FTE but drop out, typically with a short spell of PTE, and are matched with very similar trajectories that do not have the short PTE spell

Conclusions

- OMAv and OMV generate very but not completely similar results
- To the extent that they differ, it is arguable that it gives a superior clustering of the more complicated trajectories
- Extent of similarity is greater than I had expected
 - Conventional OMA may be adequate where all sequences characterised by long runs
 - Greater mix of long and short runs may be different result is likely to depend on the data to some degree
- As seen, the differences are greatest in the clusters characterised by higher "entropy" sequences these are the ones most sensitive to the distance measure; even naïve matching (*e.g.*, Hamming) will match the simple cases
- "More research is needed"

- Abbott, A. (1983). Sequences of social events: Concepts and methods for the analysis of order in social processes. *Historical Methods*, 16(4):129–147.
- Abbott, A. (1988). Transcending general linear reality. *Sociological Theory*, 6:169–186.
- Abbott, A. (1990). Conceptions of time and events in social science methods. *Historical Methods*, 23(4):140–150.
- Abbott, A. (1991). History and sociology: the lost synthesis. *Social Science History*, 15(2):201–238.
- Abbott, A. (1992). From causes to events: Notes on narrative positivism. *Sociological Methods and Research*, 20(4):428–455.
- Abbott, A. (1995a). A comment on "Measuring the agreement between sequences". *Sociological Methods and Research*, 24(2):232–243.
- Abbott, A. (1995b). Sequence analysis: New methods for old ideas. *Annual Review of Sociology*, 21:93–113.

Abbott, A. (2000). Reply to Levine and Wu. *Sociological Methods and Research*, 29(1):65–76.

- Abbott, A. and Forrest, J. (1986). Optimal matching methods for historical sequences. *Journal of Interdisciplinary History*, XVI(3):471–494.
- Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144–85.
- Abbott, A. and Tsay, A. (2000). Sequence analysis and optional matching methods in sociology. *Sociological Methods and Research*, 29(1):3–33.
- Anyadike-Danes, M. and McVicar, D. (2005). You'll never walk alone: Childhood influences and male career path clusters. *Labour Economics*, 12(4):511–530.
- Blair-Loy, M. (1999). Career patterns of executive women in finance: An optimal matching analysis. *American Journal of Sociology*, 104(5):1346–1397.

Bradley, D. W. and Bradley, R. A. (1983). Application of sequence comparison to the study of bird songs. In Sankoff and Kruskal (1983), chapter 6.

- Brüderl, J. and Scherer, S. (2004). Methoden zur analyse von sequenzdata. *Kölner Zeitschrift für Soziologie und Sozialpsychologie*, 44:330–347.
- Buchmann, M. and Sacchi, S. (1995). Mehrdimensionale Klassifikation beruflicher Verlaufsdaten: Eine Anwendung auf Berufslaufbahnen zweier Schweizer Geburtskohorten. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 47(3):413–442.
- Chan, T. W. (1995). Optimal Matching Analysis: A methodological note on studying career mobility. *Work and Occupations*, 22:467–490.

Degenne, A., Lebeaux, M.-O., and Mounier, L. (1996). Typologies d'itinéraires comme instrument d'analyse du

marché du travail. Troisièmes journées d'études Céreq-Cérétim-Lasmas IdL, Rennes, 23–24 May 1996.

- Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. *Sociological Methods and Research*, 24(2):214–231.
- Elzinga, C. (2003). Sequence similarity: A non-aligning technique. *Sociological Methods and Research*, 32(1):3–29.
- Elzinga, C. H. (2005). Combinatorial representations of token sequences. *Journal of Classification*, 22(1):87–118.
- Halpin, B. (2003). Tracks through time and continuous processes: Transitions, sequences, and social structure. Working paper 2003-01, Dept of Sociology, University of Limerick.
- Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. *European Sociological Review*, 14(2).

Kruskal, J. B. (1983). An overview of sequence comparison. In Sankoff and Kruskal (1983).

- Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques, Paris.
- Levine, J. H. (2000). But what have you done for us lately? Commentary on Abbott and Tsay. *Sociological Methods and Research*, 29(1):34–40.
- Levy, R., Gauthier, J.-A., and Widmer, E. (2006). Entre contraintes institutionnelle et domestique : les parcours de vie masculins et féminins en Suisse. *Canadian Journal of Sociology*, 31(4):461–489.
- McVicar, D. and Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions from school to work using sequence methods. *Journal of the Royal Statistical Society* & *(Series A)*, 165:317–334.

- Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. *Journal of the Royal Statistical Society: Series A*, 170(1):167–183.
- Sankoff, D. and Kruskal, J. B., editors (1983). *Time Warps, String Edits and Macromolecules*. Addison-Wesley, Reading, MA.
- Scherer, S. (2001). Early career patterns: A comparison of Great Britain and West Germany. *European Sociological Review*, 17(2):119–144.
- Wilson, C. (2006). Reliability of sequence-alignment analysis of social processes: Monte carlo tests of ClustalG software. *Environment and Planning A*, 38(1):187.
- Wu, L. L. (2000). Some comments on "Sequence analysis and optimal matching methods in sociology: Review and prospect". *Sociological Methods and Research*, 29(1):41–64.

