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Introduction

Today I will present a new algorithm for comparing
longitudinal trajectory data such as work or life histories
A modification of the Optimal Matching algorithm, the
dominant method in most current sequence analysis
Very preliminary work, first test of the modified algorithm
Thanks to comments from Cees Elzinga, and participants
in the Geary Institute Seminar, April 2007.
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What is Sequence Analysis?

Sequence Analysis (SA) treats sequences as units, and
compares them holistically
Sequences in this sense are longitudinal structures, e.g.,

dance (series of steps)
conversation (series of utterances)
macromolecules like DNA (series of CAGT “bases”)
life course histories (series of time-units in life course state
space)
that is, typically linear sequences of observations in a
discrete state space

Note the distinction between discrete sequences in discrete
spaces and continuous-time sequences in discrete spaces:
the latter we represent as sequences by discrete-ising time
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What is Sequence Analysis?

SA works by defining pairwise distances between
sequences according to some metric
It typically proceeds by using the pairwise distances to
generate data-driven typologies using cluster analysis
Comparing sequences to reference sequences, and
multidimensional scaling are also possible
This holistic approach is an alternative to more
conventional techniques which often focus on transition
rates:

focus on the outcome (epiphenomenon?)
rather than the underlying generative processes
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Descriptive, exploratory

Of descriptive, exploratory value rather than
analytic/stochastic
Can provide an digestible overview of complex
longitudinal data
Of particular promise with multi-domain data
Or where generative processes are complex and changing
(e.g., along the lifecourse)
However, when you want to test clearly specified
hypotheses about the generative processes, conventional
stochastic techniques such as hazard rate modelling are
often much more powerful
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Pairwise Distance

Defining pairwise distance

Defining the pairwise distance is the foundation of SA
Many possibilities:

Hamming: DAB = ∑i � Ai − � Bi or ∑i d(� Ai , � Bi)
Degenne: DAB = ∑i cos−1(XAi , XB j) where XAi the
cumulated duration
Dijkstra–Taris (1995): delete repeats, delete non-common
elements, count matches
Optimal matching algorithm (OMA): count number of
“edits” to change one sequence into another, extensive use
in molecular biology
Elzinga (2003, 2005): count the number of times the same
states occur in the same order in two sequences
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Pairwise Distance

Hamming distance

Hamming distance is very simple but limited
ABABAB and BABABA maximally different – temporal rigidity
Less of a problem with life course data, typically has long
runs in same state
Buchmann and Sacchi (1995) factor analyse occupational
characteristics to define inter-occupational distances
Lesnard (2006) proposes a “dynamic” Hamming distance
for time-diary data: distances defined by transition rates
between activities, varying throughout the day
If time has a meaningful ruler (as with daily time use)
Hamming’s time-rigidity is a positive advantage
For more elastic “developmental” time, perhaps less
appropriate
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Pairwise Distance

Degenne to Elzinga

Degenne’s method promising but untried
Dijkstra–Taris more or less directly superseded by OMA
Elzinga’s method shows a lot of promise, plus has strong
intuitive basis
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The Optimal Matching Algorithm–detail

Given two sequences, s1 and s2, drawn from an “alphabet”
S, the Optimal Matching Algorithm generates a distance
measure based on “elementary operations”:

substitution and
insertion and deletion

Substitution replaces an element in s1 with the
corresponding element in s2

Insertions and deletions equivalently delete an element in
s1 or insert an element in s2 (or vice versa); because of the
equivalence they are known as indels
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The Optimal Matching Algorithm–distance

The distance between s1 and s2 is defined as the least
expensive path from one to the other using the elementary
operations
OMA allows a matrix of costs for all pairwise
substitutions, and an indel cost to be specified
The OM algorithm is a dynamic programming technique
which finds the “cheapest” path in a time- and
memory-efficient manner
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Abbott’s evangelism

Andrew Abbott has been the main evangelist for OMA in
sociology
A string of articles from Abbott and Forrest (1986), Abbott
and Hrycak (1990) etc.to a retrospective review (Abbott
and Tsay, 2000) with a related debate (Levine, 2000; Wu,
2000; Abbott, 2000)
In Abbott (1995a), demonstrates OMA to be more general
than Dijkstra–Taris
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OM in social science literature

OM is becoming widely used, particularly since Götz
Rohwer incorporated it in TDA

Class careers: Halpin and Chan (1998)
Women’s careers in finance: Blair-Loy (1999)
Transition from school to work: Scherer (2001), McVicar
and Anyadike-Danes (2002)
Methods paper: Brüderl and Scherer (2004)
Male careers: Anyadike-Danes and McVicar (2005)
Time use: Wilson (2006)
Gendered careers: Levy et al. (2006)
Housing, employment, marriage, fertility: Pollock (2007)

More recently, Kohler et al have released a Stata package,
SQ, for OMA
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Problems with OM for lifecourse data

For sequences that are naturally discrete in time, OM
works well
But life course sequences are have highly variable spell
lengths, and the discrete representation may not suit OM
as well
For instance, given s1 = ABBD, s2 = ABCD, s3 = ABDD, all
three sequences will be equidistant
But sociologically, s1 and s3 are clearly closer
OM doesn’t recognise the continuity; a slight adjustment
of spell length is treated as being as expensive as the
introduction of another spell
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Change the time scale?

One suggestion (Abbott made it in early work) is to change
the time scale: use log time, for instance
However, this exacerbates the discretisation
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Modifying the OM algorithm

I propose instead a modification of the OM algorithm that
has an analogous effect: scale the costs of elementary
operations according to the length of the affected spells
There are limits to what we can change in the algorithm
without degrading its performance
In particular, the algorithm has no memory (e.g., “now
deleting an element from this spell for the second time”)
However, we can take account of spell length in setting
costs

15



The OM algorithm in detail

I begin by outlining the operation of the OM algorithm
It uses dynamic programming techniques to efficiently
determine the cheapest set of edits to transform one
sequence into another – hence “optimal”
Operates by calculating the elements of a matrix where
each element Ci j = min(ci−1, j−1 + ! i, j, ci, j−1 + � , ci−1, j + � ),
! is the substitution matrix, and the first row and column
are filled with the cumulative insertion/deletion costs
A diagonal move represents a substition, right represents
deletion, down represents insertion
Bottom right cell eventually contains the optimal cost
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Working through OM

Cell value: min(ci−1, j−1 + ! i, j, ci, j−1 + � , ci−1, j + � )
= min(0 + 2, 2 + 2, 2 + 2) = 2
= min(2 + 1, 2 + 2, 4 + 2) = 3
= min(4 + 0, 3 + 2, 6 + 2) = 4
= min(6 + 1, 4 + 2, 8 + 2) = 6

s2

s1
A B C D

C 2 1 0 1
D 3 2 1 0
A 0 1 2 3
A 0 1 2 3
B 1 0 1 2

0 2 4 6 8
2 2 3 4 6
4 4 4 4 4
6 4 5 6 6
8 6 5 7 8

10 8 6 6 8
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Tracing the operations

To convert ABCD into CDAAB the following set of operations
gives the cheapest path:

Operation Intermediate state Cost
ABCD = 0

insert C CABCD +2 = 2
insert D CDABCD +2 = 4
const A = A CDABCD +0 = 4
subs B→A CDAACD +1 = 5
subs C→B CDAABD +1 = 6
delete D CDAAB– +2 = 8

Where sequence lengths are variable the distance is often
scaled inversely with the longer of the pair: 8 units thus
become an pairwise distance of 1.6
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Efficient

This strategy calculates the optimum path efficiently
Memory requirements are proportional to l1 × l2

Time requirement is a + b(l1 × l2)
Both are small relative to the O(N2) required to process
every pairwise comparison between N sequences
Nonetheless, for realistic data sets the procedure completes
acceptably fast
However, adaptations of the algorithm risk destroying its
efficiency, for instance by requiring exponentially growing
memory or processing time
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Variant OMA

The modified algorithm I propose treats spell length in the
following manner

single unit spell costed as per OM
total cost of a multiple unit spell to be strictly increasing in
length
cost of each unit to be strictly decreasing with length of
spell

Costing units at basecost× 1√
len

achieves this:

Cost of 1 unit spell: basecost× 1
Cost of 2 unit spell:
basecost× (0.707 + 0.707) = basecost× 1.414, etc.

So will other exponents, other functions
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Indel and substitution

Insertion and deletion costs are modified directly and
equally, as they are equivalent: an insertion in s1 is
equivalent to a deletion in s2

Substitution costs must also be modified, as a substitution
is a deletion followed by an insertion
The direction of the substitution is unimportant, so we cost
it as if it involved a deletion in the longer subsequence
If s1i is unique, and s2 j is part of a run of two, the
substitution cost is divided by

√
2

If s1i is one of three and s2 j one of two, division is by
√

3
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The matrix operations

s2

s1
A B C D

C 2 1 0 1
D 3 2 1 0
A 0 0.7 1.4 2.1
A 0 0.7 1.4 2.1
B 1 0 1 2

0 2 4 6 8
2.0 2.0 3.0 4.0 6.0
4.0 4.0 4.0 4.0 4.0
5.4 4.0 4.7 5.4 5.4
6.8 5.4 4.7 6.1 6.8
8.8 7.4 5.4 5.7 7.7
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Typical sequences compared

Sequences OMA New variant
A B exp = 0.5 exp = 0.75

1 2 3 4 3 2 3 4 1 4 1.00 1.00 1.00
1 2 3 4 3 2 2 2 1 3 1.00 0.83 0.78
1 2 3 4 3 2 2 2 2 2 1.00 0.45 0.30
2 3 4 1 4 2 2 2 1 3 0.80 0.55 0.46
2 3 4 1 4 2 2 2 2 2 1.20 0.54 0.36
2 2 2 1 3 2 2 2 2 2 0.40 0.18 0.12
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Implementation

Implemented in Stata
C plugin, platform dependent, fast, relatively simple code
Platform independent Mata implementation also possible,
but very slow by comparison
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Simulated data

Tests are run with simulated data, 4 states, 20 time-units,
with

a low probability of multiple observations in sequence (82%
of cases have max run of ≤ 2)
a medium probability (79% ≤ 5)
and a higher probability (79% ≤ 11)

As expected, the higher the presence of runs the lower the
mean scores
But correlations remain high, even excluding matches
between identical sequences (distance zero)
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Correlations

All Non-identical
Low Pearson 0.9978 0.9496

Spearman 0.9984 0.9420
Med Pearson 0.9931 0.8092

Spearman 0.9946 0.7985
High Pearson 0.9821 0.8128

Spearman 0.9949 0.8132
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Correlation of OMA and OMAv: low level of runs
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Correlation of OMA and OMAv: medium level of runs
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Correlation of OMA and OMAv: high level of runs
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Empirical typologies

But what about real data and the “end product”?
Typically “empirical typologies” generated by cluster
analysis
Using BHPS fertility and labour market histories, I
construct 5-year labour market histories for women: 2
years before and 3 years after a birth
Encoded as monthly status, 4 states:

Full-time employed
Part-time employed
Unemployed
Not in labour market
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OM costings

Substitution matrix:

FTE 0 1 2 3
PTE 1 0 1 2
UE 2 1 0 1
NonE 3 2 1 0

Indel cost: 2 units

31



Correlation of OMA and OMAv: labour market data
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Results

Correlation of 0.97 between OMA and OMAv, excluding
identical sequences – higher than expected
Spearman correlation similar
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Cluster solution

Fit an 8 cluster solution to both data sets
By inspection gives an acceptable result
Very high level of agreement, especially for “low entropy”
sequences (i.e., near 100% dominated by a single state)
Less agreement where more is “going on”
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Comparing the eight-cluster solution

OMAv OMA Total
1 2 3 4 5 6 7 8

1 (slide 32) 263 27 0 0 0 2 1 0 293
2 (slide 33) 0 39 7 0 2 0 0 0 48
3 (slide 34) 0 0 18 0 0 0 0 0 18
4 (slide 35) 0 0 19 54 1 0 0 0 74
5 (slide 36) 0 0 0 0 33 0 0 0 33
6 (slide 37) 0 1 0 0 0 21 0 0 22
7 (slide 38) 0 0 0 0 0 3 18 0 21
8 (slide 39) 0 0 27 0 0 0 0 139 166
Total 263 67 71 54 36 26 19 139 675

(41,42)
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8 cluster solution – OMA (left) and OMAv (right)

0 20 40 60 80
Months

0 20 40 60 80
Months

(Table: slide 30)
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Cluster 1 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 2 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 3 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 4 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 5 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 6 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 7 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Cluster 8 – OMA (left) and OMAv (right)

0 20 40 60 80
Months

FTE PTE
UE NonE

0 20 40 60 80
Months

FTE PTE
UE NonE

(Table: slide 30)
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Comparing the clusters

High agreement
Two major sources of disagreement

27 cases move from OMA cluster 2 to OMAv cluster 1
OMA cluster 3 scattered across OMAv clusters 2, 3, 4 and 8

The 27 OMA cluster 2 cases are arguably better off in
cluster 1 (dominated by non-employment) than cluster 2,
where early unemployment is matched to early
FT-employment
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OMA Cluster 1/2 split

0 20 40 60 80
Months

(Table: slide 30)
46



OMA Cluster 3 split

0 20 40 60 80
Months

(Table: slide 30)
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OMA Cluster 3 details

Cases moved to cluster 8 are initially FTE with lots of
transitions in and out of employment later, and are moved
to the predominant FTE cluster
Those moved to cluster 4 transition from FTE to PTE
around the birth, and largely stay there, and merge with
the predominant PTE cluster
Those that remain in cluster 3 are a distinct group: initially
FTE, try to remain in the labour market but finally drop out
to cluster 4: FTE with late shift to PTE, matched to
predominant FTE cluster
Those that move to cluster 2 are also initially FTE but drop
out, typically with a short spell of PTE, and are matched
with very similar trajectories that do not have the short
PTE spell
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Conclusions

OMAv and OMV generate very but not completely similar
results
To the extent that they differ, it is arguable that it gives a
superior clustering of the more complicated trajectories
Extent of similarity is greater than I had expected

Conventional OMA may be adequate where all sequences
characterised by long runs
Greater mix of long and short runs may be different – result
is likely to depend on the data to some degree

As seen, the differences are greatest in the clusters
characterised by higher “entropy” sequences – these are
the ones most sensitive to the distance measure; even naı̈ve
matching (e.g., Hamming) will match the simple cases
“More research is needed”
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