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Sequence analysis and lifecourse data

» What does SA do for us with lifecourse data?

» Life course data: long spells, few states, important
individual characteristics and an “interesting” time
dimension

» What does clustering pairwise inter-sequence do for us?

» Descriptive overview, visualisation — enough?
» Can it pick up things other techniques miss?

» Today | discuss using simulations, both “artificial” and

data-based, to address this question
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Sequences are messy

» Lifecourse sequences are epiphenomena of more
fundamental underlying processes

> The processes are potentially complex: difficult to
predict distribution of sequences

» Other techniques (hazard rate models, models of late
outcome using history, models of the pattern of
transition rates) give a powerful but partial view

> SA clearly allows us visualise complex data; possibly
allows us observe features that will otherwise be missed
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Processes
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» The generating processes are complex:
» individuals bring different characteristics from the
beginn [ ng Potentially complex
» history matters, including via duration dependence process
(individuals accumulate characteristics)
> time matters:

> calendar time (e.g. economic cycle), state distribution
may change dramatically
> developmental time (maturation)
processes in other lifecourse domains
» Too many parameters to model, hard to visualise
distribution of life courses, also the possibility of
emergent features




Outline of the presentation
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> Use of “ideal” simulations to test how well SA can —
. . . processes
recover information about the generative processes

» Looking at an alternative visualisation of sequence
structure: a time-dependent average transition matrix

» Using this structure to create data-based simulations, to
ask more precise questions of the sequence analysis,
including some simple hypothesis testing




Simple simulation

Brendan Halpin

> The purpose of the first exercise is to simulate sets of
sequences with a very simple, known structure, and
examine how our usual practice (cluster analysis of
pairwise OM distances) can recover this structure

» A 3-state space, sequences 40 units long Pure simulations
» Four simple scenarios:

» Two distinct transition matrices, constant over time

» One transition matrix, but two different rates of
transition

» One matrix, subgroup is initially faster, then slower

» One matrix, subgroup is forced to state 3 at a random
point

» Unrealistic, little structure, no history, time almost
absent




Simulation process

» The test is whether the cluster solution is associated
with the generating type

> Association is a much weaker requirement than actually
recovering the type information

» 1000 sequences generated at a time, different cluster
solutions considered, underlying rate of transition varied
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Summary result

Mean p-value of x? test, 16-cluster solution

Monthly  Different  Forced Different  Changing
transtion matrices state at rates of rates of
rate random transi- transi- bure simubations
point tion tion
2% 0.037 0.000 0.048 0.041
5% 0.055 0.000 0.026 0.011
10% 0.090 0.023
15% 0.107
18% 0.133

These distributions are skewed, so the proportion significant
is higher than the average would suggest. The 0.037 in the
first simulation corresponds with 60% of cases with p < 0.01.




More detail: scenario 1

» Sequences are assigned to a random starting point

» Two transition regimes:

Type 1 Type 2

A B C A B C
A 080 0.10 0.10 0.80 0.16 0.04
B 0.10 0.80 0.10 0.04 0.80 0.16
C 0.10 0.10 0.80 0.16 0.04 0.80

State distribution won’t change, is the same across
type, mean number of spells is the same across type

v

v

“Threshold” parameter to vary monthly rate of change

v

Type 2 will simply generate more A, B, C sequences
etc., than type 1




Distribution of x? p-values, by rate of transition
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Association, not recovery of pattern
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» We that for the 16-cluster solution we have a very good
chance of detecting the structure

» However, we can't “recover”’ the structure so easily St 1
» Inspection of the cluster solution is interesting

> But even enumerating sequences according to their
structure (e.g., counts of AB, BC and CA transitions)
will only correctly identify about 60% of them




Cluster solution
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Cluster solution: some key groups
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Parameterising OM
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» We can use this framework to explore the effect of indel
and substitution costs

> Indel costs can vary from half the max substitution cost
up — low values make it easy to detect similarity at
different times, higher values reduce OM to Hamming Parameterising OM
distance

» The base simulation uses a substitution cost based on
the three states being equally different (“flat” or 2-D
solution)

» What if A— C is twice A — B ("linear” or 1-D
solution)




Parameterising OM: Varying indel costs
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Parameterising OM: Varying substitution costs
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Time-warping
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» An alternative distance measure to OM
» Local expansion and compression of the time dimension

» Subtly different logic, similar to implement, somewhat
different results

» Described (as TWED) by Marteau (2007, 2008),
implemented as a Stata plugin

Time-warping

» See http://teaching.sociology.ul.ie/seqganal/
naplestw.pdf for more info

» What difference does it make here?



http://teaching.sociology.ul.ie/seqanal/naplestw.pdf
http://teaching.sociology.ul.ie/seqanal/naplestw.pdf

TWED and OM in 2-matrix scenario
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TWED and two-speed scenario
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TWED and forced event scenario
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TWED and fast-then-slow
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TWED vs OM
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» In the two-matrix scenario, TWED performs a little
better than OM at low numbers of spells, but in
contrast to OM improves as the number of spells
increases.

» TWED is also competitive with OM in the two-speed
and fast-then-slow scenarios

Time-warping

» The forced event scenario shows OM doing well: OM
may be better at dealing with states at approximate
times, TWED better at recognising sequence.

» Conclusion: The distance measure matters and OM is
not the last word.




Taking transition rates seriously
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» The foregoing simulations hinge on the structure of
transition rates
> Let's apply this to real data:
» First as a visualisation of the temporal structure of -
L. ime-dependent
transitions transition regime
» Second using this structure as a base for simulations
against which we compare the reality.




Visualising the temporal structure of transition
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» Sequences are generated by a complex, messy set of
processes

» Individual difference, state dependence and temporal
change are all likely to be important

» However, we can readily account for time by calculating Visualising transition
rates
the M x M x (T — 1) transition structure




Example: Mothers’ labour market sequence data
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» Five years labour market history of women who have a
birth at end of year 2

» Simple chronogram is informative but incomplete

> Cluster solution gives a digestible but messy overview Visualising transiton

rates




Mothers' labour market sequence 8-cluster
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Temporal structure of transitions
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Cluster solution, MVAD data
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Temporal structure, MVAD data
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Comparing real and simulated, x? test p-values

Groups Births MVAD IMS BHPS

2  mean 0.388 0.559 0.502 0.612
median  0.384 0.617 0.509 0.650
4  mean 0.003 0.415 0.506 0.623
median 0.000 0.377 0.502 0.694
8  mean 0.000 0.262 0.291 0.313
median 0.000 0.188 0.153 0.150
16 mean 0.000 0.024 0.023 0.024

Data-based

median  0.000  0.000 0.001 0.002 simulation
32 mean 0.000 0.000 0.005 0.019
median  0.000  0.000 0.000 0.002




Simulated vs Real

Single run of birth s
[ k)
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Simulated vs Real

KEY: Full-time work Il Part-time work llll Unemployed Il Not available
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