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Lecture 0: Course Outline

2024/5 course outline

SO5032 Spring 2024/5 – Module outline

Module Code: SO5032
Module Title: Quantitative Research Methods II (MA)
Academic Year: 2024/5
Semester: Spring
Lecturer(s): Dr Brendan Halpin
Lecture Locations: Mon 12-1400 CG055; Lab Tue 12-1400 A0060a
Lecturer(s) Contact Details: brendan.halpin@ul.ie
Lecturer(s) Office Hours: Monday 1430-1730
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Short Summary of Module:

Intermediate quantitative research methods for sociology, following on from
SO5041.
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Aims and Objectives of Module:

• A continuation of SO5041 – builds on what was learnt there

• A deeper look at methods already covered, especially regression

• Related methods more suited to social science data: methods for categorical
and ordinal variables, including logistic regression

• Further use of Stata:
• Use in a production environment – do-files, logging, reproducibility
• More complex data handling
• Further analytic procedures

• Secondary analysis: real research with existing data sets
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Learning Outcomes:

• Deeper understanding of methods for analysis of categorical data

• Understanding of the nature of multivariate causality

• Understanding of the theory and practice of multiple linear regression

• An understanding of some methods for regression with categorical dependent
variables

• Deeper understanding of sampling practice and theory

• Practical skills for accessing and analysing large-scale data sets

• An ability to read quantitative social research

• Greater competence in Stata, particularly for handling larger projects
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Course Structure:

One two-hour lecture per week, one two-hour lab per week.
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Detailed outline

• Revisit χ2, look at methods for more complex analysis of categorical (nominal
and ordinal) data (chapter 8, Agresti)(1-2 weeks)

• Multivariate causality (chapter 10 from Agresti) (1 week)

• Multiple regression (chapters 11, 14 from Agresti) (3 weeks plus)

• More sampling theory: clusters, strata, weighting (1 week)

• Data sets, data archives and secondary analysis (1 week, ongoing in labs)

• Logistic regression: regression where the dependent variable is binary (or
multinomial) rather than continuous (chapter 15 from Agresti) (3 weeks plus)

• Reading statistical research – what gets published and how to read it (1-2
weeks/on-going)
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Lecture topics by week

Week Topic Lecture Lab
beginning Mon 12-1400 Tue 12-1400
1: Jan 27 Categorical data, association in tables X X
2: Feb 03 Association in ordinal data X X (lecture)
3: Feb 10 Understanding multidimensional causality X X
4: Feb 17 Introducing multiple regression X X
5: Feb 24 Further multiple regression X X
6: Mar 03 Multiple regression: residuals & influence X X
7: Mar 10 Regression with logged dependent variables X X
8: Mar 17 Introducing logistic regression X X (lecture)
9: Mar 24 Further logistic regression X X
10: Mar 31 Multinomial regression X X
11: Apr 07 Multinomial and ordinal regression X X
–: Apr 14 Easter break
12: Apr 21 Ordinal regression continued X X (lecture)
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Texts

• Main text: Agresti, Statistical Methods for the Social Sciences – particularly
chapters 8, 10, 11, 14 and 15

• Supplementary texts:
• de Vaus, Surveys in Social Research: good on survey methodology
• Agresti, Introduction to Categorical Data Analysis
• Pevalin and Robson, The Stata Survival Manual
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Details of Module Assessment:

• Three assignments, weeks 6, 11 and 15.

• The first two assignments are worth 20% each.

• The final assignment is a project, worth 60%, and should be worked on
throughout the semester (see below).
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Details of Annual Repeats:

A 100% assignment, to be submitted in the examination period.
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BrightSpace and Other Classroom Technologies:

• The module will use BrightSpace for submission of assignments and for
provision of materials.

• https://teaching.sociology.ul.ie/so5032 may also be used
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IN TERM ASSIGNMENT(S):

• Assignment 1: Homework exercises relating to linear regression.
• Marks: 20%
• Deadline: End week 6

• Assignment 2: Homework exercises relating to categorical data analysis.
• Marks: 20%
• Deadline: End week 11

• Assignment 3: A project This will involve the use of large-scale survey data,
and require the formulation of a research question, and its addressing using
statistical analysis.

• Marks: 60%
• Deadline: End week 15.
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FEEDBACK:

Detailed feedback on assignments 1 and 2 will be given in weeks 8 and 13, by
e-mail and on request face-to-face. Feedback on assignment 3 will be provided on
request after the semester.
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Plagiarism notice

It hardly needs to be said, but all work must be your own. All material drawn from
other sources must be clearly attributed. Passing off others’ work as your own is
considered academic dishonesty, and can be subject to substantial penalties.
Please familiarise yourself with the departmental policy on plagiarism and use the
coversheet declaration with all assignments (both available at
https://www.ul.ie/sociology/ under Student Resources).

15

Deadline policy

Please also note the Department’s policy on deadlines, also available at
https://www.ul.ie/sociology/ under Student Resources.

16



Lecture 1: Categorical data
analysis

Categorical data analysis

Association between categorical variables

• Association between categorical variables: departure from independence

• Visible in patterns of percentages
• Three main questions (cf Agresti/Finlay p265)

• Is there evidence of association?
• What is the form of the association?
• How strong is the association?
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The χ2 test

• Compare observed values with expected values under independence:

E =
RC
T

χ2 =
∑ (O − E)2

E

• For frequency data, and for large samples the χ2 statistic has a χ2 distribution
with df = (r − 1)(c − 1)

• Interpretation: chance of getting a χ2 this big or bigger if H0 (independence) is
true in the population
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The χ2 distribution

App: http://teaching.sociology.ul.ie:3838/apps/chidist
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Limitations of χ2

• Large sample required: most expected counts 5+

• For frequency or count data, not rates or percentages

• Tests for evidence of association, not strength (see Agresti/Finlay Table 8.14,
p 268)

• Looks for unpatterned association, may miss weak systematic association
between ordinal variables
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Pattern of association

• The form association takes is interesting

• We can see it by examining percentages

• Or residuals: O − E

• But residuals depend on sample and expected value size
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Pearson residuals

• “Pearson residuals” are better:
O − E√

E

• Square and sum these residuals to get the χ2 statistic
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Adjusted Residuals

• The sum of squared Pearson residuals has a χ2 distribution, but individually
they are not normally distributed

• Adjusted residuals scale to have a standard normal distribution if
independence holds:

AdjRes =
O − E√

E(1− πr )(1− πc)

• Adjusted residuals outside the range -2 to +2 indicate cells with unusual
observed values (< c5% chance)

• Adjusted residuals outside the range -3 to +3 indicate cells with very unusual
observed values
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Measures of association

• Evidence, pattern, now strength of association
• A number of measures

• Difference of proportions
• Odds ratio
• Risk ratio (ratio of proportions)

• Focus on 2 by 2 pairs, but can be extended to bigger tables
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Difference of proportions

No association
Favour Oppose Total

White 360 240 600
Black 240 160 400
Total 600 400 1000

Maximal association
Favour Oppose Total

White 600 0 600
Black 0 400 400
Total 600 400 1000
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Difference in proportions

• Difference in proportions (i): 360
600 − 240

400 = 0.6− 0.6 = 0

• Difference in proportions (ii): 600
600 − 0

400 = 1− 0 = 1

• Range: -1 through 0 (no association) to +1

26

Relative risk

• “Relative risk” of ratio or proportions is also popular

• The ratio of two percentages:

RR =
n11/n1+

n21/n2+

where n1+ indicates the row-1 total etc.

• Range = 0 through 1 (no association) to∞
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Odds ratios

• Odds differ from proportions/percentages:
• Percentage: πi = fi

Total
• Odds: Oi = fi

Total−fi
= πi

1−πi

• Odds ratios are the ratios of two odds:

OR =
n11/n12

n21/n22

• Range: 0 though 1 (no association) to∞
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Odds ratios

• Odds ratio (i):
360
240
240
160

= 1.5
1.5 = 1

• Odds ratio (ii):
600

0
0

400
= ∞

0 =∞
• Range: 0 through 1 (no association) to +∞
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Comparing measures

• Difference of proportions is simple and clear

• Ratio of proportions/Relative Risk is also simple

• Odds ratio is less intuitive but turns out to be mathematically more tractable

• DP and RR less consistent across different base levels of “risk”
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Ordinal Data

• χ2 may miss ordinal association

• Symmetric ordinal measures based on concordant and discordant pairs: γ
(gamma), Kendall’s τ (tau).
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Lecture 2

Reading (for this and last week):

• Agresti, Chapter 8
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Lecture 2

• Expected values, residuals, adjusted residuals in Stata

• Ordinal association

• Association in multi-way tables

• Multivariate causality
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Tabular association in Stata

tabchi procedure allows access to

• Percentages

• Expected values

• Residuals

• Adjusted residuals
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Ordinal association

• When variables are ordinal, association may be structured

• High values on X are associated with high values on Y, low with low

• Or vice versa for negative association

• Analogous to correlation

• Examine using percentages, adjusted residuals: ordered pattern

35

Example: row percentages
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Example: observed and expected values
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Example: adjusted residuals
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Measures of ordinal association

• Sometimes Pearson’s Correlation is used

• Equivalent to scoring the categories linearly and calculating the conventional
correlation
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Non-linear correlation

• Assumption of equal intervals problematic (but often reasonably OK)

• Spearman’s Rank Correlation is a better solution
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Truly ordinal measures

• The Gamma statistic (γ) is truly ordinal

• Counts “concordant” and “discordant” pairs

γ =
C − D
C + D

• Range: -1, 0, 1

• Approximately normal for large samples

41

Gamma in practice

42



Variants

• Gamma is symmetrical

• Kendall’s tau (τ ) is also symmetrical, similar logic

• Somer’s d also uses C + D but is asymmetrical: one variable affecting another
(takes account of ties)
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Multi-way tables

• How do we think in terms of multi-way tables – more than two dimensions?

• Often, in terms of whether the A× B relationship is constant across C
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Scouting example

Scout Delinquent

Yes No Total
Yes 36 364 400
No 60 340 400

Total 96 704 800
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Scouting example

Low Church Attendance
Scout Delinquent

Yes No Total
Yes 10 40 50
No 40 160 200

Total 50 200 250

Medium Church Attendance
Scout Delinquent

Yes No Total
Yes 18 132 150
No 18 132 150

Total 36 264 800

High Church Attendance
Scout Delinquent

Yes No Total
Yes 8 192 200
No 2 48 50

Total 10 240 250
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Multidimensional causality

• Regression analysis never proves causal relationships, but it "thinks" in causal
terms

• To use it we need to understand causal relationships: what process generates
the data we see, and what can regression tell us about it.

• Start by considering the relationship between variables and patterns of
association
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3-variable pictures

• Let’s consider patterns of causality and association between three variables,
X1 and X2, and Y

• If X1 and X2 are not correlated with each other, their separate effects on Y
more or less just add up
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Correlated X variables

• But if X1 and X2 are correlated, things can get funny:

• In particular, if we measure the effect of one X without taking account of the
other we will likely over-estimate it
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Spurious association

• X1 may have an association with Y, implying a causal relationship

• But if X2 affects both X1 and Y the relationship between X1 and Y may be
spurious
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Indirect effects

• Where there is a time-order (X1 before X2), we may see direct and indirect
effects

• X1 may affect X2, which affects Y, but not affect Y directly

• Thus there is association between X1 and Y without a direct causal effect
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Direct and indirect effects

• However, it is possible for both direct and indirect effects to be present at the
same time
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Suppression

• Where X1 and X2 have positive effects on Y, but a negative correlation, or
different effects on Y with a positive correlation, the association between X1
and Y may be suppressed

• That is, it may be invisible if we don’t take account of X2

53

Interactions

• An interaction effect is where the effect of one variable on Y changes
depending on the value of another
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Lecture 3: Multidimensional
causality

Multiple regression

Multiple explanatory variables

• Regression analysis can be extended to the case where there is more than
one explanatory variable – multivariate regression

• This allows us to estimate the net simultaneous effect of many variables, and
thus to begin to disentangle more complex relationships

• Interpretation is relatively easy: each variable gets its own slope coefficient,
standard error and significance

• The slope coefficient is the effect on the dependent variable of a 1 unit
change in the explanatory variable, while taking account of the other variables
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Example

• Example: income may be affected by gender, and also by paid work time:
competing explanations – one or the other, or both could have effects

• We can fit bivariate regressions:

Income = a + b × PaidWork

or
Income = a + b × Female

• We can also fit a single multivariate regression

Income = a + b × PaidWork + c × Female
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Dichotomous variables

• We deal with gender in a special way: this is a binary or dichotomous variable
– has two values

• We turn it into a yes/no or 0/1 variable – e.g., female or not

• If we put this in as an explanatory variable a one-unit change in the
explanatory variable is the difference between being male and female

• Thus the c coefficient we get in the Income = a + b×PaidWork + c × Female
regression is the net change in predicted income for females, once you take
account of paid work time.

• The b coefficient is then the net effect of a unit change in paid work time, once
you take gender into account.
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Income, hours and gender
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Income, hours and gender
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T-test: Income by gender
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Regression: Just hours
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Regression: Hours and binary gender

62

Regression: for men only

63

Regression: for women only
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Regression: interaction

65

Regression: Direct and indirect 1
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Regression: Direct and indirect 2
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Regression: Direct and indirect 3
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Regression: Direct and indirect 4

69

Outline

• Multiple regression

• Formula, Interpretation

• Hypothesis testing

• Goodness of fit: residuals and R2

• Agresti, Ch 11
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Lecture 4: Summary of multiple
regression

Formula

Formula for multiple regression

Y = β0 + β1X1 + β2X2...+ βkXk + e

e ∼ N(0, σ)

• Interpretation of βj

• How much Ŷ changes for a 1-unit in Xj holding all other values constant
• The estimated effect on Y of a 1-unit change in Xj, "controlling for" or "taking

account" of all the other Xs
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Predictions

Ŷ = β0 + β1X1 + β2X2...+ βkXk

• Enter values for all X variables to get a prediction for those values

• If we increase Xi by 1, holding all others the same, Ŷ changes by βi
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Simplest example

• Simplest multiple regression model adds a binary variable to a model with a
continuous X
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Predicted lines: one for each value of sex
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More general 2 X-variable example
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Effect of experience on wage, controlling for grade
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Effect of grade on wage, controlling for experience

See https://teaching.sociology.ul.ie/so5032/ttlgradelin.html
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Residuals

Ŷ = β0 + β1X1 + β2X2...+ βkXk

Y = Ŷ + e

e ∼ N(0, σ)

• Mean of zero

• Standard deviation of σ (RMSE)

• Normally distributed

• Should have no structured relationship to X variables
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Lecture 4: Summary of multiple
regression

R2

R2

• R2: coefficient of multiple determination

• TSS = sum of squared deviation from the mean =
∑

(Yi − Ȳ )2

• RSS = sum of squared deviation from the regression prediction =
∑

(Yi − Ŷ )2

• R2 = TSS−RSS
TSS

• Range: 0 (no relationship) to 1 (perfect linear relationship)

• PRE: Proportional Reduction in Error

79

R2 and correlation

• In bivariate regression, R2 is the square of the correlation coefficient between
Y and X

• In multiple regression, it is the square of the correlation between Y and Ŷ

• (In bivariate regression the correlation between X and Ŷ is 1)
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Lecture 4: Summary of multiple
regression

Hypothesis testing

Hypothesis testing: one parameter at a time

• t-test: abs(β̂j/sej) > t
• Interpretation:

• Null: population value of β is 0; this variable has no influence once the other
variables are taken account of
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Example
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Hypothesis testing: all parameters together

• F-test:
• β1 = β2 . . . = βk = 0

• Null hypothesis: no X variable has an effect once the others are taken care of.

• A "global" test: the null is that there is no relevant variable in the model

• Calculation based on TSS and RSS, but also number of cases and number of
parameters estimated

• Uses F distribution (two df parameters: k and n-k-1, k is number of
parameters, n the number of cases)
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Hypothesis testing: additional parameters

• Delta F-test compares "nested" models
• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg

• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg + βhXh...+ βk Xk

• Null hypothesis: βh = . . . = βk = 0

• That is, given the variables already in the model, the additional variables
contribute no explanatory power.

• Useful when adding multi-category variables, or related groups of variables

84

Dummy variables

In regression models we often use "indicator coding" or "dummy coding"

With a two-category variable, we set one category to 0 and the other to 1 and
interpret it as the effect of being in the second category (e.g., female) compared
with the first.
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More than two categories

With more that two categories we create a set of binary variables, "indicator
variables" or "dummy variables":

d1 d2 d3 d4
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

For m categories, m-1 dummy variables are sufficient.

We interpret the parameter as the estimated effect of being in that category
relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.
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Example
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Interactions

• An interaction effect is where the effect of one variable on Y changes
depending on the value of another
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Income, hours and gender

89

For men

90

For women

91

Different effects

92



Interaction in regression

• We can capture interaction effects with a regression model of this form:

Ŷ = β0 + β1X1 + β2X2 + β3X1X2

• That is, a 1-unit increase in X1 leads to a β1 + β3X2 increase in Ŷ

• Equivalently, a 1-unit increase in X2 leads to a β1 + β3X1 increase in Ŷ

93

Interaction between hours and sex

• Simplest example: one variable is binary

Ŷm = β0 + β1X1 + β2 × 0 + β3X1 × 0

Ŷf = β0 + β1X1 + β2 × 1 + β3X1 × 1

94

One-unit increase

If X1 increases by 1 unit, Ŷ changes:

∆Ŷm = β1

∆Ŷf = β1 + β3

95

Stata: by hand

• First create an interaction variable:

gen female = sex == 2

gen intvar = hours*female

• Then fit the regression:

reg income hours female intvar

96

Results

97

Stata’s formula syntax

• But more convenient to use Stata’s formula syntax

reg income c.hours##i.sex

• i.sex means treat sex as categorical

• c.hours#i.sex creates the interaction between hours (continuous, c.) and
sex

• c.hours##i.sex puts both the interaction and the first order terms in the
model
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Same results using Stata’s formula syntax
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Predictions

Sex Hrs β0 β1 β2 β3 ŷ
M 0 983.9722 + 0*28.71923 + 0*-653.2448 + 0*0*9.399515 = 983.9722
M 80 983.9722 + 80*28.71923 + 0*-653.2448 + 80*0*9.399515 = 3281.5106
F 0 983.9722 + 0*28.71923 + 1*-653.2448 + 0*1*9.399515 = 330.7274
F 80 983.9722 + 80*28.71923 + 1*-653.2448 + 80*1*9.399515 = 3380.227
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Interactions between two continuous variable
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Without interaction, predictions for different levels of grade
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With interaction

See also https://teaching.sociology.ul.ie/so5032/ttlgradeint.html and
https://teaching.sociology.ul.ie/so5032/ttlgradelin.html
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Lecture 5: Interaction and
Non-linearity

Non-linear linear regression

Birth rate and GNP example

do http://teaching.sociology.ul.ie/so5032/birth

sort gnp

label var bir "Birth Rate"

label var gnp "GNP Per Capita"

lowess bir gnp, title("Birth rate and GNP per capita for selected countries")
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Nonlinear plot

Figure shows a non-linear relationship.

(Line is lowess)

105

Get linear relationship

reg bir gnp

predict plin

scatter bir plin gnp|| line plin gnp
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Linear plot

107

Quadratic

Linear regression doesn’t fit well

Clearly, as GNP rises BIR falls, but the rate of fall declines

Let’s try quadratic:

108

Quatratic plot

predict pquad

scatter bir pquad gnp|| line pquad gnp
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√
GNP

Let’s try square root of GNP:

110

√
GNP plot

predict psqrt

scatter bir psqrt gnp|| line psqrt gnp
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log(GNP)

Let’s try the log of GNP:

112

log(GNP) plot

predict plog

scatter bir plog gnp|| line plog gnp
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Log-scale plot

scatter bir plog gnp, xscale(log)|| line plog gnp, xscale(log)
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Square root and log compared

label var sqg "Sq Root GNP"

label var lg "Log of GNP"

scatter sqg lg gnp

115

Residuals

Y = b0 + b1X1 + ...+ bkXk + e

e ∼ N(0, σ)

116

Characteristics

• Residuals will
• have mean 0
• be as small as possible
• have no linear relationship to X variables

• Residuals should
• be approximately normally distributed (symmetric is often enough)
• not have a non-linear relationship to any X variable
• have a constant spread, that is not related to X or Y values

• If correlated with variables not in the model, perhaps those variables should
be included
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Examining residuals: ideal
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Examining residuals: Non-linear

119

Examining residuals: asymmetric

120

Examining residuals: heteroscedasticity

121

Examining residuals: Spotting outliers

122

Examining residuals: Influence of outliers

123

Lecture 6: Residuals and Influence

Influence

Outliers may have undue influence

• dfbeta

• Cook’s distance

124

DFBETA

• For each variable in the regression, for each case

• The effect of dropping that case on that variable

• Scaled by the standard error:
b − b∗

SE
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Cook’s Distance

• A single number summarising each case’s overall influence

• A scaled sum of changes in predicted Y

126



Outlier interactive app

https://teaching.sociology.ul.ie/apps/influence/
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Birth rate and GNP example

do http://teaching.sociology.ul.ie/so5032/birth

sort gnp

label var bir "Birth Rate"

label var gnp "GNP Per Capita"

lowess bir gnp, title("Birth rate and GNP per capita for selected countries")
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Nonlinear plot

Figure shows a non-linear relationship.

(Line is lowess)

129

Get linear relationship

reg bir gnp

predict plin

scatter bir plin gnp|| line plin gnp
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Linear plot

131

Quadratic

Linear regression doesn’t fit well

Clearly, as GNP rises BIR falls, but the rate of fall declines

Let’s try quadratic:

reg bir c.gnp##c.gnp

132

Quatratic plot

predict pquad

scatter bir pquad gnp|| line pquad gnp
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√
GNP

Let’s try square root of GNP:

gen sqg = sqrt(gnp)

reg bir sqg

134

√
GNP plot

predict psqrt

scatter bir psqrt gnp|| line psqrt gnp

135



log(GNP)

Let’s try the log of GNP:

gen lgg = log(gnp)

reg bir lgg

136

log(GNP) plot

predict plog

scatter bir plog gnp|| line plog gnp

137

Log-scale plot

scatter bir plog gnp, xscale(log)|| line plog gnp, xscale(log)

138

Square root and log compared

label var sqg "Sq Root GNP"

label var lg "Log of GNP"

scatter sqg lg gnp
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Lecture 7: Logs and log regression

Logarithms

Logarithms

Logarithms allow us to move between multiplicative equations and additive ones.

Logs are defined relative to a base number. If we take 10 as the base then
y = log10(x) means 10x = y .

It’s easy to calculate the log of powers of 10:

log(10) = 1 101 = 10
log(100) = 2 102 = 100
log(1000) = 3 103 = 1000
log(1000000) = 6 106 = 1000000

100 is defined as 1, so the log of 1 is zero.

140

From 0 to 1

For numbers between 1 and 0, logs are negative

1
10 = 10−1 log(0.1) = -1

1
100 = 10−2 log(0.01) = -2

1
1000 = 10−3 log(0.001) = -3

The log10 of powers of 10 are integers, but we can raise 10 to non-integer powers
too, to get the log of any number greater than zero. For instance, 102.09 is 123, so
the log of 123 is 2.09.
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Multiply by adding

We can see with round powers of 10 than using logs we can move between
multiplication and addition:

100 × 1000 = 100000

102 × 103 = 105 = 102+3
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Calculate A × B

Thus do calculate A × B we do as follows:

• Calculate log(A)

• Calclate log(B)

• Calculate log(C) = log(A) + log(B)

• Take the anti-log of log(C), i.e., 10log(C) = C

143



Example

Multiply 12345 by 67890

log(12345) = 9.421

log(67890) = 11.126

9.421 + 11.126 = 20.547

1020.547 = 838102050

144

An application

If you have a certain quantity (e.g., money in a bank account), whose value
increases by a constant proportion every year, its value in any year depends on a
multiplicative relationship.

Let’s say the increases is α (i.e., a 10% increase means α = 1.1)

145

Compound interest

Year 0 100
Year 1 100 × α
Year 2 100 × α × α
Year 3 100 × α × α × α
Year 4 100 × α × α × α × α
Year 5 100 × α × α × α × α × α

In short, the value in year t is 100×αt

yt = 100× αt
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Constant proportional increase

Figure 1: A constant proportional increase
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Convert to logs

But if we convert to logs we can calculate it as follows

log(yt ) = log(100) + t × log(α)

In other words, rather than multiplying by α every year, we add log(α).
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Plot

Figure 2: Taking the base-10 log of the sum: a straight line
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Straight line

This gives a straight line relationship (see Fig 2).

Thus we can use logs to move between multiplicative and additive (straight-line)
relationships.
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Other bases

Logs to the base 10 are easy to understand, but the base number need not be 10.
A log to the base n is defined thus:

y = logn(x)⇔ ny = x
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Natural logs

Computer scientists often use log2, but the most common log base is the special
number e ≈ 2.7183. This has some special mathematical properties that make
certain calculations easier.

Logs to base e are called natural logs, often written ln(x) etc:

y = ln(x)⇔ ey = x

See Fig 3, which shows that the natural log also gives a straight line.
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Natural log straight line

Figure 3: Taking the natural log of the sum: also a straight line
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Natural log

• Fig 4 shows the natural log of X from 0.1 (-2.303) to 100 (4.605).

• For X = 1, the log is 0.

• As X approaches 0, the log falls faster and faster.

• As X rises above 1, the log rises, but more slowly as it goes.

• Note that the log rises from X = 5 to 10 as much as it does from X = 40 to 80.
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X vs ln(X)

Figure 4: The natural log of X for X from 0.1 to 100
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Lecture 7: Logs and log regression

Early pandemic: exponential curves

Logs and COVID-19

• In the early stage of an epidemic, infections tend to increase at a steady rate

• On average each infected person infects others at a given rate, e.g., one
person every four days

• So numbers of cases tend to rise at a steady percentage
• New infections are proportional to existing infections
• 100 today means 125 tomorrow, 156 the next day, etc.
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Confirmed cases in Ireland

If we look at the raw number of cases in Ireland:

• it starts off very low

• stays there for a while

• but then starts rising

• and rising faster and faster

line cases date
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Confirmed cases in Ireland
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Log cases

If we plot the log of the cases we see a different picture

• wobbly to begin with

• then approximating a straight line

gen lcases = log(cases)

line lcases date
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Log cases
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Log cases: straight => exponential

A straight line in logs means log(ncases) increases by more or less a set amount
very day

That means ncases rises by a set proportion every day: exponential rise

Exponential: even if it starts small, if given long enough, will get very very big!
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Log scale, real cases

We can graph log(cases) but we can also graph cases with a Y log-scale

line cases date, yscale(log) ylabel(1 2 5 10 20 40 80 160 320 640)

This gives the advantages of the logging while retaining the real numbers on the
axis
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Log scale, real cases
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Log-scale graphic in the wild
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Lecture 7: Logs and log regression

Log regression

Multiplicative relationship

• Where the underlying relationship is multiplicative, linear regression doesn’t
work well

• Implies an additive increase where a multiplicative one is better
• If we take the log of the dependent variable:

• better estimates
• often cures heteroscedasticity
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Simulation: Y increases 65% for X +1
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Linear regression
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Predictions

168



Log(Y)
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Interpretation

• For a 1 unit change in X, log(Ŷ ) rises by 0.4933914

• Thus for a 1 unit change in X, Y rises by e0.4933914 = 1.638

• e0.4933914 is the antilog of 0.4933914
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Predictions

171

Predicted values

• Where the dependent variable is logged the prediction of the Y value is not
simply the anti-log of the predicted log(Y)

• When we take the anti-log we must take account of the fact that residuals
above the line expand by more than residuals below the line

• Thus a small correction

ˆlog(Y ) = a + bX

Ŷ = e
ˆlog(Y ) ∗ eRMSE

2/2

• where RMSE is the standard deviation of the regression
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Calculations

gen ly = log(y)

reg ly x

predict lyhat

gen elyh = exp(lyhat)

gen elyh2 = elyh * exp(rmse^2/2)
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Predictions: predict log(Y) on log scale

174

Predictions: only e ˆlog(Y )
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Predictions: with correction
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Predicting COVID-19

• We can apply log regression to the COVID-19 data

• A straight line on a log scale means a constant proportional increase.

• We can estimate this increase, regressing log(cases) on date.

• The slope, b, is the amount by which ˆlog cases rises per day

• eb is then the multiplier by which cases rises per day

reg lcases date
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Stata output

178

Logs with log regression
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Steady increase

The log of cases rises by 0.3058 per day

This means cases rises by a factor of e0.3058 = 1.358

The increase is 1.358 - 1 = 0.358, or almost 36% per day

Implies a doubling about every 2.6 days
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But exponential increase is temporary

Exponential increase cannot go on indefinitely

Even if nothing is done, the rate of increase will decline as fewer people are left
unexposed

And interventions (isolation, tracing) will reduce the rate

See China, for example
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Wuhan, with prediction based on 1st 19 days
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Summary

If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn’t forever, but modelling the exponential helps us see
where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do

183

Outline

Today we introduce logistic regression: for binary outcomes

See Agresti Ch 15 Sec 1.
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Binary outcomes and regression

• OLS (linear regression) requires an interval dependent variable

• Binary or “yes/no” dependent variables are not suitable

• Nor are rates, e.g., n successes out of m trials
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Problems with OLS

• Errors are distinctly not normal

• While predicted value can be read as a probability, can depart from 0:1 range

• Particular difficulties with multiple explanatory variables

• Nonetheless still often used
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Linear Probability Model

• If we use OLS with binary outcomes, it is called “linear probability model”:

Pr(Y = 1) = a + bX

• data is 0/1, prediction is probability

• Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too
bad
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Credit card example
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Credit card example
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Credit card example
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Logistic transformation

• Probability is bounded [0 : 1]

• OLS predicted value is unbounded

• How to transform probability to −∞ :∞ range?

• Odds: p
1−p – range is 0 :∞

• Log of odds: log p
1−p has range −∞ :∞
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Probability to odds
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Probability to log-odds
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Rotated: the "S-shaped" curve
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Logistic regression

• Logistic regression uses this as the dependent variable:

log

(
p

1− p

)
= a + bX
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Alternatives

We can look at this in three ways

• In terms of log-odds:

log

(
Pr(Y = 1)

1− Pr(Y = 1)

)
= a + bX

• In terms of odds:

Pr(Y = 1)

1− Pr(Y = 1)
= ea+bX

• In terms of probability:

Pr(Y = 1) =
ea+bX

1 + ea+bX =
1

1 + e−a−bX
196

Parameters

• The b parameter is the effect of a unit change in X on log
(

Pr(Y=1)
1−Pr(Y=1)

)

• This implies a multiplicative change of eb in Pr(Y=1)
1−Pr(Y=1) , in the Odds

• Thus an odds ratio

• But the effect of b on P depends on the level of b
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Credit card logistic regression
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Credit card logistic regression
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Sigmoid curve from a+bX
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Calculating predicted probabilities by hand

• We can calculate the predicted probability for any combination of values of the
independent variables

• First, plug them into the a + bX part to get the predicted log-odds

• Then take the anti-log of the log-odds to get the odds

• Then odds/(1+odds) gives us the probability
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Calculating predicted probabilities

• Example: log(odds) = 0.25 + 0.12X
• Predict for X == 10

• Predicted log-odds = 0.25 + 0.12*10 = 1.45
• Predicted odds = e1.45 = 4.263
• Predicted probability = 4.263/(1 + 4.263) = 0.810
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Web applet for practicing

https://teaching.sociology.ul.ie:/apps/logabx/
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