Social Construction of Limerick Brendan Halpin, Sociology, University of Limerick Spring 2024	Outline Lecture 0: Course Outline Lecture 1: Categorical data analysis Lecture 2: Ordinal association Lecture 3: Multidimensional causality Lecture 4: Summary of multiple regression Lecture 5: Interaction and Non-linearity Lecture 6: Residuals and Influence Lecture 7: Logs and log regression Lecture 9: Logistic regression sociology X	Lecture 0: Course Outline 2024/5 course outline
SO5032 Spring 2024/5 – Module outline	Short Summary of Module:	Aims and Objectives of Module:
Module Code:SO5032Module Title:Quantitative Research Methods II (MA)Academic Year:2024/5Semester:SpringLecturer(s):Dr Brendan HalpinLecturer(s):Mon 12-1400 CG055; Lab Tue 12-1400 A0060aLecturer(s) Contact Details:brendan.halpin@ul.ieLecturer(s) Office Hours:Monday 1430-1730	Intermediate quantitative research methods for sociology, following on from SO5041.	 A continuation of SO5041 – builds on what was learnt there A deeper look at methods already covered, especially regression Related methods more suited to social science data: methods for categorical and ordinal variables, including logistic regression Further use of Stata: Use in a production environment – do-files, logging, reproducibility More complex data handling Further analytic procedures Secondary analysis: real research with existing data sets
bciology 💥	sociology	sociology
Learning Outcomes:	Course Structure:	Detailed outline
 Deeper understanding of methods for analysis of categorical data Understanding of the nature of multivariate causality Understanding of the theory and practice of multiple linear regression An understanding of some methods for regression with categorical dependent variables Deeper understanding of sampling practice and theory Practical skills for accessing and analysing large-scale data sets An ability to read quantitative social research Greater competence in Stata, particularly for handling larger projects 	One two-hour lecture per week, one two-hour lab per week.	 Revisit χ², look at methods for more complex analysis of categorical (nominal <i>and</i> ordinal) data (chapter 8, Agresti)(1-2 weeks) Multivariate causality (chapter 10 from Agresti) (1 week) Multiple regression (chapters 11, 14 from Agresti) (3 weeks plus) More sampling theory: clusters, strata, weighting (1 week) Data sets, data archives and secondary analysis (1 week, ongoing in labs) Logistic regression: regression where the dependent variable is binary (or multinomial) rather than continuous (chapter 15 from Agresti) (3 weeks plus) Reading statistical research – what gets published and how to read it (1-2 weeks/on-going)
ciology 🕅	sociology	sociology X

Lecture topics by week	Texts	Details of Module Assessment:
Week Topic Lecture Lab beginning Mon 12-1400 Tue 12-1400 1: Jan 27 Categorical data, association in tables ✓ ✓ 2: Feb 03 Association in ordinal data X ✓ (lecture) 3: Feb 10 Understanding multidimensional causality ✓ ✓ 4: Feb 17 Introducing multiple regression ✓ ✓ 6: Mar 03 Multiple regression residuals & influence ✓ ✓ 7: Mar 10 Regression with logged dependent variables ✓ ✓ 8: Mar 17 Introducing logistic regression ✓ ✓ 9: Mar 24 Further roligistic regression ✓ ✓ 10: Mar 31 Multiple regression ✓ ✓ 11: Apr 07 Multinomial and ordinal regression ✓ ✓ 11: Apr 07 Multinomial and ordinal regression ✓ ✓ 11: Apr 07 Multinomial and ordinal regression ✓ ✓ 12: Apr 21 Ordinal regression continued ✓ ✓	 Main text: Agresti, Statistical Methods for the Social Sciences – particularly chapters 8, 10, 11, 14 and 15 Supplementary texts: de Vaus, Surveys in Social Research: good on survey methodology Agresti, Introduction to Categorical Data Analysis Pevalin and Robson, The Stata Survival Manual 	 Three assignments, weeks 6, 11 and 15. The first two assignments are worth 20% each. The final assignment is a project, worth 60%, and should be worked on throughout the semester (see below).
sociology 💥	sociology 🕅	sociology 💥
Details of Annual Repeats:	BrightSpace and Other Classroom Technologies:	IN TERM ASSIGNMENT(S):
A 100% assignment, to be submitted in the examination period.	 The module will use BrightSpace for submission of assignments and for provision of materials. https://teaching.sociology.ul.ie/so5032 may also be used 	 Assignment 1: Homework exercises relating to linear regression. Marks: 20% Deadline: End week 6 Assignment 2: Homework exercises relating to categorical data analysis. Marks: 20% Deadline: End week 11 Assignment 3: A project This will involve the use of large-scale survey data, and require the formulation of a research question, and its addressing using statistical analysis. Marks: 60% Deadline: End week 15.
sociology X	sociology 💥	sociology 🕅
FEEDBACK:	Plagiarism notice	Deadline policy
Detailed feedback on assignments 1 and 2 will be given in weeks 8 and 13, by e-mail and on request face-to-face. Feedback on assignment 3 will be provided on request after the semester.	It hardly needs to be said, but all work must be your own. All material drawn from other sources must be clearly attributed. Passing off others' work as your own is considered academic dishonesty, and can be subject to substantial penalties. Please familiarise yourself with the departmental policy on plagiarism and use the coversheet declaration with all assignments (both available at https://www.ul.ie/sociology/ under Student Resources).	Please also note the Department's policy on deadlines, also available at https://www.ul.ie/sociology/ under Student Resources.
sociology 💥	sociology 💥	sociology 🕅

.

	Association between categorical variables	The χ^2 test
Lecture 1: Categorical data analysis Categorical data analysis	 Association between categorical variables: departure from independence Visible in patterns of percentages Three main questions (cf Agresti/Finlay p265) Is there evidence of association? What is the form of the association? How strong is the association? 	 Compare observed values with expected values under independence: E = RC/T χ² = ∑ (O - E)²/E For frequency data, and for large samples the χ² statistic has a χ² distribution with df = (r − 1)(c − 1) Interpretation: chance of getting a χ² this big or bigger if H₀ (independence) is true in the population
	sociology	, sociology X
The χ^2 distribution	Limitations of χ^2	Pattern of association
sociology XX	 Large sample required: most expected counts 5+ For frequency or count data, not rates or percentages Tests for <i>evidence</i> of association, not strength (see Agresti/Finlay Table 8.14, p 268) Looks for unpatterned association, may miss weak systematic association between ordinal variables 	 The form association takes is interesting We can see it by examining percentages Or residuals: O - E But residuals depend on sample and expected value size
• "Pearson residuals" are better: $\frac{O-E}{\sqrt{E}}$ • Square and sum these residuals to get the χ^2 statistic	Adjusted Residuals • The sum of squared Pearson residuals has a χ^2 distribution, but individually they are not normally distributed • Adjusted residuals scale to have a standard normal distribution if independence holds: $AdjRes = \frac{O-E}{\sqrt{E(1-\pi_r)(1-\pi_c)}}$ • Adjusted residuals outside the range -2 to +2 indicate cells with unusual observed values (< c5% chance)	Measures of association • Evidence, pattern, now strength of association • A number of measures • Difference of proportions • Odds ratio • Risk ratio (ratio of proportions) • Focus on 2 by 2 pairs, but can be extended to bigger tables
sociology	sociology 💥	23 sociology X

Difference of proportions	Difference in proportions	Relative risk
No association $FavourOppose360Total600Black240160400Total6004001000Maximal associationFavour600Oppose600TotalBlack0400400Total600400400Total600400400$	• Difference in proportions (i): $\frac{360}{600} - \frac{240}{400} = 0.6 - 0.6 = 0$ • Difference in proportions (ii): $\frac{600}{600} - \frac{0}{400} = 1 - 0 = 1$ • Range: -1 through 0 (no association) to +1	• "Relative risk" of ratio or proportions is also popular • The ratio of two percentages: $RR = \frac{n_{11}/n_{1+}}{n_{21}/n_{2+}}$ where n_{1+} indicates the row-1 total <i>etc.</i> • Range = 0 through 1 (no association) to ∞
sociology 💥	sociology 🕅	sociology 💥
Odds ratios	Odds ratios	Comparing measures
• Odds differ from proportions/percentages: • Percentage: $\pi_i = \frac{f_i}{folat}$ • Odds: $O_i = \frac{f_i}{folat-1} = \frac{\pi_i}{1-\pi_i}$ • Odds ratios are the ratios of two odds: $OR = \frac{n_{11}/n_{12}}{n_{21}/n_{22}}$ • Range: 0 though 1 (no association) to ∞ sociology	• Odds ratio (i): $\frac{300}{100} = \frac{1.5}{1.5} = 1$ • Odds ratio (ii): $\frac{300}{100} = \frac{1.5}{0} = \infty$ • Range: 0 through 1 (no association) to $+\infty$	 Difference of proportions is simple and clear Ratio of proportions/Relative Risk is also simple Odds ratio is less intuitive but turns out to be mathematically more tractable DP and RR less consistent across different base levels of "risk"
Ordinal Data	Lecture 2	Lecture 2
• χ^2 may miss ordinal association • Symmetric ordinal measures based on concordant and discordant pairs: γ (gamma), Kendall's τ (tau).	Reading (for this and last week): • Agresti, Chapter 8	 Expected values, residuals, adjusted residuals in Stata Ordinal association Association in multi-way tables Multivariate causality
sociology 🗙	sociology 💥	sociology 💥

Tabular association in Stata	Ordinal association	Example: row percentages
tabchi procedure allows access to Percentages Expected values Residuals Adjusted residuals 	 When variables are ordinal, association may be structured High values on X are associated with high values on Y, low with low Or vice versa for negative association Analogous to correlation Examine using percentages, adjusted residuals: ordered pattern 	
sociology 🕱	sociology 🕅	sociology 💥

Example: observed and expected values	Example: adjusted residuals	Measures of ordinal association
		Sometimes Pearson's Correlation is used
		 Equivalent to scoring the categories linearly and calculating the conventional correlation
sociology 🗶	sociology	sociology

Non-linear correlation	Truly ordinal measures	Gamma in practice
 Assumption of equal intervals problematic (but often reasonably OK) Spearman's Rank Correlation is a better solution 	• The Gamma statistic (γ) is truly ordinal • Counts "concordant" and "discordant" pairs $\gamma = \frac{C - D}{C + D}$ • Range: -1, 0, 1 • Approximately normal for large samples	
sociology 💥	sociology 🗙	sociology

Variants	Multi-way tables	Scouting example
 Gamma is symmetrical Kendall's tau (τ) is also symmetrical, similar logic Somer's d also uses C + D but is asymmetrical: one variable affecting another (takes account of ties) 	• How do we think in terms of multi-way tables – more than two dimensions? • Often, in terms of whether the $A \times B$ relationship is constant across C	ScoutDelinquentYesNoYes3636364400No60340400Total96704800
sociology 🗙	sociology 🗙	sociology 🗙
Scouting example	Multidimensional causality	3-variable pictures
Low Church Attendance Scout Delinquent Yes No Yes 10 Yes No Yes No Total 36 Yes No Total 36 Yes No Total 264 Yes No Yes No	 Regression analysis never proves causal relationships, but it "thinks" in causal terms To use it we need to understand causal relationships: what process generates the data we see, and what can regression tell us about it. Start by considering the relationship between variables and patterns of association 	 Let's consider patterns of causality and association between three variables, X1 and X2, and Y If X1 and X2 are not correlated with each other, their separate effects on Y more or less just add up
sociology	sociology 💥	sociology 💥
Correlated X variables	Spurious association	Indirect effects
 But if X1 and X2 are correlated, things can get funny: In particular, if we measure the effect of one X without taking account of the other we will likely over-estimate it 	 X1 may have an association with Y, implying a causal relationship But if X2 affects both X1 and Y the relationship between X1 and Y may be spurious 	 Where there is a time-order (X1 before X2), we may see direct and indirect effects X1 may affect X2, which affects Y, but not affect Y directly Thus there is association between X1 and Y without a direct causal effect
sociology 🕅 40	sociology 💥 so	sociology 🗙 51

Direct and indirect effects	Suppression	Interactions
 However, it is possible for both direct and indirect effects to be present at the same time 	 Where X1 and X2 have positive effects on Y, but a negative correlation, or different effects on Y with a positive correlation, the association between X1 and Y may be suppressed That is, it may be invisible if we don't take account of X2 	 An interaction effect is where the effect of one variable on Y changes depending on the value of another
sociology 🗙	sociology 🗙	sociology 🗙
	Multiple explanatory variables	Example
Lecture 3: Multidimensional causality Multiple regression	 Regression analysis can be extended to the case where there is more than one explanatory variable – multivariate regression This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, <i>while taking account of the other variables</i> 	 Example: income may be affected by gender, and also by paid work time: competing explanations – one or the other, or both could have effects We can fit bivariate regressions: Income = a + b × PaidWork or Income = a + b × Female We can also fit a single multivariate regression Income = a + b × PaidWork + c × Female

Dichotomous variables	Income, hours and gender	Income, hours and gender
 We deal with gender in a special way: this is a <i>binary</i> or <i>dichotomous</i> variable – has two values We turn it into a yes/no or 0/1 variable – <i>e.g.</i>, female or not If we put this in as an explanatory variable a <i>one-unit change in the explanatory variable</i> is the difference between being male and female Thus the <i>c</i> coefficient we get in the <i>Income</i> = <i>a</i> + <i>b</i> × <i>PaidWork</i> + <i>c</i> × <i>Female</i> regression is the net change in predicted income for females, once you take account of paid work time. The <i>b</i> coefficient is then the net effect of a unit change in paid work time, once you take gender into account. 		000 000 000 000 000 000 000 000 000 00
sociology 🗙	sociology 🕅	sociology 🕅 Income, Gender == male Income, Gender == female 58

T-test: Income by gender	Regression: Just hours	Regression: Hours and binary gender
sociology 🗙	sociology 🕅 💦	sociology XX

Regression: for men only	Regression: for women only	Regression: interaction
sociology 💥	sociology 💥	sociology

Regression: Direct and indirect 1	Regression: Direct and indirect 2	Regression: Direct and indirect 3
sociology 💥 ee	sociology 💥	sociology 💥

Regression: Direct and indirect 4	Outline	
sociology 🕱	 Multiple regression Formula, Interpretation Hypothesis testing Goodness of fit: residuals and R² Agresti, Ch 11 	Lecture 4: Summary of multiple regression Formula

Formula for multiple regression	Predictions	Simplest example
$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_k X_k + e$ $e \sim N(0, \sigma)$ • Interpretation of β_j • How much \hat{Y} changes for a 1-unit in X _j holding all other values constant • The estimated effect on Y of a 1-unit change in X _j , "controlling for" or "taking account" of all the other Xs	 Ŷ = β₀ + β₁X₁ + β₂X₂ + β_kX_k Enter values for all X variables to get a prediction for those values If we increase X_i by 1, holding all others the same, Ŷ changes by β_i 	• Simplest multiple regression model adds a binary variable to a model with a continuous X

Predicted lines: one for each value of sex	More general 2 X-variable example	Effect of experience on wage, controlling for grade
000 000 000 000 000 000 000 000		Wage predicted by work experience and tenure 40 40 40 40 40 40 40 40 40 40
sociology X	sociology 🗙	sociology

Effect of grade on wage, controlling for experience	Residuals	
Wage predicted by work experience and tenure Wage Base of the second se	$\begin{split} \hat{Y} &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_k X_k \\ Y &= \hat{Y} + e \\ e &\sim N(0, \sigma) \\ & \cdot \text{ Mean of zero} \\ & \cdot \text{ Standard deviation of } \sigma \text{ (RMSE)} \\ & \cdot \text{ Normally distributed} \\ & \cdot \text{ Should have no structured relationship to X variables} \end{split}$	Lecture 4: Summary of multiple regression R ²
R ² • R ² : coefficient of multiple determination • TSS = sum of squared deviation from the mean = $\sum (Y_i - \tilde{Y})^2$ • RSS = sum of squared deviation from the regression prediction = $\sum (Y_i - \hat{Y})^2$ • R ² = $\frac{TSS - RSS}{TSS}$ • Range: 0 (no relationship) to 1 (perfect linear relationship) • PRE: Proportional Reduction in Error	 R² and correlation In bivariate regression, R² is the square of the correlation coefficient between Y and X In multiple regression, it is the square of the correlation between Y and Ŷ (In bivariate regression the correlation between X and Ŷ is 1) 	Lecture 4: Summary of multiple regression Hypothesis testing
Hypothesis testing: one parameter at a time	Example	Hypothesis testing: all parameters together
 t-test: abs(β_j/se_j) > t Interpretation: Null: population value of β is 0; this variable has no influence once the other 		 F-test: β₁ = β₂ = β_k = 0 Null hypothesis: no X variable has an effect once the others are taken care of. A "global" test: the null is that there is no relevant variable in the model Calculation based on TSS and RSS, but also number of cases and number of

sociology 💥

- Null: population value of β is 0; this variable has no influence once the other variables are taken account of

sociology 💥

Uses F distribution (two df parameters: k and n-k-1, k is number of parameters, n the number of cases)
 sociology X

parameters estimated

Hypothesis testing: additional parameters	Dummy variables	More than two categories
 Delta F-test compares "nested" models Model 1: Ŷ = β₀ + β₁X₁ + β₂X₂ + β_gX_g Model 1: Ŷ = β₀ + β₁X₁ + β₂X₂ + β_gX_g + β_hX_h + β_kX_k Null hypothesis: β_h = = β_k = 0 That is, given the variables already in the model, the additional variables contribute no explanatory power. Useful when adding multi-category variables, or related groups of variables 	In regression models we often use "indicator coding" or "dummy coding" With a two-category variable, we set one category to 0 and the other to 1 and interpret it as the effect of being in the second category (e.g., female) compared with the first.	With more that two categories we create a set of binary variables, "indicator variables" or "dummy variables": $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
sociology XX	Interactions	sociology 🗙 sociology 🗙
	 An interaction effect is where the effect of one variable on Y changes depending on the value of another 	

sociology 💥

For men	For women	Different effects
sociology	sociology 🕅	Hours Male prediction — Female prediction Sociology X

sociology 💥

Interaction in regression	Interaction between hours and sex	One-unit increase
• We can capture interaction effects with a regression model of this form: $\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ • That is, a 1-unit increase in X ₁ leads to a $\beta_1 + \beta_3 X_2$ increase in \hat{Y} • Equivalently, a 1-unit increase in X ₂ leads to a $\beta_1 + \beta_3 X_1$ increase in \hat{Y}	• Simplest example: one variable is binary $\begin{split} \hat{Y}_m &= \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 X_1 \times 0 \\ \hat{Y}_f &= \beta_0 + \beta_1 X_1 + \beta_2 \times 1 + \beta_3 X_1 \times 1 \end{split}$	If X_1 increases by 1 unit, \hat{Y} changes: $\Delta \hat{Y}_m = \beta_1$ $\Delta \hat{Y}_f = \beta_1 + \beta_3$
sociology 🕅	sociology 💥	sociology 💥
Stata: by hand	Results	Stata's formula syntax
 First create an interaction variable: gen female = sex == 2 gen intvar = hours*female Then fit the regression: reg income hours female intvar 		 But more convenient to use Stata's formula syntax reg income c.hours##i.sex i.sex means treat sex as categorical c.hours#i.sex creates the interaction between hours (continuous, c.) and sex c.hours##i.sex puts both the interaction and the first order terms in the model
sociology	sociology 💥	sociology 💥
Same results using Stata's formula syntax	Predictions	Interactions between two continuous variable

	Sex Hrs $\beta_0 \beta_1 \beta_2 \beta_3 \hat{y}$	
	$M = 0 983.9722 + 0^{*}28.71923 + 0^{*}-653.2448 + 0^{*}0^{*}9.399515 = 983.9722$	
	M 80 983.9722 + 80 $^{\circ}28.71923$ + 0 $^{\circ}-653.2448$ + 80 $^{\circ}0^{\circ}9.399515$ = 3281.5106	
	$F = 0 983.9722 + 0^{+}28.71923 + 1^{+}-653.2448 + 0^{+}1^{+}9.399515 = 330.7274$	
	F 80 983.9722 + 80*28.71923 + 1*-653.2448 + 80*1*9.399515 = 3380.227	
100	and the second se	
ology 💥	sociology 🕅 sociology 🕅	

Get linear relationship	
reg bir gnp	
predict plin scatter bir plin gnp line plin gnp	
sociology 💥	106

log(GNP) plot

Log-scale plot

Outlier interactive app	Birth rate and GNP example	Nonlinear plot
https://teaching.sociology.ul.ie/apps/influence/	do http://teaching.sociology.ul.ie/so5032/birth sort gnp label var bir "Birth Rate" label var gnp "GNP Per Capita" lowess bir gnp, title("Birth rate and GNP per capita for selected countries	Birth rate and GNP per capita for selected countries
sociology X	sociology X	sociology

log(GNP)	log(GNP) plot	Log-scale plot
Let's try the log of GNP: gen lgg = log(gnp) reg bir lgg sociology	predict plog scatter bir plog gnp line plog gnp	scatter bir plog gnp, xscale(log) line plog gnp, xscale(log)
Square root and log compared label var sqg "Sq Root GNP" label var 1g "Log of GNP" scatter sqg 1g gnp scatter sqg 2 gnp scatter sqg 1g GNP	Lecture 7: Logs and log regression Logarithms	Logarithms Logarithms allow us to move between multiplicative equations and additive ones. Logs are defined relative to a base number. If we take 10 as the base then $y = log_{10}(x)$ means $10^x = y$. It's easy to calculate the log of powers of 10: $log(10) = 1$ $10^1 = 10$ $log(100) = 2$ $10^2 = 100$ $log(1000) = 3$ $10^3 = 1000$ $log(1000000) = 6$ $10^6 = 1000000$ 10^0 is defined as 1, so the log of 1 is zero.
From 0 to 1	Multiply by adding	Calculate A × B
For numbers between 1 and 0, logs are negative $\frac{\frac{1}{10} = 10^{-1} \log(0.1) = -1}{\frac{1}{100} = 10^{-2} \log(0.01) = -2}$ $\frac{1}{1000} = 10^{-3} \log(0.001) = -3$ The log ₁₀ of powers of 10 are integers, but we can raise 10 to non-integer powers too, to get the log of any number greater than zero. For instance, $10^{2.09}$ is 123, so the log of 123 is 2.09.	We can see with round powers of 10 than using logs we can move between multiplication and addition: $100 \times 1000 = 100000$ $10^2 \times 10^3 = 10^5 = 10^{2+3}$	Thus do calculate A × B we do as follows: • Calculate log(A) • Calculate log(B) • Calculate log(C) = log(A) + log(B) • Take the anti-log of log(C), i.e., 10 ^{log(C)} = C
sociology XX	sociology 🗙	sociology XX

Example	An application	Compound interest
Multiply 12345 by 67890 log(12345) = 9.421 log(67890) = 11.126 9.421 + 11.126 = 20.547 $10^{20.547} = 838102050$	If you have a certain quantity (e.g., money in a bank account), whose value increases by a constant proportion every year, its value in any year depends on a multiplicative relationship. Let's say the increases is α (i.e., a 10% increase means α = 1.1)	Year 0 100 Year 1 100 × α Year 2 100 × $\alpha \times \alpha$ Year 3 100 × $\alpha \times \alpha \times \alpha$ Year 4 100 × $\alpha \times \alpha \times \alpha \times \alpha$ Year 5 100 × $\alpha \times \alpha \times \alpha \times \alpha \times \alpha$ In short, the value in year t is 100× α^{t} $y_{t} = 100 \times \alpha^{t}$
sociology 🗙	sociology 🕅	sociology 💥

Convert to logs

sociology 💥

Convert to logs	Plot
But if we convert to logs we can calculate it as follows $log(y_t) = log(100) + t \times log(\alpha)$ In other words, rather than multiplying by α every year, we add $log(\alpha)$.	Figure 2: Taking the base-10 log of the sum: a straight line

sociology 💥

Straight line Natural logs Other bases Computer scientists often use log₂, but the most common log base is the special number $e \approx 2.7183$. This has some special mathematical properties that make Logs to the base 10 are easy to understand, but the base number need not be 10. certain calculations easier. This gives a straight line relationship (see Fig 2). A log to the base n is defined thus: Logs to base *e* are called natural logs, often written ln(x) etc: Thus we can use logs to move between multiplicative and additive (straight-line) relationships. $y = log_n(x) \Leftrightarrow n^y = x$ $y = ln(x) \Leftrightarrow e^y = x$ See Fig 3, which shows that the natural log also gives a straight line. sociology 💥 sociology 💥 sociology 💥

0

sociology 💥

26feb2020

04mar2020

11mar2020 date 18mar2020

• then approximating a straight line

gen lcases = log(cases)

line lcases date

sociology 💥

400

õ

sociology 💥

8

26feb2020

04mar2020

11mar2020 date 18mar2020

gen ly = log(y)

predict lyhat

gen elyh = exp(lyhat)
gen elyh2 = elyh * exp(rmse²/2)

reg ly x

sociology 💥

- simply the anti-log of the predicted log(Y)

 When we take the anti-log we must take account of the fact that residuals
- above the line expand by more than residuals below the line
- Thus a small correction

log(Y) = a + bX $\hat{Y} = e^{log(Y)} * e^{\text{RMSE}^2/2}$

• where RMSE is the standard deviation of the regression

sociology 💥

Predicting COVID-19

• We can apply log regression to the COVID-19 data

• A straight line on a log scale means a constant proportional increase.

15

10

- We can estimate this increase, regressing log(cases) on date.
- The slope, b, is the amount by which $\log\hat{\mathrm{cases}}$ rises per day
- e^b is then the multiplier by which cases rises per day

reg lcases date

sociology

Stata output	Logs with log regression	Steady increase
sociology 🕅	sociology X	The log of cases rises by 0.3058 per day This means cases rises by a factor of $e^{0.3058} = 1.358$ The increase is 1.358 - 1 = 0.358, or almost 36% per day Implies a doubling about every 2.6 days
But exponential increase is temporary	Wuhan, with prediction based on 1st 19 days	Summary
Exponential increase cannot go on indefinitely Even if nothing is done, the rate of increase will decline as fewer people are left unexposed And interventions (isolation, tracing) will reduce the rate See China, for example	Wuhan, prediction on days 1/19	If there is a constant rate of increase, logs give us straight lines Graph the log, or use a log scale on the Y-axis Log regression allows us to estimate the rate Exponential increase isn't forever, but modelling the exponential helps us see where the rate starts to drop Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do
Outline	Binary outcomes and regression	Problems with OLS
Today we introduce logistic regression: for binary outcomes See Agresti Ch 15 Sec 1.	 OLS (linear regression) requires an interval dependent variable Binary or "yes/no" dependent variables are not suitable Nor are rates, e.g., n successes out of m trials 	 Errors are distinctly not normal While predicted value can be read as a probability, can depart from 0:1 range Particular difficulties with multiple explanatory variables Nonetheless still often used
sociology 🕅	sociology 🗙	sociology 🕅

0 Log Odds

5

Probat 4

0

sociology 💥

'n

sociology 💥

6

2

.4 .6 Probability

.8

(n)

$$\log\left(\frac{p}{1-p}\right) = a + bX$$

$$\log\left(rac{
ho}{1-
ho}
ight) = a+b\lambda$$

