sociology

SO5032 Quantitative Research Methods

Brendan Halpin, Sociology, University of Limerick
Spring 2024

Outline

Lecture 0: Course Outline
Lecture 1: Categorical data analysis
Lecture 2: Ordinal association
Lecture 3: Multidimensional causality
Lecture 4: Summary of multiple regression
Lecture 5: Interaction and Non-linearity
Lecture 6: Residuals and Influence
Lecture 7: Logs and log regression
Lecture 9: Logistic regression
Lecture 10: Logistic regression continued
Lecture 11: Multinomial and Ordinal regression

SO5032 Spring 2023/4 - Module outline

Module Code:	SO5032
Module Title:	Quantitative Research Methods II (MA)
Academic Year:	$2023 / 4$
Semester:	Spring
Lecturer(s):	Dr Brendan Halpin
Lecture Locations:	Lec Mon 09-1100 P1006, Lab Weds 12-1400 A0060a
Lecturer(s) Contact Details:	brendan.halpin@ul.ie
Lecturer(s) Office Hours:	Mon 1100-1300

Short Summary of Module:

Intermediate quantitative research methods for sociology, following on from SO5041.

Aims and Objectives of Module:

- A continuation of SO5041 - builds on what was learnt there
- A deeper look at methods already covered, especially regression
- Related methods more suited to social science data: methods for categorical and ordinal variables, including logistic regression
- Further use of Stata:
- Use in a production environment - do-files, logging, reproducibility
- More complex data handling
- Further analytic procedures
- Secondary analysis: real research with existing data sets

Learning Outcomes:

- Deeper understanding of methods for analysis of categorical data
- Understanding of the nature of multivariate causality
- Understanding of the theory and practice of multiple linear regression
- An understanding of some methods for regression with categorical dependent variables
- Deeper understanding of sampling practice and theory
- Practical skills for accessing and analysing large-scale data sets
- An ability to read quantitative social research
- Greater competence in Stata, particularly for handling larger projects

Course Structure:

One two-hour lecture per week, one two-hour lab per week.

Detailed outline

- Revisit χ^{2}, look at methods for more complex analysis of categorical (nominal and ordinal) data (chapter 8, Agresti)(1-2 weeks)
- Multivariate causality (chapter 10 from Agresti) (1 week)
- Multiple regression (chapters 11, 14 from Agresti) (3 weeks plus)
- More sampling theory: clusters, strata, weighting (1 week)
- Data sets, data archives and secondary analysis (1 week, ongoing in labs)
- Logistic regression: regression where the dependent variable is binary (or multinomial) rather than continuous (chapter 15 from Agresti) (3 weeks plus)
- Reading statistical research - what gets published and how to read it (1-2 weeks/on-going)

Lecture topics by week

Week beginning	Topic	Lecture Mon 09-1100	Lab
1: Jan 29	Categorical data, association in tables	\checkmark	\checkmark
2: Feb 05	Association in ordinal data	X	\checkmark (lecture)
3: Feb 12	Understanding multidimensional causality	\checkmark	\checkmark
4: Feb 19	Introducing multiple regression	\checkmark	\checkmark
5: Feb 26	Further multiple regression	\checkmark	\checkmark
6: Mar 04	Multiple regression: residuals \& influence	\checkmark	\checkmark
7: Mar 11	Regression with logged dependent variables	\checkmark	\checkmark
8: Mar 18	Introducing logistic regression	X	\checkmark (lecture)
9: Apr 01	Further logistic regression	X	\checkmark (lecture)
10: Apr 08	Multinomial regression	\checkmark	\checkmark
11: Apr 15	Multinomial and ordinal regression	\checkmark	\checkmark
12: Apr 22	Ordinal regression continued	\checkmark	\checkmark

sociology

Texts

- Main text: Agresti, Statistical Methods for the Social Sciences - particularly chapters $8,10,11,14$ and 15
- Supplementary texts:
- de Vaus, Surveys in Social Research: good on survey methodology
- Agresti, Introduction to Categorical Data Analysis
- Pevalin and Robson, The Stata Survival Manual

Details of Module Assessment:

- Three assignments, weeks 6, 11 and 15.
- The first two assignments are worth 20% each.
- The final assignment is a project, worth 60%, and should be worked on throughout the semester (see below).

Details of Annual Repeats:

A 100\% assignment, to be submitted in the examination period.

BrightSpace and Other Classroom Technologies:

- The module will use BrightSpace for submission of assignments and for provision of materials.
- http://teaching.sociology.ul.ie/so5032 will also be used

IN TERM ASSIGNMENT(S):

- Assignment 1: Homework exercises relating to linear regression.
- Marks: 20\%
- Deadline: End week 6
- Assignment 2: Homework exercises relating to categorical data analysis.
- Marks: 20\%
- Deadline: End week 11
- Assignment 3: A project This will involve the use of large-scale survey data, and require the formulation of a research question, and its addressing using statistical analysis.
- Marks: 60\%
- Deadline: End week 15.

FEEDBACK:

Detailed feedback on assignments 1 and 2 will be given in weeks 8 and 13, by e-mail and on request face-to-face. Feedback on assignment 3 will be provided on request after the semester.

Plagiarism notice

It hardly needs to be said, but all work must be your own. All material drawn from other sources must be clearly attributed. Passing off others' work as your own is considered academic dishonesty, and can be subject to substantial penalties. Please familiarise yourself with the departmental policy on plagiarism and use the coversheet declaration with all assignments (both available at http://www.ul.ie/sociology/ under Student Resources).

Deadline policy

Please also note the Department's policy on deadlines, also available at http://www.ul.ie/sociology/ under Student Resources.

Association between categorical variables

- Association between categorical variables: departure from independence
- Visible in patterns of percentages
- Three main questions (cf Agresti/Finlay p265)
- Is there evidence of association?
- What is the form of the association?
- How strong is the association?

The χ^{2} test

- Compare observed values with expected values under independence:

$$
\begin{gathered}
E=\frac{R C}{T} \\
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
\end{gathered}
$$

- For frequency data, and for large samples the χ^{2} statistic has a χ^{2} distribution with $d f=(r-1)(c-1)$
- Interpretation: chance of getting a χ^{2} this big or bigger if H_{0} (independence) is true in the population

The χ^{2} distribution

Limitations of χ^{2}

- Large sample required: most expected counts 5+
- For frequency or count data, not rates or percentages
- Tests for evidence of association, not strength (see Agresti/Finlay Table 8.14, p 268)
- Looks for unpatterned association, may miss weak systematic association between ordinal variables

Pattern of association

- The form association takes is interesting
- We can see it by examining percentages
- Or residuals: O-E
- But residuals depend on sample and expected value size

Pearson residuals

- "Pearson residuals" are better:

$$
\frac{O-E}{\sqrt{E}}
$$

- Square and sum these residuals to get the χ^{2} statistic

Adjusted Residuals

- The sum of squared Pearson residuals has a χ^{2} distribution, but individually they are not normally distributed
- Adjusted residuals scale to have a standard normal distribution if independence holds:

$$
\text { AdjRes }=\frac{O-E}{\sqrt{E\left(1-\pi_{r}\right)\left(1-\pi_{c}\right)}}
$$

- Adjusted residuals outside the range -2 to +2 indicate cells with unusual observed values ($<$ c5\% chance)
- Adjusted residuals outside the range -3 to +3 indicate cells with very unusual observed values

Measures of association

- Evidence, pattern, now strength of association
- A number of measures
- Difference of proportions
- Odds ratio
- Risk ratio (ratio of proportions)
- Focus on 2 by 2 pairs, but can be extended to bigger tables

Difference of proportions

No association			
	Favour	Oppose	Total
White	360	240	600
Black	240	160	400
Total	600	400	1000

Maximal association

	Favour	Oppose	Total
White	600	0	600
Black	0	400	400
Total	600	400	1000

Difference in proportions

- Difference in proportions (i): $\frac{360}{600}-\frac{240}{400}=0.6-0.6=0$
- Difference in proportions (ii): $\frac{600}{600}-\frac{0}{400}=1-0=1$
- Range: -1 through 0 (no association) to +1

Relative risk

- "Relative risk" of ratio or proportions is also popular
- The ratio of two percentages:

$$
R R=\frac{n_{11} / n_{1+}}{n_{21} / n_{2+}}
$$

where n_{1+} indicates the row- 1 total etc.

- Range $=0$ through 1 (no association) to ∞

Odds ratios

- Odds differ from proportions/percentages:
- Percentage: $\pi_{i}=\frac{f_{i}}{\text { Total }}$
- Odds: $O_{i}=\frac{f_{i}}{\text { Total }-f_{i}}=\frac{\pi_{i}}{1-\pi_{i}}$
- Odds ratios are the ratios of two odds:

$$
O R=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}
$$

- Range: 0 though 1 (no association) to ∞

Odds ratios

- Odds ratio (i): $\frac{\frac{350}{200}}{\frac{240}{160}}=\frac{1.5}{1.5}=1$
- Odds ratio (ii): $\frac{\frac{600}{\frac{0}{00}}}{\frac{100}{0}}=\infty$
- Range: 0 through 1 (no association) to $+\infty$

Comparing measures

- Difference of proportions is simple and clear
- Ratio of proportions/Relative Risk is also simple
- Odds ratio is less intuitive but turns out to be mathematically more tractable
- DP and RR less consistent across different base levels of "risk"

Ordinal Data

- χ^{2} may miss ordinal association
- Symmetric ordinal measures based on concordant and discordant pairs: γ (gamma), Kendall's τ (tau).

Lecture 2

Reading (for this and last week):

- Agresti, Chapter 8

Lecture 2

- Expected values, residuals, adjusted residuals in Stata
- Ordinal association
- Association in multi-way tables
- Multivariate causality

Tabular association in Stata

tabchi procedure allows access to

- Percentages
- Expected values
- Residuals
- Adjusted residuals

Ordinal association

- When variables are ordinal, association may be structured
- High values on X are associated with high values on Y , low with low
- Or vice versa for negative association
- Analogous to correlation
- Examine using percentages, adjusted residuals: ordered pattern

Example: row percentages

tab lopfamo lopfaml, row

Key
frequency row percentage

co-habiting is alright	divorce better than unhappy marriage					
	strongly	agree	neithr ag	disagree	stronglyd	Total
strongly agree	2,381	1,228	304	38	19	3,970
	59.97	30.93	7.66	0.96	0.48	100.00
agree	1,462	4,159	687	103	15	6,426
	22.75	64.72	10.69	1.60	0.23	100.00
neithr agree, disagr	485	1,803	717	73	13	3,091
	15.69	58.33	23.20	2.36	0.42	100.00
disagree	156	647	252	143	15	1,213
	12.86	53.34	20.77	11.79	1.24	100.00
stronglydisagree	78	143	129	101	50	501
	15.57	28.54	25.75	20.16	9.98	100.00
Total	4,562	7,980	2,089	458	112	15,201
	30.01	52.50	13.74	3.01	0.74	100.00

sociology

Example: observed and expected values

tabchi lopfamo lopfaml
observed frequency
expected frequency

co-habiting is alright	strongly agree	divorce better than unhappy marriage agree neithr agree, disagr		disagree	stronglydisagree
strongly agree	2381	1228	304	38	19
	1191.444	2084.113	545.578	119.614	29.251
agree	1462	4159	687	103	15
	1928.519	3373.428	883.094	193.613	47.346
neithr agree, disagr	485	1803	717	73	13
	927.646	1622.668	424.781	93.131	22.774
disagree	156	647	252	143	15
	364.036	636.783	166.697	36.547	8.937
stronglydisagree	78	143	129	101	50
	150.356	263.008	68.850	15.095	3.691

[^0]
sociology

Example: adjusted residuals

tabchi lopfamo lopfaml, adj noo
expected frequency
adjusted residual

co-habiting is alright	strongly agree	divorce better than unhappy marriage agree neithr agree, disagr		disagree	stronglydisagree
strongly agree	1191.444	2084.113	545.578	119.614	29.251
	47.925	-31.654	-12.956	-8.815	-2.213
agree	1928.519	3373.428	883.094	193.613	47.346
	-16.713	25.829	-9.351	-8.703	-6.210
neithr agree, disagr	927.646	1622.668	424.781	93.131	22.774
	-19.463	7.277	17.104	-2.373	-2.303
disagree	364.036	636.783	166.697	36.547	8.937
	-13.587	0.612	7.416	18.639	2.122
stronglydisagree	150.356	263.008	68.850	15.095	3.691
	-7.173	-10.918	7.937	22.831	24.601

[^1]
sociology

Measures of ordinal association

- Sometimes Pearson's Correlation is used
- Equivalent to scoring the categories linearly and calculating the conventional correlation

. corr lopfamo lopfaml		
(obs=15,201)		
	lopfamo	lopfaml
lopfamo lopfaml	1.0000 0.3831	1.0000

Non-linear correlation

- Assumption of equal intervals problematic (but often reasonably OK)
- Spearman's Rank Correlation is a better solution

```
    spearman lopfamo lopfaml
    Number of obs = 15201
Spearman's rho = 0.3840
Test of HO: lopfamo and lopfaml are independent
    Prob > |t| = 0.0000
```


Truly ordinal measures

- The Gamma statistic (γ) is truly ordinal
- Counts "concordant" and "discordant" pairs

$$
\gamma=\frac{C-D}{C+D}
$$

- Range: -1, 0, 1
- Approximately normal for large samples

Gamma in practice

co-habiting is alright	divorce better than unhappy marriage					
	strongly	agree	neithr ag	disagree	stronglyd	Total
strongly agree	2,381	1,228	304	38	19	3,970
agree	1,462	4,159	687	103	15	6,426
neithr agree, disagr	485	1,803	717	73	13	3,091
disagree	156	647	252	143	15	1,213
stronglydisagree	78	143	129	101	50	501
Total	4,562	7,980	2,089	458	112	15,201
gamma $=0.4975 \quad \mathrm{ASE}=0.009$						

sociology

Variants

- Gamma is symmetrical
- Kendall's tau (τ) is also symmetrical, similar logic
- Somer's d also uses $C+D$ but is asymmetrical: one variable affecting another (takes account of ties)

Multi-way tables

- How do we think in terms of multi-way tables - more than two dimensions?
- Often, in terms of whether the $A \times B$ relationship is constant across C

Scouting example

Scout	Delinquent		
	Yes		No
	Total		
Yes	36	364	400
No	60	340	400
Total	96	704	800

Scouting example

Low Church Attendance			
Scout	Delinquent		
	Yes	No	
Yes	10	40	50
No	40	160	200
Total	50	200	250

Medium Scout		Church Attendance	
	Delinquent		
	Yes		
Yes	18	132	150
No	18	132	150
Total	36	264	800

High Church Attendance			
Scout	Delinquent		
	Yes	No	
Yes	8	192	200
No	2	48	50
Total	10	240	250

sociology

Multidimensional causality

- Regression analysis never proves causal relationships, but it "thinks" in causal terms
- To use it we need to understand causal relationships: what process generates the data we see, and what can regression tell us about it.
- Start by considering the relationship between variables and patterns of association

3-variable pictures

- Let's consider patterns of causality and association between three variables, X1 and X2, and Y
- If X 1 and X 2 are not correlated with each other, their separate effects on Y more or less just add up

X2

Correlated X variables

- But if X1 and X2 are correlated, things can get funny:

- In particular, if we measure the effect of one X without taking account of the other we will likely over-estimate it

Spurious association

- X1 may have an association with Y, implying a causal relationship
- But if $X 2$ affects both $X 1$ and Y the relationship between $X 1$ and Y may be spurious

Indirect effects

- Where there is a time-order (X1 before X2), we may see direct and indirect effects
- X1 may affect X2, which affects Y , but not affect Y directly
- Thus there is association between X1 and Y without a direct causal effect

$$
X 1 \longrightarrow X 2 \longrightarrow Y
$$

Direct and indirect effects

- However, it is possible for both direct and indirect effects to be present at the same time

Suppression

- Where X1 and X2 have positive effects on Y, but a negative correlation, or different effects on Y with a positive correlation, the association between X 1 and Y may be suppressed
- That is, it may be invisible if we don't take account of $X 2$

Interactions

- An interaction effect is where the effect of one variable on Y changes depending on the value of another

Lecture 3: Multidimensional causality

Multiple regression

Multiple explanatory variables

- Regression analysis can be extended to the case where there is more than one explanatory variable - multivariate regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, while taking account of the other variables

Example

- Example: income may be affected by gender, and also by paid work time: competing explanations - one or the other, or both could have effects
- We can fit bivariate regressions:

$$
\text { Income }=a+b \times \text { PaidWork }
$$

or

$$
\text { Income }=a+b \times \text { Female }
$$

- We can also fit a single multivariate regression

$$
\text { Income }=a+b \times \text { PaidWork }+c \times \text { Female }
$$

Dichotomous variables

- We deal with gender in a special way: this is a binary or dichotomous variable - has two values
- We turn it into a yes/no or 0/1 variable - e.g., female or not
- If we put this in as an explanatory variable a one-unit change in the explanatory variable is the difference between being male and female
- Thus the c coefficient we get in the Income $=a+b \times$ PaidWork $+c \times$ Female regression is the net change in predicted income for females, once you take account of paid work time.
- The b coefficient is then the net effect of a unit change in paid work time, once you take gender into account.

Income, hours and gender

- corr Income Gender Hours ($\mathrm{obs}=506$)

	Income	Gender	Hours
Income	1.0000		
Gender	-0.3280	1.0000	
Hours	0.3638	-0.4360	1.0000

Income, hours and gender

T-test: Income by gender

. ttest Income, by (Gender)
Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Con	Interval]
male	437	1618.348	59.11677	1235.809	1502.159	1734.537
female	531	992.1805	40.82127	940.6625	911.9892	1072.372
combined	968	1274.861	36.23219	1127.281	1203.759	1345.964
diff		626.1674	70.00484		488.7883	763.5465
diff = mean(male) - mean (female)				degrees of freedom		
Ho: diff $=0$						966
Ha: d		Ha: diff != 0			Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t}$. 0000	$\operatorname{Pr}(\|T\|>\|t\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$	

sociology

Regression: Just hours

sociology

Regression: Hours and binary gender

sociology

Regression: for men only

Source	SS	df	MS	Number of obs		=	232
Model	8009519.02	1	8009519.02	Prob > F			5.36 0.0215
Residual	343845612	230	1494980.92	R-squared			0.0228
					squared		0.0185
Total	351855131	231	1523182.38	Root MSE		=	1222.7
Income	Coef.	Std. Err	t	$p>\|t\|$	[95\% Conf		Interval]
Hours	24.61855	10.63597	2.31	0.022	3.662162		45.57495
_cons	1164.366	414.4901	2.81	0.005	347.6826		1981.049

sociology

Regression: for women only

sociology

Regression: interaction

sociology

Regression: Direct and indirect 1

Source	SS	df	MS	Number of obs$F(1,998)$		=	$\begin{aligned} & 1,000 \\ & 53.50 \end{aligned}$
Model	13269.3853	1	13269.3853				0.0000
Residual	247525.861	998	248.021905	R-squared Adj R-squared			0.0509
							0.0499
Total	260795.247	999	261.056303	Root MSE		=	15.749
ownscore	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con		Interval]
fatherscore	. 2370829	. 032413	7.31	0.000	. 1734773		. 3006884
_cons	37.90861	1.672157	22.67	0.000	34.62726		41.18996

sociology

Regression: Direct and indirect 2

Source	SS	df	MS	Number of obs$F(1,998)$		$=$	$\begin{array}{r} 1,000 \\ 111.01 \end{array}$
			311.104929				
Model	311.104929	1			Prob > F		0.0000
Residual	2797.00607	998	2.80261129	R -squared			0.1001
			3.11122222		Adj R-squared		0.0992
Total	3108.111	999		Root MSE			1.6741
education	Coef.	Std. Err.	t	$p>\|t\|$	tl [95\% Con		Interval]
fatherscore	. 0363018	. 0034455	10.54	0.000	000.0295405		. 0430631
_cons	1.295213	. 1777516	7.29	0.000	. 00.9464035		1.644023

sociology

Regression: Direct and indirect 3

sociology

Regression: Direct and indirect 4

sociology

Formula for multiple regression

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k}+e \\
& e \sim N(0, \sigma)
\end{aligned}
$$

- Interpretation of β_{j}
- How much \hat{Y} changes for a 1-unit in X_{j} holding all other values constant
- The estimated effect on Y of a 1-unit change in X_{j}, "controlling for" or "taking account" of all the other Xs

Predictions

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k}
$$

- Enter values for all X variables to get a prediction for those values
- If we increase X_{i} by 1 , holding all others the same, \hat{Y} changes by β_{i}

Simplest example

- Simplest multiple regression model adds a binary variable to a model with a continuous X

Source	SS	df	MS	Number of obs F(2, 7942)			7,945
			946761687				
Model	$1.8935 \mathrm{e}+09$	2					0.0000
Residual	$9.4586 \mathrm{e}+09$	7,942	1190962.07	R -squared			0.1668
				Root MSE			0.1666
Total	$1.1352 \mathrm{e}+10$	7,944	1429021.17				1091.3
income	Coefficient	Std. err.	t	$P>\|t\|$	[95\% conf. interval]		
hours	33.96065	1.123629	30.22	0.000	- 31.75804		36.16326
sex							
female	-337.0889	26.44232	-12.75	0.000	$00-388.9228$		-285.255
_cons	787.1759	45.73595	17.21	0.000	00697.5214		876.8304

Predicted lines: one for each value of sex

More general 2 X-variable example

sociology

Effect of experience on wage, controlling for grade

Wage predicted by work experience and tenure

Effect of grade on wage, controlling for experience

Wage predicted by work experience and tenure

See https://teaching.sociology.ul.ie/so5032/ttlgrade.html sociology

Residuals

$$
\begin{aligned}
& \hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k} \\
& Y=\hat{Y}+e \\
& e \sim N(0, \sigma)
\end{aligned}
$$

- Mean of zero
- Standard deviation of σ (RMSE)
- Normally distributed
- Should have no structured relationship to X variables

Lecture 4: Summary of multiple

 regression\mathbf{R}^{2}

- R^{2} : coefficient of multiple determination
- TSS $=$ sum of squared deviation from the mean $=\sum\left(Y_{i}-\bar{Y}\right)^{2}$
- RSS $=$ sum of squared deviation from the regression prediction $=\sum\left(Y_{i}-\hat{Y}\right)^{2}$
- $\mathrm{R}^{2}=\frac{\text { TSS-RSS }}{\text { TSS }}$
- Range: 0 (no relationship) to 1 (perfect linear relationship)
- PRE: Proportional Reduction in Error

\mathbf{R}^{2} and correlation

- In bivariate regression, R^{2} is the square of the correlation coefficient between Y and X
- In multiple regression, it is the square of the correlation between Y and \hat{Y}
- (In bivariate regression the correlation between X and \hat{Y} is 1)

Lecture 4: Summary of multiple regression

Hypothesis testing

Hypothesis testing: one parameter at a time

- t-test: $\operatorname{abs}\left(\hat{\beta}_{j} / \mathrm{se}_{j}\right)>t$
- Interpretation:
- Null: population value of β is 0 ; this variable has no influence once the other variables are taken account of

Example

sociology $>$

Hypothesis testing: all parameters together

- F-test:

$$
\text { - } \beta_{1}=\beta_{2} \ldots=\beta_{\mathrm{k}}=0
$$

- Null hypothesis: no X variable has an effect once the others are taken care of.
- A "global" test: the null is that there is no relevant variable in the model
- Calculation based on TSS and RSS, but also number of cases and number of parameters estimated
- Uses F distribution (two df parameters: k and $n-k-1, k$ is number of parameters, n the number of cases)

Hypothesis testing: additional parameters

- Delta F-test compares "nested" models
- Model 1: $\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{g} X_{g}$
- Model 1: $\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{g} X_{g}+\beta_{h} X_{h} \ldots+\beta_{k} X_{k}$
- Null hypothesis: $\beta_{\mathrm{h}}=\ldots=\beta_{\mathrm{k}}=0$
- That is, given the variables already in the model, the additional variables contribute no explanatory power.
- Useful when adding multi-category variables, or related groups of variables

Dummy variables

In regression models we often use "indicator coding" or "dummy coding"
With a two-category variable, we set one category to 0 and the other to 1 and interpret it as the effect of being in the second category (e.g., female) compared with the first.

Source	SS	df	MS	Number of obs		959
Model	33922983.9	2	16961492			0.0000
Residual	354670636	956	370994.389		red	0.0873
					squared	0.0854
Total	388593620	958	405630.083		MSE	609.09
income	Coef.	Std. Err .	t	$P>\|t\|$	[95\% Conf	Interval]
age	-3.144945	1.083398	-2.90	0.004	-5.271057	-1.018833
sex						
female	-352.678	39.51326	-8.93	0.000	-430.2208	-275.1353
_cons	1035.878	54.58935	18.98	0.000	928.7494	1143.007

More than two categories

With more that two categories we create a set of binary variables, "indicator variables" or "dummy variables":

	d1	d2	d3	d4
a	1	0	0	0
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

For m categories, $\mathrm{m}-1$ dummy variables are sufficient.
We interpret the parameter as the estimated effect of being in that category relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.

Example

sociology

Interactions

- An interaction effect is where the effect of one variable on Y changes depending on the value of another

Income, hours and gender

sociology

For men

sociology \bar{x}

For women

Source	SS	df	MS	Number of obs F (1, 4125)		=	4,127
							1043.34
Model	764315243	1	764315243		Prob > F		0.0000
Residual	$3.0218 \mathrm{e}+09$	4,125	732568.614	R -squared			0.2019
				Adj R-squ Root MSE			0.2017
Total	$3.7862 \mathrm{e}+09$	4,126	917634.7			=	855.9
income	Coefficient	Std. err.	t	$P>\|t\|$	tl [95\% con	f.	interval]
hours	38.11874	1.180121	32.30	0.000	035.80507		40.43241
_cons	330.7275	36.40158	9.09	0.000	259.3607		402.0942

sociology

Different effects

Interaction in regression

- We can capture interaction effects with a regression model of this form:

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}
$$

- That is, a 1 -unit increase in X_{1} leads to a $\beta_{1}+\beta_{3} X 2$ increase in \hat{Y}
- Equivalently, a 1-unit increase in X_{2} leads to a $\beta_{1}+\beta_{3} X_{1}$ increase in \hat{Y}

Interaction between hours and sex

- Simplest example: one variable is binary

$$
\begin{aligned}
& \hat{Y}_{m}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} \times 0+\beta_{3} X_{1} \times 0 \\
& \hat{Y}_{f}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} \times 1+\beta_{3} X_{1} \times 1
\end{aligned}
$$

One-unit increase

If X_{1} increases by 1 unit, \hat{Y} changes:

$$
\begin{gathered}
\Delta \hat{Y}_{m}=\beta_{1} \\
\Delta \hat{Y}_{f}=\beta_{1}+\beta_{3}
\end{gathered}
$$

Stata: by hand

- First create an interaction variable:

```
gen female = sex == 2
gen intvar = hours*female
```

- Then fit the regression:

```
reg income hours female intvar
```


Results

```
. gen female = sex==2
. gen intvar = female*hours
```

. reg income hours female intvar

Source	SS	df	MS	Number of obs	=	7,945
				F (3, 7941)	=	536.82
Model	$1.9141 \mathrm{e}+09$	3	638027348	Prob > F	=	0.0000
Residual	$9.4381 \mathrm{e}+09$	7,941	1188523.12	R -squared	=	0.1686
				Adj R-squared	=	0.1683
Total	$1.1352 \mathrm{e}+10$	7,944	1429021.17	Root MSE	=	1090.2

| income | Coefficient | Std. err. | t | P>\|t| | [95\% conf. interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| hours | 28.71923 | 1.687655 | 17.02 | 0.000 | 25.41098 | 32.02747 |
| female | -653.2448 | 80.47524 | -8.12 | 0.000 | -810.9974 | -495.4921 |
| intvar | 9.399515 | 2.260017 | 4.16 | 0.000 | 4.969287 | 13.82974 |
| _cons | 983.9722 | 65.7758 | 14.96 | 0.000 | 855.0344 | 1112.91 |

sociology

Stata's formula syntax

- But more convenient to use Stata's formula syntax

```
reg income c.hours##i.sex
```

- i. sex means treat sex as categorical
- c.hours\#i. sex creates the interaction between hours (continuous, c.) and sex
- c.hours\#\#i. sex puts both the interaction and the first order terms in the model

Same results using Stata's formula syntax

sociology

Predictions

Sex	Hrs	β_{0}	β_{1}	β_{2}	β_{3}	\hat{y}
M	0	983.9722	$+0^{*} 28.71923$	$+0^{*}-653.2448$	$+0^{*} 0^{*} 9.399515$	$=983.9722$
M	80	983.9722	$+80^{*} 28.71923$	$+0^{*}-653.2448$	$+80^{*} 0^{*} 9.399515$	$=3281.5106$
F	0	983.9722	$+0^{*} 28.71923$	$+1^{*}-653.2448$	$+0^{*} 1^{*} 9.399515$	$=330.7274$
F	80	983.9722	$+80^{*} 28.71923$	$+1^{*}-653.2448$	$+80^{*} 1^{*} 9.399515$	$=3380.227$

Interactions between two continuous variable

Without interaction, predictions for different levels of grade

Wage predicted by work experience and tenure, no interactior

With interaction

Interaction between work experience and tenure

Lecture 5: Interaction and Non-linearity

Non-linear linear regression

Birth rate and GNP example

```
do http://teaching.sociology.ul.ie/so5032/birth
sort gnp
label var bir "Birth Rate"
label var gnp "GNP Per Capita"
lowess bir gnp, title("Birth rate and GNP per capita for selected countries")
```


Nonlinear plot

Get linear relationship

```
reg bir gnp
```

. reg bir gnp

Source	SS	df	MS	Number of obs	=	25
				F(1, 23)		27.52
Model	1450.2603	1	1450.2603	Prob > F		0.0000
Residual	1212.02523	23	52.696749	R -squared		0.5447
				Adj R-squared		0.5249
Total	2662.28552	24	110.928563	Root MSE	=	7.2593

| bir | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| gnp | -.8133082 | .155033 | -5.25 | 0.000 | -1.134018 | -.4925981 |
| _cons | 29.6227 | 2.037416 | 14.54 | 0.000 | 25.40798 | 33.83742 |

predict plin
scatter bir plin gnp|| line plin gnp

Linear plot

Quadratic

Linear regression doesn't fit well
Clearly, as GNP rises BIR falls, but the rate of fall declines
Let's try quadratic:

sociology

Quatratic plot

predict pquad
scatter bir pquad gnp|| line pquad gnp

Let's try square root of GNP:

sociology \times

$\sqrt{G N P}$ plot

```
predict psqrt
scatter bir psqrt gnp|| line psqrt gnp
```


$\bullet \bullet$	Birth Rate
	Fitted values

$\log (G N P)$

Let's try the log of GNP:

sociology

$\log (\mathrm{GNP})$ plot

predict plog
scatter bir plog gnpll line plog gnp

Log-scale plot

scatter bir plog gnp, xscale(log)\|l line plog gnp, xscale(log)

Square root and log compared

```
label var sqg "Sq Root GNP"
label var 1 g "Log of GNP"
scatter sqg lg gnp
```


Residuals

$$
\begin{aligned}
& Y=b_{0}+b_{1} X_{1}+\ldots+b_{k} X_{k}+e \\
& e \sim N(0, \sigma)
\end{aligned}
$$

Characteristics

- Residuals will
- have mean 0
- be as small as possible
- have no linear relationship to X variables
- Residuals should
- be approximately normally distributed (symmetric is often enough)
- not have a non-linear relationship to any X variable
- have a constant spread, that is not related to X or Y values
- If correlated with variables not in the model, perhaps those variables should be included

Examining residuals: ideal

Simple residuals

Examining residuals: Non-linear

Non-linear relationship

Examining residuals: asymmetric

Asymmetry of residuals

Residuals vs X

Residuals vs Predictions

Examining residuals: heteroscedasticity

Heteroscedasticity: correlation between X and sigma

Residuals vs X

Examining residuals: Spotting outliers

Outliers

Residuals vs X
Residuals vs Predictions

Examining residuals: Influence of outliers

Regression lines including and excluding outlier

Lecture 6: Residuals and Influence

Influence

Outliers may have undue influence

- dfbeta
- Cook's distance

DFBETA

- For each variable in the regression, for each case
- The effect of dropping that case on that variable
- Scaled by the standard error:

$$
\frac{b-b^{*}}{S E}
$$

Cook's Distance

- A single number summarising each case's overall influence
- A scaled sum of changes in predicted Y

Outlier interactive app

https://teaching.sociology.ul.ie/apps/influence/

Birth rate and GNP example

```
do http://teaching.sociology.ul.ie/so5032/birth
sort gnp
label var bir "Birth Rate"
label var gnp "GNP Per Capita"
lowess bir gnp, title("Birth rate and GNP per capita for selected countries'
```


Nonlinear plot

Get linear relationship

```
reg bir gnp
```

. reg bir gnp

Source	SS	df	MS	Number of obs	=	25
				F(1, 23)		27.52
Model	1450.2603	1	1450.2603	Prob > F		0.0000
Residual	1212.02523	23	52.696749	R -squared		0.5447
				Adj R-squared		0.5249
Total	2662.28552	24	110.928563	Root MSE	=	7.2593

| bir | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| gnp | -.8133082 | .155033 | -5.25 | 0.000 | -1.134018 | -.4925981 |
| _cons | 29.6227 | 2.037416 | 14.54 | 0.000 | 25.40798 | 33.83742 |

predict plin
scatter bir plin gnp|| line plin gnp

Linear plot

Quadratic

Linear regression doesn't fit well

Clearly, as GNP rises BIR falls, but the rate of fall declines
Let's try quadratic:

```
reg bir c.gnp##c.gnp
```

. reg bir c.gnp\#\#c.gnp

Source	SS	df	MS	Number of obs	=	25
				$\mathrm{F}(2,22)$	=	18.39
Model	1665.82856	2	832.914278	Prob > F	=	0.0000
Residual	996.456968	22	45.2934985	R -squared	=	0.6257
				Adj R-squared	=	0.5917
Total	2662.28552	24	110.928563	Root MSE	=	6.73

| | bir | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Sociology | gnp | -2.130192 | .6205087 | -3.43 | 0.002 | -3.417048 | -.8433351 |

Quatratic plot

predict pquad
scatter bir pquad gnpl| line pquad gnp

$\sqrt{G N P}$

Let's try square root of GNP:

```
gen sqg = sqrt(gnp)
reg bir sqg
```

- gen $\mathrm{sqg}=\mathrm{sqrt}(\mathrm{gnp})$
- reg bir sqg

Source	SS	df	MS	Number of obs	=	25
				$\mathrm{F}(1,23)$	=	39.44
Model	1681.66084	1	1681.66084	Prob > F	=	0.0000
Residual	980.624685	23	42.6358559	R -squared	=	0.6317
				Adj R-squared	=	0.6156
Total	2662.28552	24	110.928563	Root MSE	=	6.5296

| bir | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| sqg | -4.945487 | .7874579 | -6.28 | 0.000 | -6.574468 | -3.316506 |
| -cons | 34.70314 | 2.391073 | 14.51 | 0.000 | 29.75683 | 39.64946 |

$\sqrt{G N P}$ plot

```
predict psqrt
scatter bir psqrt gnp|| line psqrt gnp
```


| \bullet | Birth Rate

 Fitted values\bullet Fitted values |
| :--- | :--- | :--- |

$\log (G N P)$

Let's try the log of GNP:

```
gen lgg = log(gnp)
reg bir lgg
```

. gen $\operatorname{lgg}=\log (g n p)$
. reg bir lgg

Source	SS	df	MS	Number of obs	=	25
				$\mathrm{F}(1,23)$	=	54.84
Model	1875.68482	1	1875.68482	Prob > F	=	0.0000
Residual	786.600705	23	34.2000307	R -squared	=	0.7045
				Adj R-squared	=	0.6917
Total	2662.28552	24	110.928563	Root MSE	=	5.8481

| bir | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lgg | -5.542152 | .748362 | -7.41 | 0.000 | -7.090257 | -3.994047 |
| _cons | 29.49466 | 1.53576 | 19.21 | 0.000 | 26.3177 | 32.67162 |

$\log (\mathrm{GNP})$ plot

predict plog
scatter bir plog gnpll line plog gnp

Log-scale plot

scatter bir plog gnp, xscale(log)\|l line plog gnp, xscale(log)

Square root and log compared

```
label var sqg "Sq Root GNP"
label var 1 g "Log of GNP"
scatter sqg lg gnp
```


Lecture 7: Logs and log regression

Logarithms

Logarithms

Logarithms allow us to move between multiplicative equations and additive ones.
Logs are defined relative to a base number. If we take 10 as the base then $y=\log _{10}(x)$ means $10^{x}=y$.
It's easy to calculate the log of powers of 10 :

$$
\begin{array}{ll}
\log (10)=1 & 10^{1}=10 \\
\log (100)=2 & 10^{2}=100 \\
\log (1000)=3 & 10^{3}=1000 \\
\log (1000000)=6 & 10^{6}=1000000
\end{array}
$$

10^{0} is defined as 1 , so the \log of 1 is zero.

From 0 to 1

For numbers between 1 and 0 , logs are negative

$$
\begin{array}{ll}
\frac{1}{10}=10^{-1} & \log (0.1)=-1 \\
\frac{1}{100}=10^{-2} & \log (0.01)=-2 \\
\frac{1}{1000}=10^{-3} & \log (0.001)=-3
\end{array}
$$

The $\log _{10}$ of powers of 10 are integers, but we can raise 10 to non-integer powers too, to get the log of any number greater than zero. For instance, $10^{2.09}$ is 123 , so the log of 123 is 2.09 .

Multiply by adding

We can see with round powers of 10 than using logs we can move between multiplication and addition:

$$
\begin{aligned}
& 100 \times 1000=100000 \\
& 10^{2} \times 10^{3}=10^{5}=10^{2+3}
\end{aligned}
$$

Calculate $\mathbf{A} \times \mathrm{B}$

Thus do calculate $\mathrm{A} \times \mathrm{B}$ we do as follows:

- Calculate $\log (\mathrm{A})$
- Calclate $\log (\mathrm{B})$
- Calculate $\log (\mathrm{C})=\log (\mathrm{A})+\log (\mathrm{B})$
- Take the anti- \log of $\log (\mathrm{C})$, i.e., $10^{\log (\mathrm{C})}=\mathrm{C}$

Example

$$
\begin{aligned}
& \text { Multiply } 12345 \text { by } 67890 \\
& \log (12345)=9.421 \\
& \log (67890)=11.126 \\
& 9.421+11.126=20.547 \\
& 10^{20.547}=838102050
\end{aligned}
$$

An application

If you have a certain quantity (e.g., money in a bank account), whose value increases by a constant proportion every year, its value in any year depends on a multiplicative relationship.

Let's say the increases is α (i.e., a 10% increase means $\alpha=1.1$)

Compound interest

$$
\begin{array}{ll}
\text { Year 0 } & 100 \\
\text { Year 1 } & 100 \times \alpha \\
\text { Year 2 } & 100 \times \alpha \times \alpha \\
\text { Year 3 } & 100 \times \alpha \times \alpha \times \alpha \\
\text { Year 4 } & 100 \times \alpha \times \alpha \times \alpha \times \alpha \\
\text { Year 5 } & 100 \times \alpha \times \alpha \times \alpha \times \alpha \times \alpha
\end{array}
$$

In short, the value in year t is $100 \times \alpha^{t}$

$$
y_{t}=100 \times \alpha^{t}
$$

Constant proportional increase

Figure 1: A constant proportional increase

Convert to logs

But if we convert to logs we can calculate it as follows

$$
\log \left(y_{t}\right)=\log (100)+t \times \log (\alpha)
$$

In other words, rather than multiplying by α every year, we add $\log (\alpha)$.

Plot

Figure 2: Taking the base-10 log of the sum: a straight line

Straight line

This gives a straight line relationship (see Fig 2).
Thus we can use logs to move between multiplicative and additive (straight-line) relationships.

Other bases

Logs to the base 10 are easy to understand, but the base number need not be 10 . $\mathrm{A} \log$ to the base n is defined thus:

$$
y=\log _{n}(x) \Leftrightarrow n^{y}=x
$$

Natural logs

Computer scientists often use $\log _{2}$, but the most common log base is the special number $e \approx 2.7183$. This has some special mathematical properties that make certain calculations easier.

Logs to base e are called natural logs, often written $\operatorname{In}(x)$ etc:

$$
y=\ln (x) \Leftrightarrow e^{y}=x
$$

See Fig 3, which shows that the natural log also gives a straight line.

Natural log straight line

Figure 3: Taking the natural log of the sum: also a straight line

Natural log

- Fig 4 shows the natural log of X from 0.1 (-2.303) to 100 (4.605).
- For $X=1$, the \log is 0 .
- As X approaches 0 , the log falls faster and faster.
- As X rises above 1, the log rises, but more slowly as it goes.
- Note that the log rises from $X=5$ to 10 as much as it does from $X=40$ to 80 .

X vs $\ln (X)$

Figure 4: The natural \log of X for X from 0.1 to 100

Lecture 7: Logs and log regression

Early pandemic: exponential curves

Logs and COVID-19

- In the early stage of an epidemic, infections tend to increase at a steady rate
- On average each infected person infects others at a given rate, e.g., one person every four days
- So numbers of cases tend to rise at a steady percentage
- New infections are proportional to existing infections
- 100 today means 125 tomorrow, 156 the next day, etc.

Confirmed cases in Ireland

If we look at the raw number of cases in Ireland:

- it starts off very low
- stays there for a while
- but then starts rising
- and rising faster and faster
line cases date

Confirmed cases in Ireland

Log cases

If we plot the log of the cases we see a different picture

- wobbly to begin with
- then approximating a straight line

```
gen lcases = log(cases)
line lcases date
```


Log cases

Log cases: straight => exponential

A straight line in logs means \log (ncases) increases by more or less a set amount very day

That means ncases rises by a set proportion every day: exponential rise
Exponential: even if it starts small, if given long enough, will get very very big!

Log scale, real cases

We can graph $\log ($ cases $)$ but we can also graph cases with a Y log-scale line cases date, yscale(log) ylabel(1 2510204080160320 640)

This gives the advantages of the logging while retaining the real numbers on the axis

Log scale, real cases

Log-scale graphic in the wild

FT graphic: John Burn-Murdoch / @jburnmurdoch
Source: FT analysis of Johns Hopkins University, CSSE; Worldometers. Data updated March 21, 19:00 GMT (c) FT

Lecture 7: Logs and log regression

Log regression

Multiplicative relationship

- Where the underlying relationship is multiplicative, linear regression doesn't work well
- Implies an additive increase where a multiplicative one is better
- If we take the log of the dependent variable:
- better estimates
- often cures heteroscedasticity

Simulation: Y increases 65% for $\mathrm{X}+1$

bandwidth $=.8$

Linear regression

sociology

Predictions

$\log (Y)$

sociology

Interpretation

- For a 1 unit change in $X, \log (\hat{Y})$ rises by 0.4933914
- Thus for a 1 unit change in X, Y rises by $e^{0.4933914}=1.638$
- $e^{0.4933914}$ is the antilog of 0.4933914

Predictions

Predicted values

- Where the dependent variable is logged the prediction of the Y value is not simply the anti-log of the predicted $\log (\mathrm{Y})$
- When we take the anti-log we must take account of the fact that residuals above the line expand by more than residuals below the line
- Thus a small correction

$$
\begin{gathered}
\log \hat{(Y)}=a+b X \\
\hat{Y}=e^{\log (Y)} * e^{\mathrm{RMSE}^{2} / 2}
\end{gathered}
$$

- where RMSE is the standard deviation of the regression

Calculations

```
gen ly = log(y)
reg ly x
predict lyhat
gen elyh = exp(lyhat)
gen elyh2 = elyh * exp(rmse^2/2)
```


Predictions: predict $\log (\mathrm{Y})$ on log scale

Predictions: only $e^{\log (Y)}$

Predictions: with correction

Predicting COVID-19

- We can apply log regression to the COVID-19 data
- A straight line on a log scale means a constant proportional increase.
- We can estimate this increase, regressing log(cases) on date.
- The slope, b , is the amount by which \log cases rises per day
- e^{b} is then the multiplier by which cases rises per day
reg lcases date

Stata output

sociology

Logs with log regression

Steady increase

The log of cases rises by 0.3058 per day
This means cases rises by a factor of $e^{0.3058}=1.358$
The increase is $1.358-1=0.358$, or almost 36% per day
Implies a doubling about every 2.6 days

But exponential increase is temporary

Exponential increase cannot go on indefinitely
Even if nothing is done, the rate of increase will decline as fewer people are left unexposed

And interventions (isolation, tracing) will reduce the rate
See China, for example

Wuhan, with prediction based on 1st 19 days

Wuhan, prediction on days 1/19

Summary

If there is a constant rate of increase, logs give us straight lines
Graph the log, or use a log scale on the Y-axis
Log regression allows us to estimate the rate
Exponential increase isn't forever, but modelling the exponential helps us see where the rate starts to drop
Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do

Outline

Today we introduce logistic regression: for binary outcomes
See Agresti Ch 15 Sec 1.

Binary outcomes and regression

- OLS (linear regression) requires an interval dependent variable
- Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials

Problems with OLS

- Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- Particular difficulties with multiple explanatory variables
- Nonetheless still often used

Linear Probability Model

- If we use OLS with binary outcomes, it is called "linear probability model":

$$
\operatorname{Pr}(Y=1)=a+b X
$$

- data is $0 / 1$, prediction is probability
- Assumptions violated, but if predicted probabilities in range $0.2-0.8$, not too bad

Credit card example

sociology

Credit card example

Credit card example

Logistic transformation

- Probability is bounded [0:1]
- OLS predicted value is unbounded
- How to transform probability to $-\infty$: ∞ range?
- Odds: $\frac{p}{1-p}$ - range is $0: \infty$
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty: \infty$

Probability to odds

Probability to log-odds

Rotated: the "S-shaped" curve

Logistic regression

- Logistic regression uses this as the dependent variable:

$$
\log \left(\frac{p}{1-p}\right)=a+b X
$$

Alternatives

We can look at this in three ways

- In terms of log-odds:

$$
\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)=a+b X
$$

- In terms of odds:

$$
\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}=e^{a+b X}
$$

- In terms of probability:

$$
\operatorname{Pr}(Y=1)=\frac{e^{a+b X}}{1+e^{a+b X}}=\frac{1}{1+e^{-a-b X}}
$$

Parameters

- The b parameter is the effect of a unit change in X on $\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)$
- This implies a multiplicative change of e^{b} in $\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}$, in the Odds
- Thus an odds ratio
- But the effect of b on P depends on the level of b

Credit card logistic regression

sociology

Credit card logistic regression

Sigmoid curve from a+bX

Calculating predicted probabilities by hand

- We can calculate the predicted probability for any combination of values of the independent variables
- First, plug them into the $\mathrm{a}+\mathrm{bX}$ part to get the predicted log-odds
- Then take the anti-log of the log-odds to get the odds
- Then odds/(1+odds) gives us the probability

Calculating predicted probabilities

- Example: $\log (o d d s)=0.25+0.12 X$
- Predict for $X==10$
- Predicted log-odds $=0.25+0.12^{*} 10=1.45$
- Predicted odds $=e^{1.45}=4.263$
- Predicted probability $=4.263 /(1+4.263)=0.810$

Web applet for practicing

https://teaching.sociology.ul.ie:/apps/logabx/

Outline

Today we introduce logistic regression: for binary outcomes
See Agresti Ch 15 Sec 1.

Binary outcomes and regression

- OLS (linear regression) requires an interval dependent variable
- Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials

Problems with OLS

- Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- Particular difficulties with multiple explanatory variables
- Nonetheless still often used

Linear Probability Model

- If we use OLS with binary outcomes, it is called "linear probability model":

$$
\operatorname{Pr}(Y=1)=a+b X
$$

- data is $0 / 1$, prediction is probability
- Assumptions violated, but if predicted probabilities in range $0.2-0.8$, not too bad

Credit card example

sociology

Credit card example

Credit card example

Logistic transformation

- Probability is bounded [0:1]
- OLS predicted value is unbounded
- How to transform probability to $-\infty$: ∞ range?
- Odds: $\frac{p}{1-p}$ - range is $0: \infty$
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty: \infty$

Probability to odds

Probability to log-odds

Rotated: the "S-shaped" curve

Logistic regression

- Logistic regression uses this as the dependent variable:

$$
\log \left(\frac{p}{1-p}\right)=a+b X
$$

Alternatives

We can look at this in three ways

- In terms of log-odds:

$$
\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)=a+b X
$$

- In terms of odds:

$$
\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}=e^{a+b X}
$$

- In terms of probability:

$$
\operatorname{Pr}(Y=1)=\frac{e^{a+b X}}{1+e^{a+b X}}=\frac{1}{1+e^{-a-b X}}
$$

Parameters

- The b parameter is the effect of a unit change in X on $\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)$
- This implies a multiplicative change of e^{b} in $\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}$, in the Odds
- Thus an odds ratio
- But the effect of b on P depends on the level of b

Credit card logistic regression

Credit card logistic regression

Sigmoid curve from a+bX

Calculating predicted probabilities by hand

- We can calculate the predicted probability for any combination of values of the independent variables
- First, plug them into the $\mathrm{a}+\mathrm{bX}$ part to get the predicted log-odds
- Then take the anti-log of the log-odds to get the odds
- Then odds/(1+odds) gives us the probability

Calculating predicted probabilities

- Example: $\log (o d d s)=0.25+0.12 X$
- Predict for $X==10$
- Predicted log-odds $=0.25+0.12^{*} 10=1.45$
- Predicted odds $=e^{1.45}=4.263$
- Predicted probability $=4.263 /(1+4.263)=0.810$

Web applet for practicing

http://teaching.sociology.ul.ie:3838/logabx/

Housing tenure

- Housing tenure: probability of owning outright, BHPS data

```
. logit ownocc age
Iteration 0: Log likelihood = -8728.6773
Iteration 1: Log likelihood = -7150.2389
Iteration 2: Log likelihood = -7095.7194
Iteration 3: Log likelihood = -7095.5268
Iteration 4: Log likelihood = -7095.5268
```

Logistic regression Number of obs $=14,182$
LR chi2(1) $=3266.30$
Prob > chi2 $=0.0000$
Log likelihood $=-7095.5268$

Number of obs	$=14,182$
LR chi2(1)	$=3266.30$
Prob > chi2	$=0.0000$
Pseudo R2	$=0.1871$

| ownocc | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | .0633183 | .0012705 | 49.84 | 0.000 | .0608281 | .0658084 |
| _cons | -3.974023 | .0697795 | -56.95 | 0.000 | -4.110788 | -3.837258 |

Predictions

Age and home-ownership, BHPS

Predictions

$L O=a+b X$
Odds $=\exp (a+b X)$
P = Odds/(1 + Odds)
X increases by 1 :

- LO by b (additive)
- Odds by e ${ }^{\text {b }}$ (multiplicative)
- P is more complicated

Predicton

- Log-odds

$$
\begin{array}{ll}
X=x & L O(x)=a+b x \\
X=x+1 & L O(x+1)=a+b(x+1)=a+b x+b \\
\text { Difference: } & L O(x+1)-L O(x)=b
\end{array}
$$

Prediction: odds scale

- Odds

$$
\begin{array}{ll}
X=x & \operatorname{Odds}(x)=e^{a+b x}=e^{a} e^{b x} \\
X=x+1 & \operatorname{Odds}(x+1)=e^{a+b(x+1)}=e^{a+b x+b}=e^{a} e^{b x} e^{b} \\
\text { Ratio } & \operatorname{Odds}(x+1) / \operatorname{Odds}(x)=e^{b}
\end{array}
$$

- Hence odds-ratio: if X increases by 1 , OR increases by factor of e^{b}

Odds ratio

- tab univ ownocc			
univ	ownocc 0	1	Total
0	8,335	3,835	12,170 1
Total	9,514	499	

$\mathrm{OR}=(499 / 1514) /$ $(3835 / 8335)=0.7163$
logit ownocc i.univ
Iteration 0: Log likelihood $=-8729.863$ Iteration 1: Log likelihood $=-8710.9025$ Iteration 2: Log likelihood $=-8710.8468$ Iteration 3: Log likelihood $=-8710.8468$

Logistic regression
Number of obs $=14,183$ LR chi2(1) $=38.03$ Prob > chi2 $=0.0000$ Pseudo R2 $=0.0022$

ownocc	Coefficient	Std. err.	z	$P>\|z\|$	$[95 \%$ conf. interval]	
1.univ	-.3336103	.0551837	-6.05	0.000	-.4417683	-.2254522
_cons	-.7762941	.0195124	-39.78	0.000	-.8145376	-.7380506

$$
e^{b}=e^{-.3336103}=0.7163
$$

Predictions on probability scale

- Effect of X on the probability scale is non-linear
- Low when p is either high or low
- Highest at $p=0.5$, odds $=1, \log -$ odds $=0$
- The steepest slope is at $p=0.5$, with a value of $\frac{\beta}{4}$

Marginal effects

Marginal effects of age on probability at 25, 62.76 and 90

Multiple explanatory variables

```
. logit ownocc age i.univ
Iteration 0: Log likelihood = -8728.6773
Iteration 1: Log likelihood = -7150.3435
Iteration 2: Log likelihood = -7094.4048
Iteration 3: Log likelihood = -7094.1883
Iteration 4: Log likelihood = -7094.1882
Logistic regression Number of obs = 14,182
LR chi2(2) = 3268.98
Prob > chi2 = 0.0000
Log likelihood = -7094.1882
\begin{tabular}{llr} 
Number of obs & \(=14,182\) \\
LR chi2 (2) & \(=3268.98\) \\
Prob > chi2 & \(=0.0000\) \\
Pseudo R2 & \(=0.1873\)
\end{tabular}
\begin{tabular}{r|rrrrrr}
\hline ownocc & Coefficient & Std. err. & \(z\) & \(P>|z|\) & [95\% conf. interval] \\
\hline age & .0636471 & .0012888 & 49.38 & 0.000 & .061121 & .0661731 \\
1.univ & .0999785 & .0608614 & 1.64 & 0.100 & -.0193076 & .2192646 \\
_cons & -4.004807 & .0724889 & -55.25 & 0.000 & -4.146883 & -3.862731 \\
\hline
\end{tabular}
```


Lecture 11: Multinomial and
 Ordinal regression

Inference

Inference

- In practice, inference is similar to OLS though based on a different logic
- For each explanatory variable, $H_{0}: \beta=0$ is the interesting null
- $z=\frac{\hat{\beta}}{S E}$ is approximately normally distributed (large sample property)
- More usually, the Wald test is used: $\left(\frac{\hat{\beta}}{S E}\right)^{2}$ has a χ^{2} distribution with one degree of freedom

Likelihood ratio tests

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where I_{0} is the likelihood of the model without X_{j}, and I_{1} that with it, the quantity

$$
-2\left(\log \frac{I_{0}}{I_{1}}\right)=-2\left(\log I_{0}-\log I_{1}\right)
$$

is χ^{2} distributed with one degree of freedom

Nested models

- More generally, $-2\left(\log \frac{l_{0}}{T_{1}}\right)$ tests nested models: where model 1 contains all the variables in model 0 , plus m extra ones, it tests the null that all the extra β coefficients are zero (χ^{2} with $m \mathrm{df}$)
- If we compare a model against the null model (no explanatory variables, it tests

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0
$$

- Strong analogy with F test in OLS

Example

- qui logit ownocc age . est store mod1 . logit ownocc age i.educ						
Iteration 0: Log likelihood $=-8728.6773$						
Iteration 1: Log likelihood = -7136.2054						
Iteration 2: Log likelihood $=-7077.7722$						
Iteration 3: Log likelihood = -7077.5203						
Iteration 4: Log likelihood $=-7077.5203$						
Logistic regression					Number of ob	$=14,182$
					LR chi2(3)	$=3302.31$
					Prob > chi2	$=0.0000$
Log likelihood $=-7077.5203$					Pseudo R2	$=0.1892$
ownocc	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf	interval]
age	. 0652599	. 0013433	48.58	0.000	. 0626271	. 0678927
educ						
Med	. 3041599	. 0673504	4.52	0.000	. 1721556	. 4361642
Lo	-. 1075582	. 0461399	-2.33	0.020	-. 1979907	-. 0171257
_cons	-4.060514	. 0730524	-55.58	0.000	-4.203694	-3.917333

- Irtest mod1

Likelihood-ratio test
Assumption: mod1 nested within

Lecture 11: Multinomial and Ordinal regression

Margins command

"Average Marginal Effect"

- "What would happen to the averege predicted probability if we increased X?"
- For linear regression, increase X by $1=>$ increase by b
- increase X by $10=>$ increase by $b \times 10$
- increase X by 0.1 => increase by $b \times 0.1$
- since it's a straight line
- For AME in logistic we use the slope of the tangent, for each X value
- Average across the observed data
- Gives something like a LPM slope

AME in Stata

. margins, dydx(age)
Average marginal effects
Model VCE: OIM
Expression: Pr(ownocc), predict()
dy/dx wrt: age
age

Lecture 11: Multinomial and
 Ordinal regression

Maximum likelihood

Maximum likelihood estimation

- What is this "likelihood"?
- Unlike OLS, logistic regression (and many, many other models) are extimated by maximum likelihood estimation
- In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data
- OLS can be ML estimated, and yields exactly the same results

Iterative search

- Sometimes the values can be chosen analytically
- A likelihood function is written, defining the probability of observing the actual data given parameter estimates
- Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set
- Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations)
- Extremely flexible, allows estimation of a vast range of complex models within a single framework

Likelihood as a quantity

- Either way, a given model yields a specific maximum likelihood for a give data set
- This is a probability, henced bounded [0:1]
- Reported as log-likelihood, hence bounded [- : 0]
- Thus is usually a large negative number
- Where an iterative solution is used, likelihood at each stage is usually reported - normally getting nearer 0 at each step

Lecture 11: Multinomial and Ordinal regression

Tabular data

Tabular data

- If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table
- If we think of it as a table where each cell contains n yeses and $m-n$ noes (n successes out of m trials) we can fit grouped logistic regression
- n successes out of m trials implies a binomial distribution of degree m

$$
\log \frac{n}{m-n}=\alpha+\beta X
$$

- The parameter estimates will be exactly the same as if the data were treated individually

Tabular data and goodness of fit

- But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell
- If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value)
- Where l_{i} is the likelihood of the current model, and I_{s} is the likelihood of the "saturated model" the test statistic is

$$
-2\left(\log \frac{I_{i}}{I_{s}}\right)
$$

- The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table)
- The test has $d f$ of number of settings less number of parameters estimated, and is χ^{2} distributed

[^0]: 1 cell with expected frequency < 5
 Pearson $\operatorname{chi2}(16)=4.2 \mathrm{e}+03 \quad \mathrm{Pr}=0.000$
 likelihood-ratio chi2(16) $=3.3 \mathrm{e}+03 \mathrm{Pr}=0.000$

[^1]: 1 cell with expected frequency < 5
 Pearson $\operatorname{chi2}(16)=4.2 \mathrm{e}+03 \quad \mathrm{Pr}=0.000$
 likelihood-ratio chi2(16) $=3.3 \mathrm{e}+03 \mathrm{Pr}=0.000$

