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SO5032 Spring 2023/4 – Module outline

Module Code: SO5032
Module Title: Quantitative Research Methods II (MA)
Academic Year: 2023/4
Semester: Spring
Lecturer(s): Dr Brendan Halpin
Lecture Locations: Lec Mon 09-1100 P1006, Lab Weds 12-1400 A0060a
Lecturer(s) Contact Details: brendan.halpin@ul.ie
Lecturer(s) Office Hours: Mon 1100-1300
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Short Summary of Module:

Intermediate quantitative research methods for sociology, following on from
SO5041.
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Aims and Objectives of Module:

• A continuation of SO5041 – builds on what was learnt there

• A deeper look at methods already covered, especially regression

• Related methods more suited to social science data: methods for categorical
and ordinal variables, including logistic regression

• Further use of Stata:
• Use in a production environment – do-files, logging, reproducibility
• More complex data handling
• Further analytic procedures

• Secondary analysis: real research with existing data sets
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Learning Outcomes:

• Deeper understanding of methods for analysis of categorical data

• Understanding of the nature of multivariate causality

• Understanding of the theory and practice of multiple linear regression

• An understanding of some methods for regression with categorical dependent
variables

• Deeper understanding of sampling practice and theory

• Practical skills for accessing and analysing large-scale data sets

• An ability to read quantitative social research

• Greater competence in Stata, particularly for handling larger projects
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Course Structure:

One two-hour lecture per week, one two-hour lab per week.
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Detailed outline

• Revisit χ2, look at methods for more complex analysis of categorical (nominal
and ordinal) data (chapter 8, Agresti)(1-2 weeks)

• Multivariate causality (chapter 10 from Agresti) (1 week)

• Multiple regression (chapters 11, 14 from Agresti) (3 weeks plus)

• More sampling theory: clusters, strata, weighting (1 week)

• Data sets, data archives and secondary analysis (1 week, ongoing in labs)

• Logistic regression: regression where the dependent variable is binary (or
multinomial) rather than continuous (chapter 15 from Agresti) (3 weeks plus)

• Reading statistical research – what gets published and how to read it (1-2
weeks/on-going)
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Lecture topics by week

Week Topic Lecture Lab
beginning Mon 09-1100 Wed 12-1400
1: Jan 29 Categorical data, association in tables X X
2: Feb 05 Association in ordinal data X X (lecture)
3: Feb 12 Understanding multidimensional causality X X
4: Feb 19 Introducing multiple regression X X
5: Feb 26 Further multiple regression X X
6: Mar 04 Multiple regression: residuals & influence X X
7: Mar 11 Regression with logged dependent variables X X
8: Mar 18 Introducing logistic regression X X (lecture)
9: Apr 01 Further logistic regression X X (lecture)
10: Apr 08 Multinomial regression X X
11: Apr 15 Multinomial and ordinal regression X X
12: Apr 22 Ordinal regression continued X X
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Texts

• Main text: Agresti, Statistical Methods for the Social Sciences – particularly
chapters 8, 10, 11, 14 and 15

• Supplementary texts:
• de Vaus, Surveys in Social Research: good on survey methodology
• Agresti, Introduction to Categorical Data Analysis
• Pevalin and Robson, The Stata Survival Manual
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Details of Module Assessment:

• Three assignments, weeks 6, 11 and 15.

• The first two assignments are worth 20% each.

• The final assignment is a project, worth 60%, and should be worked on
throughout the semester (see below).
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Details of Annual Repeats:

A 100% assignment, to be submitted in the examination period.
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BrightSpace and Other Classroom Technologies:

• The module will use BrightSpace for submission of assignments and for
provision of materials.

• http://teaching.sociology.ul.ie/so5032 will also be used
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IN TERM ASSIGNMENT(S):

• Assignment 1: Homework exercises relating to linear regression.
• Marks: 20%
• Deadline: End week 6

• Assignment 2: Homework exercises relating to categorical data analysis.
• Marks: 20%
• Deadline: End week 11

• Assignment 3: A project This will involve the use of large-scale survey data,
and require the formulation of a research question, and its addressing using
statistical analysis.

• Marks: 60%
• Deadline: End week 15.
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FEEDBACK:

Detailed feedback on assignments 1 and 2 will be given in weeks 8 and 13, by
e-mail and on request face-to-face. Feedback on assignment 3 will be provided on
request after the semester.
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Plagiarism notice

It hardly needs to be said, but all work must be your own. All material drawn from
other sources must be clearly attributed. Passing off others’ work as your own is
considered academic dishonesty, and can be subject to substantial penalties.
Please familiarise yourself with the departmental policy on plagiarism and use the
coversheet declaration with all assignments (both available at
http://www.ul.ie/sociology/ under Student Resources).
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Deadline policy

Please also note the Department’s policy on deadlines, also available at
http://www.ul.ie/sociology/ under Student Resources.
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Association between categorical variables

• Association between categorical variables: departure from independence

• Visible in patterns of percentages
• Three main questions (cf Agresti/Finlay p265)

• Is there evidence of association?
• What is the form of the association?
• How strong is the association?
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The χ2 test

• Compare observed values with expected values under independence:

E =
RC
T

χ2 =
∑ (O − E)2

E

• For frequency data, and for large samples the χ2 statistic has a χ2 distribution
with df = (r − 1)(c − 1)

• Interpretation: chance of getting a χ2 this big or bigger if H0 (independence) is
true in the population
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The χ2 distribution

App: http://teaching.sociology.ul.ie:3838/apps/chidist
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Limitations of χ2

• Large sample required: most expected counts 5+

• For frequency or count data, not rates or percentages

• Tests for evidence of association, not strength (see Agresti/Finlay Table 8.14,
p 268)

• Looks for unpatterned association, may miss weak systematic association
between ordinal variables
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Pattern of association

• The form association takes is interesting

• We can see it by examining percentages

• Or residuals: O − E

• But residuals depend on sample and expected value size
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Pearson residuals

• “Pearson residuals” are better:
O − E√

E

• Square and sum these residuals to get the χ2 statistic
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Adjusted Residuals

• The sum of squared Pearson residuals has a χ2 distribution, but individually
they are not normally distributed

• Adjusted residuals scale to have a standard normal distribution if
independence holds:

AdjRes =
O − E√

E(1− πr )(1− πc)

• Adjusted residuals outside the range -2 to +2 indicate cells with unusual
observed values (< c5% chance)

• Adjusted residuals outside the range -3 to +3 indicate cells with very unusual
observed values
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Measures of association

• Evidence, pattern, now strength of association
• A number of measures

• Difference of proportions
• Odds ratio
• Risk ratio (ratio of proportions)

• Focus on 2 by 2 pairs, but can be extended to bigger tables
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Difference of proportions

No association
Favour Oppose Total

White 360 240 600
Black 240 160 400
Total 600 400 1000

Maximal association
Favour Oppose Total

White 600 0 600
Black 0 400 400
Total 600 400 1000
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Difference in proportions

• Difference in proportions (i): 360
600 −

240
400 = 0.6− 0.6 = 0

• Difference in proportions (ii): 600
600 −

0
400 = 1− 0 = 1

• Range: -1 through 0 (no association) to +1
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Relative risk

• “Relative risk” of ratio or proportions is also popular

• The ratio of two percentages:

RR =
n11/n1+

n21/n2+

where n1+ indicates the row-1 total etc.

• Range = 0 through 1 (no association) to∞
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Odds ratios

• Odds differ from proportions/percentages:
• Percentage: πi = fi

Total
• Odds: Oi = fi

Total−fi
= πi

1−πi

• Odds ratios are the ratios of two odds:

OR =
n11/n12

n21/n22

• Range: 0 though 1 (no association) to∞
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Odds ratios

• Odds ratio (i):
360
240
240
160

= 1.5
1.5 = 1

• Odds ratio (ii):
600
0
0

400
= ∞

0 =∞

• Range: 0 through 1 (no association) to +∞
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Comparing measures

• Difference of proportions is simple and clear

• Ratio of proportions/Relative Risk is also simple

• Odds ratio is less intuitive but turns out to be mathematically more tractable

• DP and RR less consistent across different base levels of “risk”
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Ordinal Data

• χ2 may miss ordinal association

• Symmetric ordinal measures based on concordant and discordant pairs: γ
(gamma), Kendall’s τ (tau).
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Lecture 2

Reading (for this and last week):

• Agresti, Chapter 8
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Lecture 2

• Expected values, residuals, adjusted residuals in Stata

• Ordinal association

• Association in multi-way tables

• Multivariate causality
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Tabular association in Stata

tabchi procedure allows access to

• Percentages

• Expected values

• Residuals

• Adjusted residuals
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Ordinal association

• When variables are ordinal, association may be structured

• High values on X are associated with high values on Y, low with low

• Or vice versa for negative association

• Analogous to correlation

• Examine using percentages, adjusted residuals: ordered pattern
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Example: row percentages

. tab lopfamo lopfaml, row

Key

frequency

row percentage

co-habiting is divorce better than unhappy marriage

alright strongly agree neithr ag disagree stronglyd Total

strongly agree 2,381 1,228 304 38 19 3,970

59.97 30.93 7.66 0.96 0.48 100.00

agree 1,462 4,159 687 103 15 6,426

22.75 64.72 10.69 1.60 0.23 100.00

neithr agree, disagr 485 1,803 717 73 13 3,091

15.69 58.33 23.20 2.36 0.42 100.00

disagree 156 647 252 143 15 1,213

12.86 53.34 20.77 11.79 1.24 100.00

stronglydisagree 78 143 129 101 50 501

15.57 28.54 25.75 20.16 9.98 100.00

Total 4,562 7,980 2,089 458 112 15,201

30.01 52.50 13.74 3.01 0.74 100.00
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Example: observed and expected values

. tabchi lopfamo lopfaml

observed frequency

expected frequency

co-habiting is divorce better than unhappy marriage

alright strongly agree agree neithr agree, disagr disagree stronglydisagree

strongly agree 2381 1228 304 38 19

1191.444 2084.113 545.578 119.614 29.251

agree 1462 4159 687 103 15

1928.519 3373.428 883.094 193.613 47.346

neithr agree, disagr 485 1803 717 73 13

927.646 1622.668 424.781 93.131 22.774

disagree 156 647 252 143 15

364.036 636.783 166.697 36.547 8.937

stronglydisagree 78 143 129 101 50

150.356 263.008 68.850 15.095 3.691

1 cell with expected frequency < 5

Pearson chi2(16) = 4.2e+03 Pr = 0.000

likelihood-ratio chi2(16) = 3.3e+03 Pr = 0.000
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Example: adjusted residuals

. tabchi lopfamo lopfaml, adj noo

expected frequency

adjusted residual

co-habiting is divorce better than unhappy marriage

alright strongly agree agree neithr agree, disagr disagree stronglydisagree

strongly agree 1191.444 2084.113 545.578 119.614 29.251

47.925 -31.654 -12.956 -8.815 -2.213

agree 1928.519 3373.428 883.094 193.613 47.346

-16.713 25.829 -9.351 -8.703 -6.210

neithr agree, disagr 927.646 1622.668 424.781 93.131 22.774

-19.463 7.277 17.104 -2.373 -2.303

disagree 364.036 636.783 166.697 36.547 8.937

-13.587 0.612 7.416 18.639 2.122

stronglydisagree 150.356 263.008 68.850 15.095 3.691

-7.173 -10.918 7.937 22.831 24.601

1 cell with expected frequency < 5

Pearson chi2(16) = 4.2e+03 Pr = 0.000

likelihood-ratio chi2(16) = 3.3e+03 Pr = 0.000
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Measures of ordinal association

• Sometimes Pearson’s Correlation is used

• Equivalent to scoring the categories linearly and calculating the conventional
correlation

. corr lopfamo lopfaml

(obs=15,201)

lopfamo lopfaml

lopfamo 1.0000

lopfaml 0.3831 1.0000
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Non-linear correlation

• Assumption of equal intervals problematic (but often reasonably OK)

• Spearman’s Rank Correlation is a better solution
. spearman lopfamo lopfaml

Number of obs = 15201

Spearman�s rho = 0.3840

Test of H0: lopfamo and lopfaml are independent

Prob > |t| = 0.0000
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Truly ordinal measures

• The Gamma statistic (γ) is truly ordinal

• Counts “concordant” and “discordant” pairs

γ =
C − D
C + D

• Range: -1, 0, 1

• Approximately normal for large samples
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Gamma in practice

. tab lopfamo lopfaml, gamma

co-habiting is divorce better than unhappy marriage

alright strongly agree neithr ag disagree stronglyd Total

strongly agree 2,381 1,228 304 38 19 3,970

agree 1,462 4,159 687 103 15 6,426

neithr agree, disagr 485 1,803 717 73 13 3,091

disagree 156 647 252 143 15 1,213

stronglydisagree 78 143 129 101 50 501

Total 4,562 7,980 2,089 458 112 15,201

gamma = 0.4975 ASE = 0.009
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Variants

• Gamma is symmetrical

• Kendall’s tau (τ ) is also symmetrical, similar logic

• Somer’s d also uses C + D but is asymmetrical: one variable affecting another
(takes account of ties)
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Multi-way tables

• How do we think in terms of multi-way tables – more than two dimensions?

• Often, in terms of whether the A× B relationship is constant across C
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Scouting example

Scout Delinquent

Yes No Total
Yes 36 364 400
No 60 340 400

Total 96 704 800
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Scouting example

Low Church Attendance
Scout Delinquent

Yes No Total
Yes 10 40 50
No 40 160 200

Total 50 200 250

Medium Church Attendance
Scout Delinquent

Yes No Total
Yes 18 132 150
No 18 132 150

Total 36 264 800

High Church Attendance
Scout Delinquent

Yes No Total
Yes 8 192 200
No 2 48 50

Total 10 240 250
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Multidimensional causality

• Regression analysis never proves causal relationships, but it "thinks" in causal
terms

• To use it we need to understand causal relationships: what process generates
the data we see, and what can regression tell us about it.

• Start by considering the relationship between variables and patterns of
association
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3-variable pictures

• Let’s consider patterns of causality and association between three variables,
X1 and X2, and Y

• If X1 and X2 are not correlated with each other, their separate effects on Y
more or less just add up

X1

X2

Y
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Correlated X variables

• But if X1 and X2 are correlated, things can get funny:

X1

X2

Y

• In particular, if we measure the effect of one X without taking account of the
other we will likely over-estimate it
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Spurious association

• X1 may have an association with Y, implying a causal relationship

• But if X2 affects both X1 and Y the relationship between X1 and Y may be
spurious

X1

X2

Y
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Indirect effects

• Where there is a time-order (X1 before X2), we may see direct and indirect
effects

• X1 may affect X2, which affects Y, but not affect Y directly

• Thus there is association between X1 and Y without a direct causal effect

X1 X2 Y
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Direct and indirect effects

• However, it is possible for both direct and indirect effects to be present at the
same time

X1 X2 Y
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Suppression

• Where X1 and X2 have positive effects on Y, but a negative correlation, or
different effects on Y with a positive correlation, the association between X1
and Y may be suppressed

• That is, it may be invisible if we don’t take account of X2

X1

X2

Y
+

+-
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Interactions

• An interaction effect is where the effect of one variable on Y changes
depending on the value of another

X1

X2

Y
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Lecture 3: Multidimensional
causality

Multiple regression



Multiple explanatory variables

• Regression analysis can be extended to the case where there is more than
one explanatory variable – multivariate regression

• This allows us to estimate the net simultaneous effect of many variables, and
thus to begin to disentangle more complex relationships

• Interpretation is relatively easy: each variable gets its own slope coefficient,
standard error and significance

• The slope coefficient is the effect on the dependent variable of a 1 unit
change in the explanatory variable, while taking account of the other variables
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Example

• Example: income may be affected by gender, and also by paid work time:
competing explanations – one or the other, or both could have effects

• We can fit bivariate regressions:

Income = a + b × PaidWork

or
Income = a + b × Female

• We can also fit a single multivariate regression

Income = a + b × PaidWork + c × Female
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Dichotomous variables

• We deal with gender in a special way: this is a binary or dichotomous variable
– has two values

• We turn it into a yes/no or 0/1 variable – e.g., female or not

• If we put this in as an explanatory variable a one-unit change in the
explanatory variable is the difference between being male and female

• Thus the c coefficient we get in the Income = a + b×PaidWork + c × Female
regression is the net change in predicted income for females, once you take
account of paid work time.

• The b coefficient is then the net effect of a unit change in paid work time, once
you take gender into account.
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Income, hours and gender

. corr Income Gender Hours

(obs=506)

Income Gender Hours

Income 1.0000

Gender -0.3280 1.0000

Hours 0.3638 -0.4360 1.0000
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Income, hours and gender
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T-test: Income by gender

. ttest Income, by(Gender)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

male 437 1618.348 59.11677 1235.809 1502.159 1734.537

female 531 992.1805 40.82127 940.6625 911.9892 1072.372

combined 968 1274.861 36.23219 1127.281 1203.759 1345.964

diff 626.1674 70.00484 488.7883 763.5465

diff = mean(male) - mean(female) t = 8.9446

Ho: diff = 0 degrees of freedom = 966

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000
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Regression: Just hours

. reg Income Hours

Source SS df MS Number of obs = 506

F(1, 504) = 76.86

Model 86947928.8 1 86947928.8 Prob > F = 0.0000

Residual 570128215 504 1131206.78 R-squared = 0.1323

Adj R-squared = 0.1306

Total 657076144 505 1301140.88 Root MSE = 1063.6

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 37.82204 4.314061 8.77 0.000 29.34628 46.2978

_cons 449.7435 150.1722 2.99 0.003 154.703 744.7841
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Regression: Hours and binary gender

. reg Income Hours i.Gender

Source SS df MS Number of obs = 506

F(2, 503) = 50.70

Model 110236231 2 55118115.6 Prob > F = 0.0000

Residual 546839912 503 1087156.88 R-squared = 0.1678

Adj R-squared = 0.1645

Total 657076144 505 1301140.88 Root MSE = 1042.7

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 28.33857 4.699451 6.03 0.000 19.1056 37.57155

Gender

female -478.4214 103.3684 -4.63 0.000 -681.5084 -275.3344

_cons 1022.139 192.2717 5.32 0.000 644.3844 1399.893

62



Regression: for men only

. reg Income Hours if Gender==1

Source SS df MS Number of obs = 232

F(1, 230) = 5.36

Model 8009519.02 1 8009519.02 Prob > F = 0.0215

Residual 343845612 230 1494980.92 R-squared = 0.0228

Adj R-squared = 0.0185

Total 351855131 231 1523182.38 Root MSE = 1222.7

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 24.61855 10.63597 2.31 0.022 3.662162 45.57495

_cons 1164.366 414.4901 2.81 0.005 347.6826 1981.049
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Regression: for women only

. reg Income Hours if Gender==2

Source SS df MS Number of obs = 274

F(1, 272) = 42.63

Model 31772944.2 1 31772944.2 Prob > F = 0.0000

Residual 202744304 272 745383.469 R-squared = 0.1355

Adj R-squared = 0.1323

Total 234517248 273 859037.537 Root MSE = 863.36

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 29.70376 4.549594 6.53 0.000 20.74687 38.66065

_cons 504.6153 140.3614 3.60 0.000 228.2824 780.9482
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Regression: interaction

. reg Income c.Hours##i.Gender

Source SS df MS Number of obs = 506

F(3, 502) = 33.82

Model 110486228 3 36828742.8 Prob > F = 0.0000

Residual 546589915 502 1088824.53 R-squared = 0.1681

Adj R-squared = 0.1632

Total 657076144 505 1301140.88 Root MSE = 1043.5

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 24.61855 9.076915 2.71 0.007 6.785132 42.45198

Gender

female -659.7502 392.3082 -1.68 0.093 -1430.518 111.0181

Gender#c.Hours

female 5.085207 10.61255 0.48 0.632 -15.76529 25.9357

_cons 1164.366 353.7327 3.29 0.001 469.3865 1859.345
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Regression: Direct and indirect 1

. reg ownscore fatherscore

Source SS df MS Number of obs = 1,000

F(1, 998) = 53.50

Model 13269.3853 1 13269.3853 Prob > F = 0.0000

Residual 247525.861 998 248.021905 R-squared = 0.0509

Adj R-squared = 0.0499

Total 260795.247 999 261.056303 Root MSE = 15.749

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

fatherscore .2370829 .032413 7.31 0.000 .1734773 .3006884

_cons 37.90861 1.672157 22.67 0.000 34.62726 41.18996
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Regression: Direct and indirect 2

. reg education fatherscore

Source SS df MS Number of obs = 1,000

F(1, 998) = 111.01

Model 311.104929 1 311.104929 Prob > F = 0.0000

Residual 2797.00607 998 2.80261129 R-squared = 0.1001

Adj R-squared = 0.0992

Total 3108.111 999 3.11122222 Root MSE = 1.6741

education Coef. Std. Err. t P>|t| [95% Conf. Interval]

fatherscore .0363018 .0034455 10.54 0.000 .0295405 .0430631

_cons 1.295213 .1777516 7.29 0.000 .9464035 1.644023
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Regression: Direct and indirect 3

. reg ownscore education

Source SS df MS Number of obs = 1,000

F(1, 998) = 447.54

Model 80742.8091 1 80742.8091 Prob > F = 0.0000

Residual 180052.437 998 180.413264 R-squared = 0.3096

Adj R-squared = 0.3089

Total 260795.247 999 261.056303 Root MSE = 13.432

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

education 5.096871 .2409273 21.16 0.000 4.624089 5.569653

_cons 33.87079 .8556481 39.58 0.000 32.19171 35.54986
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Regression: Direct and indirect 4

. reg ownscore education fatherscore

Source SS df MS Number of obs = 1,000

F(2, 997) = 226.41

Model 81453.7212 2 40726.8606 Prob > F = 0.0000

Residual 179341.525 997 179.881169 R-squared = 0.3123

Adj R-squared = 0.3109

Total 260795.247 999 261.056303 Root MSE = 13.412

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

education 4.937369 .2535982 19.47 0.000 4.439722 5.435017

fatherscore .0578475 .0290984 1.99 0.047 .0007463 .1149486

_cons 31.51367 1.461439 21.56 0.000 28.64582 34.38152
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Formula for multiple regression

Y = β0 + β1X1 + β2X2...+ βkXk + e

e ∼ N(0, σ)

• Interpretation of βj

• How much Ŷ changes for a 1-unit in Xj holding all other values constant
• The estimated effect on Y of a 1-unit change in Xj, "controlling for" or "taking

account" of all the other Xs
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Predictions

Ŷ = β0 + β1X1 + β2X2...+ βkXk

• Enter values for all X variables to get a prediction for those values

• If we increase Xi by 1, holding all others the same, Ŷ changes by βi
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Simplest example

• Simplest multiple regression model adds a binary variable to a model with a
continuous X

. reg income hours i.sex

Source SS df MS Number of obs = 7,945

F(2, 7942) = 794.96

Model 1.8935e+09 2 946761687 Prob > F = 0.0000

Residual 9.4586e+09 7,942 1190962.07 R-squared = 0.1668

Adj R-squared = 0.1666

Total 1.1352e+10 7,944 1429021.17 Root MSE = 1091.3

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 33.96065 1.123629 30.22 0.000 31.75804 36.16326

sex

female -337.0889 26.44232 -12.75 0.000 -388.9228 -285.255

_cons 787.1759 45.73595 17.21 0.000 697.5214 876.8304
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Predicted lines: one for each value of sex
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More general 2 X-variable example

. reg wage ttl_exp grade

Source SS df MS Number of obs = 2,244

F(2, 2241) = 194.77

Model 11010.6 2 5505.3 Prob > F = 0.0000

Residual 63343.7305 2,241 28.2658325 R-squared = 0.1481

Adj R-squared = 0.1473

Total 74354.3305 2,243 33.1495009 Root MSE = 5.3166

wage Coefficient Std. err. t P>|t| [95% conf. interval]

ttl_exp .2616056 .0248373 10.53 0.000 .2128992 .310312

grade .6483343 .045426 14.27 0.000 .5592528 .7374158

_cons -4.002059 .6245962 -6.41 0.000 -5.226906 -2.777211
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Effect of experience on wage, controlling for grade
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Effect of grade on wage, controlling for experience

See https://teaching.sociology.ul.ie/so5032/ttlgrade.html
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Residuals

Ŷ = β0 + β1X1 + β2X2...+ βkXk

Y = Ŷ + e

e ∼ N(0, σ)

• Mean of zero

• Standard deviation of σ (RMSE)

• Normally distributed

• Should have no structured relationship to X variables
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Lecture 4: Summary of multiple
regression

R2



R2

• R2: coefficient of multiple determination

• TSS = sum of squared deviation from the mean =
∑

(Yi − Ȳ )2

• RSS = sum of squared deviation from the regression prediction =
∑

(Yi − Ŷ )2

• R2 = TSS−RSS
TSS

• Range: 0 (no relationship) to 1 (perfect linear relationship)

• PRE: Proportional Reduction in Error
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R2 and correlation

• In bivariate regression, R2 is the square of the correlation coefficient between
Y and X

• In multiple regression, it is the square of the correlation between Y and Ŷ

• (In bivariate regression the correlation between X and Ŷ is 1)

79



Lecture 4: Summary of multiple
regression

Hypothesis testing



Hypothesis testing: one parameter at a time

• t-test: abs(β̂j/sej) > t
• Interpretation:

• Null: population value of β is 0; this variable has no influence once the other
variables are taken account of
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Example

. reg income age i.sex

Source SS df MS Number of obs = 959

F(2, 956) = 45.72

Model 33922983.9 2 16961492 Prob > F = 0.0000

Residual 354670636 956 370994.389 R-squared = 0.0873

Adj R-squared = 0.0854

Total 388593620 958 405630.083 Root MSE = 609.09

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -3.144945 1.083398 -2.90 0.004 -5.271057 -1.018833

sex

female -352.678 39.51326 -8.93 0.000 -430.2208 -275.1353

_cons 1035.878 54.58935 18.98 0.000 928.7494 1143.007
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Hypothesis testing: all parameters together

• F-test:
• β1 = β2 . . . = βk = 0

• Null hypothesis: no X variable has an effect once the others are taken care of.

• A "global" test: the null is that there is no relevant variable in the model

• Calculation based on TSS and RSS, but also number of cases and number of
parameters estimated

• Uses F distribution (two df parameters: k and n-k-1, k is number of
parameters, n the number of cases)
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Hypothesis testing: additional parameters

• Delta F-test compares "nested" models
• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg

• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg + βhXh...+ βk Xk

• Null hypothesis: βh = . . . = βk = 0

• That is, given the variables already in the model, the additional variables
contribute no explanatory power.

• Useful when adding multi-category variables, or related groups of variables
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Dummy variables

In regression models we often use "indicator coding" or "dummy coding"

With a two-category variable, we set one category to 0 and the other to 1 and
interpret it as the effect of being in the second category (e.g., female) compared
with the first.

. reg income age i.sex

Source SS df MS Number of obs = 959

F(2, 956) = 45.72

Model 33922983.9 2 16961492 Prob > F = 0.0000

Residual 354670636 956 370994.389 R-squared = 0.0873

Adj R-squared = 0.0854

Total 388593620 958 405630.083 Root MSE = 609.09

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -3.144945 1.083398 -2.90 0.004 -5.271057 -1.018833

sex

female -352.678 39.51326 -8.93 0.000 -430.2208 -275.1353

_cons 1035.878 54.58935 18.98 0.000 928.7494 1143.007
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More than two categories

With more that two categories we create a set of binary variables, "indicator
variables" or "dummy variables":

d1 d2 d3 d4
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

For m categories, m-1 dummy variables are sufficient.

We interpret the parameter as the estimated effect of being in that category
relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.
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Example

. reg income age i.sex i.qual

Source SS df MS Number of obs = 959

F(5, 953) = 54.14

Model 85960604.5 5 17192120.9 Prob > F = 0.0000

Residual 302633015 953 317558.253 R-squared = 0.2212

Adj R-squared = 0.2171

Total 388593620 958 405630.083 Root MSE = 563.52

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.3897295 1.04777 -0.37 0.710 -2.445933 1.666474

sex

female -336.9623 36.75947 -9.17 0.000 -409.1011 -264.8234

qual

A-level, other sub-d.. -459.9208 78.54165 -5.86 0.000 -614.0554 -305.7862

O-level, commercial,.. -701.695 77.16016 -9.09 0.000 -853.1185 -550.2716

Sub-O-level, no qual -864.9695 76.41768 -11.32 0.000 -1014.936 -715.0032

_cons 1563.508 81.83797 19.10 0.000 1402.904 1724.111
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Interactions

• An interaction effect is where the effect of one variable on Y changes
depending on the value of another

X1

X2

Y
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Income, hours and gender

. reg income hours i.sex

Source SS df MS Number of obs = 7,945

F(2, 7942) = 794.96

Model 1.8935e+09 2 946761687 Prob > F = 0.0000

Residual 9.4586e+09 7,942 1190962.07 R-squared = 0.1668

Adj R-squared = 0.1666

Total 1.1352e+10 7,944 1429021.17 Root MSE = 1091.3

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 33.96065 1.123629 30.22 0.000 31.75804 36.16326

sex

female -337.0889 26.44232 -12.75 0.000 -388.9228 -285.255

_cons 787.1759 45.73595 17.21 0.000 697.5214 876.8304
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For men

. reg income hours if sex==1

Source SS df MS Number of obs = 3,818

F(1, 3816) = 204.70

Model 344180174 1 344180174 Prob > F = 0.0000

Residual 6.4162e+09 3,816 1681398.47 R-squared = 0.0509

Adj R-squared = 0.0507

Total 6.7604e+09 3,817 1771128.3 Root MSE = 1296.7

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 28.71923 2.007313 14.31 0.000 24.78372 32.65474

_cons 983.9722 78.23438 12.58 0.000 830.587 1137.357
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For women

. reg income hours if sex==2

Source SS df MS Number of obs = 4,127

F(1, 4125) = 1043.34

Model 764315243 1 764315243 Prob > F = 0.0000

Residual 3.0218e+09 4,125 732568.614 R-squared = 0.2019

Adj R-squared = 0.2017

Total 3.7862e+09 4,126 917634.7 Root MSE = 855.9

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 38.11874 1.180121 32.30 0.000 35.80507 40.43241

_cons 330.7275 36.40158 9.09 0.000 259.3607 402.0942
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Different effects
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Interaction in regression

• We can capture interaction effects with a regression model of this form:

Ŷ = β0 + β1X1 + β2X2 + β3X1X2

• That is, a 1-unit increase in X1 leads to a β1 + β3X2 increase in Ŷ

• Equivalently, a 1-unit increase in X2 leads to a β1 + β3X1 increase in Ŷ
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Interaction between hours and sex

• Simplest example: one variable is binary

Ŷm = β0 + β1X1 + β2 × 0 + β3X1 × 0

Ŷf = β0 + β1X1 + β2 × 1 + β3X1 × 1
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One-unit increase

If X1 increases by 1 unit, Ŷ changes:

∆Ŷm = β1

∆Ŷf = β1 + β3
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Stata: by hand

• First create an interaction variable:

gen female = sex == 2

gen intvar = hours*female

• Then fit the regression:

reg income hours female intvar
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Results

. gen female = sex==2

. gen intvar = female*hours

. reg income hours female intvar

Source SS df MS Number of obs = 7,945

F(3, 7941) = 536.82

Model 1.9141e+09 3 638027348 Prob > F = 0.0000

Residual 9.4381e+09 7,941 1188523.12 R-squared = 0.1686

Adj R-squared = 0.1683

Total 1.1352e+10 7,944 1429021.17 Root MSE = 1090.2

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 28.71923 1.687655 17.02 0.000 25.41098 32.02747

female -653.2448 80.47524 -8.12 0.000 -810.9974 -495.4921

intvar 9.399515 2.260017 4.16 0.000 4.969287 13.82974

_cons 983.9722 65.7758 14.96 0.000 855.0344 1112.91
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Stata’s formula syntax

• But more convenient to use Stata’s formula syntax

reg income c.hours##i.sex

• i.sex means treat sex as categorical

• c.hours#i.sex creates the interaction between hours (continuous, c.) and
sex

• c.hours##i.sex puts both the interaction and the first order terms in the
model
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Same results using Stata’s formula syntax

. reg income c.hours##i.sex

Source SS df MS Number of obs = 7,945

F(3, 7941) = 536.82

Model 1.9141e+09 3 638027348 Prob > F = 0.0000

Residual 9.4381e+09 7,941 1188523.12 R-squared = 0.1686

Adj R-squared = 0.1683

Total 1.1352e+10 7,944 1429021.17 Root MSE = 1090.2

income Coefficient Std. err. t P>|t| [95% conf. interval]

hours 28.71923 1.687655 17.02 0.000 25.41098 32.02747

sex

female -653.2448 80.47524 -8.12 0.000 -810.9974 -495.4921

sex#c.hours

female 9.399515 2.260017 4.16 0.000 4.969287 13.82974

_cons 983.9722 65.7758 14.96 0.000 855.0344 1112.91
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Predictions

Sex Hrs β0 β1 β2 β3 ŷ
M 0 983.9722 + 0*28.71923 + 0*-653.2448 + 0*0*9.399515 = 983.9722
M 80 983.9722 + 80*28.71923 + 0*-653.2448 + 80*0*9.399515 = 3281.5106
F 0 983.9722 + 0*28.71923 + 1*-653.2448 + 0*1*9.399515 = 330.7274
F 80 983.9722 + 80*28.71923 + 1*-653.2448 + 80*1*9.399515 = 3380.227
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Interactions between two continuous variable

. reg wage c.ttl_exp##c.grade

Source SS df MS Number of obs = 2,244

F(3, 2240) = 133.83

Model 11301.2662 3 3767.08872 Prob > F = 0.0000

Residual 63053.0643 2,240 28.1486894 R-squared = 0.1520

Adj R-squared = 0.1509

Total 74354.3305 2,243 33.1495009 Root MSE = 5.3055

wage Coefficient Std. err. t P>|t| [95% conf. interval]

ttl_exp -.143543 .1284932 -1.12 0.264 -.3955211 .1084352

grade .2515455 .1315367 1.91 0.056 -.0064011 .5094921

c.ttl_exp#c.grade .032074 .0099813 3.21 0.001 .0125005 .0516475

_cons .933757 1.657647 0.56 0.573 -2.316929 4.184443
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Without interaction, predictions for different levels of grade
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With interaction

See also https://teaching.sociology.ul.ie/so5032/ttlgradeint.html and
https://teaching.sociology.ul.ie/so5032/ttlgradelin.html
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Lecture 5: Interaction and
Non-linearity

Non-linear linear regression



Birth rate and GNP example

do http://teaching.sociology.ul.ie/so5032/birth

sort gnp

label var bir "Birth Rate"

label var gnp "GNP Per Capita"

lowess bir gnp, title("Birth rate and GNP per capita for selected countries")
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Nonlinear plot

Figure shows a non-linear relationship.

(Line is lowess)
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Get linear relationship

reg bir gnp

. reg bir gnp

Source SS df MS Number of obs = 25

F(1, 23) = 27.52

Model 1450.2603 1 1450.2603 Prob > F = 0.0000

Residual 1212.02523 23 52.696749 R-squared = 0.5447

Adj R-squared = 0.5249

Total 2662.28552 24 110.928563 Root MSE = 7.2593

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

gnp -.8133082 .155033 -5.25 0.000 -1.134018 -.4925981

_cons 29.6227 2.037416 14.54 0.000 25.40798 33.83742

predict plin

scatter bir plin gnp|| line plin gnp
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Linear plot
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Quadratic

Linear regression doesn’t fit well

Clearly, as GNP rises BIR falls, but the rate of fall declines

Let’s try quadratic:

. reg bir c.gnp##c.gnp

Source SS df MS Number of obs = 25

F(2, 22) = 18.39

Model 1665.82856 2 832.914278 Prob > F = 0.0000

Residual 996.456968 22 45.2934985 R-squared = 0.6257

Adj R-squared = 0.5917

Total 2662.28552 24 110.928563 Root MSE = 6.73

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

gnp -2.130192 .6205087 -3.43 0.002 -3.417048 -.8433351

c.gnp#c.gnp .0549243 .0251762 2.18 0.040 .0027121 .1071366

_cons 32.27852 2.247195 14.36 0.000 27.61812 36.93892
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Quatratic plot

predict pquad

scatter bir pquad gnp|| line pquad gnp
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√
GNP

Let’s try square root of GNP:

. gen sqg = sqrt(gnp)

. reg bir sqg

Source SS df MS Number of obs = 25

F(1, 23) = 39.44

Model 1681.66084 1 1681.66084 Prob > F = 0.0000

Residual 980.624685 23 42.6358559 R-squared = 0.6317

Adj R-squared = 0.6156

Total 2662.28552 24 110.928563 Root MSE = 6.5296

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqg -4.945487 .7874579 -6.28 0.000 -6.574468 -3.316506

_cons 34.70314 2.391073 14.51 0.000 29.75683 39.64946
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√
GNP plot

predict psqrt

scatter bir psqrt gnp|| line psqrt gnp
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log(GNP)

Let’s try the log of GNP:

. gen lgg = log(gnp)

. reg bir lgg

Source SS df MS Number of obs = 25

F(1, 23) = 54.84

Model 1875.68482 1 1875.68482 Prob > F = 0.0000

Residual 786.600705 23 34.2000307 R-squared = 0.7045

Adj R-squared = 0.6917

Total 2662.28552 24 110.928563 Root MSE = 5.8481

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

lgg -5.542152 .748362 -7.41 0.000 -7.090257 -3.994047

_cons 29.49466 1.53576 19.21 0.000 26.3177 32.67162
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log(GNP) plot

predict plog

scatter bir plog gnp|| line plog gnp
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Log-scale plot

scatter bir plog gnp, xscale(log)|| line plog gnp, xscale(log)
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Square root and log compared

label var sqg "Sq Root GNP"

label var lg "Log of GNP"

scatter sqg lg gnp
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Residuals

Y = b0 + b1X1 + ...+ bkXk + e

e ∼ N(0, σ)
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Characteristics

• Residuals will
• have mean 0
• be as small as possible
• have no linear relationship to X variables

• Residuals should
• be approximately normally distributed (symmetric is often enough)
• not have a non-linear relationship to any X variable
• have a constant spread, that is not related to X or Y values

• If correlated with variables not in the model, perhaps those variables should
be included
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Examining residuals: ideal
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Examining residuals: Non-linear
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Examining residuals: asymmetric
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Examining residuals: heteroscedasticity
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Examining residuals: Spotting outliers
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Examining residuals: Influence of outliers
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Lecture 6: Residuals and Influence

Influence



Outliers may have undue influence

• dfbeta

• Cook’s distance
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DFBETA

• For each variable in the regression, for each case

• The effect of dropping that case on that variable

• Scaled by the standard error:
b − b∗

SE
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Cook’s Distance

• A single number summarising each case’s overall influence

• A scaled sum of changes in predicted Y
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Outlier interactive app

https://teaching.sociology.ul.ie/apps/influence/
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Birth rate and GNP example

do http://teaching.sociology.ul.ie/so5032/birth

sort gnp

label var bir "Birth Rate"

label var gnp "GNP Per Capita"

lowess bir gnp, title("Birth rate and GNP per capita for selected countries")
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Nonlinear plot

Figure shows a non-linear relationship.

(Line is lowess)
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Get linear relationship

reg bir gnp

. reg bir gnp

Source SS df MS Number of obs = 25

F(1, 23) = 27.52

Model 1450.2603 1 1450.2603 Prob > F = 0.0000

Residual 1212.02523 23 52.696749 R-squared = 0.5447

Adj R-squared = 0.5249

Total 2662.28552 24 110.928563 Root MSE = 7.2593

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

gnp -.8133082 .155033 -5.25 0.000 -1.134018 -.4925981

_cons 29.6227 2.037416 14.54 0.000 25.40798 33.83742

predict plin

scatter bir plin gnp|| line plin gnp
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Linear plot
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Quadratic

Linear regression doesn’t fit well

Clearly, as GNP rises BIR falls, but the rate of fall declines

Let’s try quadratic:

reg bir c.gnp##c.gnp

. reg bir c.gnp##c.gnp

Source SS df MS Number of obs = 25

F(2, 22) = 18.39

Model 1665.82856 2 832.914278 Prob > F = 0.0000

Residual 996.456968 22 45.2934985 R-squared = 0.6257

Adj R-squared = 0.5917

Total 2662.28552 24 110.928563 Root MSE = 6.73

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

gnp -2.130192 .6205087 -3.43 0.002 -3.417048 -.8433351

c.gnp#c.gnp .0549243 .0251762 2.18 0.040 .0027121 .1071366

_cons 32.27852 2.247195 14.36 0.000 27.61812 36.93892
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Quatratic plot

predict pquad

scatter bir pquad gnp|| line pquad gnp
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√
GNP

Let’s try square root of GNP:

gen sqg = sqrt(gnp)

reg bir sqg

. gen sqg = sqrt(gnp)

. reg bir sqg

Source SS df MS Number of obs = 25

F(1, 23) = 39.44

Model 1681.66084 1 1681.66084 Prob > F = 0.0000

Residual 980.624685 23 42.6358559 R-squared = 0.6317

Adj R-squared = 0.6156

Total 2662.28552 24 110.928563 Root MSE = 6.5296

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqg -4.945487 .7874579 -6.28 0.000 -6.574468 -3.316506

_cons 34.70314 2.391073 14.51 0.000 29.75683 39.64946
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√
GNP plot

predict psqrt

scatter bir psqrt gnp|| line psqrt gnp
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log(GNP)

Let’s try the log of GNP:

gen lgg = log(gnp)

reg bir lgg

. gen lgg = log(gnp)

. reg bir lgg

Source SS df MS Number of obs = 25

F(1, 23) = 54.84

Model 1875.68482 1 1875.68482 Prob > F = 0.0000

Residual 786.600705 23 34.2000307 R-squared = 0.7045

Adj R-squared = 0.6917

Total 2662.28552 24 110.928563 Root MSE = 5.8481

bir Coef. Std. Err. t P>|t| [95% Conf. Interval]

lgg -5.542152 .748362 -7.41 0.000 -7.090257 -3.994047

_cons 29.49466 1.53576 19.21 0.000 26.3177 32.67162
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log(GNP) plot

predict plog

scatter bir plog gnp|| line plog gnp
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Log-scale plot

scatter bir plog gnp, xscale(log)|| line plog gnp, xscale(log)
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Square root and log compared

label var sqg "Sq Root GNP"

label var lg "Log of GNP"

scatter sqg lg gnp
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Lecture 7: Logs and log regression

Logarithms



Logarithms

Logarithms allow us to move between multiplicative equations and additive ones.

Logs are defined relative to a base number. If we take 10 as the base then
y = log10(x) means 10x = y .

It’s easy to calculate the log of powers of 10:

log(10) = 1 101 = 10
log(100) = 2 102 = 100
log(1000) = 3 103 = 1000
log(1000000) = 6 106 = 1000000

100 is defined as 1, so the log of 1 is zero.
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From 0 to 1

For numbers between 1 and 0, logs are negative

1
10 = 10−1 log(0.1) = -1

1
100 = 10−2 log(0.01) = -2

1
1000 = 10−3 log(0.001) = -3

The log10 of powers of 10 are integers, but we can raise 10 to non-integer powers
too, to get the log of any number greater than zero. For instance, 102.09 is 123, so
the log of 123 is 2.09.
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Multiply by adding

We can see with round powers of 10 than using logs we can move between
multiplication and addition:

100 × 1000 = 100000

102 × 103 = 105 = 102+3
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Calculate A × B

Thus do calculate A × B we do as follows:

• Calculate log(A)

• Calclate log(B)

• Calculate log(C) = log(A) + log(B)

• Take the anti-log of log(C), i.e., 10log(C) = C
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Example

Multiply 12345 by 67890

log(12345) = 9.421

log(67890) = 11.126

9.421 + 11.126 = 20.547

1020.547 = 838102050
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An application

If you have a certain quantity (e.g., money in a bank account), whose value
increases by a constant proportion every year, its value in any year depends on a
multiplicative relationship.

Let’s say the increases is α (i.e., a 10% increase means α = 1.1)
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Compound interest

Year 0 100
Year 1 100 × α
Year 2 100 × α × α
Year 3 100 × α × α × α
Year 4 100 × α × α × α × α
Year 5 100 × α × α × α × α × α

In short, the value in year t is 100×αt

yt = 100× αt
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Constant proportional increase

Figure 1: A constant proportional increase
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Convert to logs

But if we convert to logs we can calculate it as follows

log(yt ) = log(100) + t × log(α)

In other words, rather than multiplying by α every year, we add log(α).

147



Plot

Figure 2: Taking the base-10 log of the sum: a straight line
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Straight line

This gives a straight line relationship (see Fig 2).

Thus we can use logs to move between multiplicative and additive (straight-line)
relationships.
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Other bases

Logs to the base 10 are easy to understand, but the base number need not be 10.
A log to the base n is defined thus:

y = logn(x)⇔ ny = x
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Natural logs

Computer scientists often use log2, but the most common log base is the special
number e ≈ 2.7183. This has some special mathematical properties that make
certain calculations easier.

Logs to base e are called natural logs, often written ln(x) etc:

y = ln(x)⇔ ey = x

See Fig 3, which shows that the natural log also gives a straight line.
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Natural log straight line

Figure 3: Taking the natural log of the sum: also a straight line
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Natural log

• Fig 4 shows the natural log of X from 0.1 (-2.303) to 100 (4.605).

• For X = 1, the log is 0.

• As X approaches 0, the log falls faster and faster.

• As X rises above 1, the log rises, but more slowly as it goes.

• Note that the log rises from X = 5 to 10 as much as it does from X = 40 to 80.
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X vs ln(X)

Figure 4: The natural log of X for X from 0.1 to 100
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Logs and COVID-19

• In the early stage of an epidemic, infections tend to increase at a steady rate

• On average each infected person infects others at a given rate, e.g., one
person every four days

• So numbers of cases tend to rise at a steady percentage
• New infections are proportional to existing infections
• 100 today means 125 tomorrow, 156 the next day, etc.
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Confirmed cases in Ireland

If we look at the raw number of cases in Ireland:

• it starts off very low

• stays there for a while

• but then starts rising

• and rising faster and faster

line cases date
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Confirmed cases in Ireland
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Log cases

If we plot the log of the cases we see a different picture

• wobbly to begin with

• then approximating a straight line

gen lcases = log(cases)

line lcases date
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Log cases
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Log cases: straight => exponential

A straight line in logs means log(ncases) increases by more or less a set amount
very day

That means ncases rises by a set proportion every day: exponential rise

Exponential: even if it starts small, if given long enough, will get very very big!
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Log scale, real cases

We can graph log(cases) but we can also graph cases with a Y log-scale

line cases date, yscale(log) ylabel(1 2 5 10 20 40 80 160 320 640)

This gives the advantages of the logging while retaining the real numbers on the
axis
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Log scale, real cases
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Log-scale graphic in the wild

163



Lecture 7: Logs and log regression

Log regression



Multiplicative relationship

• Where the underlying relationship is multiplicative, linear regression doesn’t
work well

• Implies an additive increase where a multiplicative one is better
• If we take the log of the dependent variable:

• better estimates
• often cures heteroscedasticity
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Simulation: Y increases 65% for X +1
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Linear regression

. reg y x

Source SS df MS Number of obs = 1,000

F(1, 998) = 274.71

Model 12181477.5 1 12181477.5 Prob > F = 0.0000

Residual 44253675.2 998 44342.3599 R-squared = 0.2158

Adj R-squared = 0.2151

Total 56435152.7 999 56491.6443 Root MSE = 210.58

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 55.69088 3.360033 16.57 0.000 49.09734 62.28442

_cons -200.7041 20.95566 -9.58 0.000 -241.8263 -159.5819
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Predictions
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Log(Y)

. gen ly = log(y)

. reg ly x

Source SS df MS Number of obs = 1,000

F(1, 998) = 1032.66

Model 956.12538 1 956.12538 Prob > F = 0.0000

Residual 924.030142 998 .925881905 R-squared = 0.5085

Adj R-squared = 0.5080

Total 1880.15552 999 1.88203756 Root MSE = .96223

ly Coefficient Std. err. t P>|t| [95% conf. interval]

x .4933914 .0153537 32.14 0.000 .4632622 .5235205

_cons 1.062305 .0957568 11.09 0.000 .8743972 1.250213
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Interpretation

• For a 1 unit change in X, log(Ŷ ) rises by 0.4933914

• Thus for a 1 unit change in X, Y rises by e0.4933914 = 1.638

• e0.4933914 is the antilog of 0.4933914
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Predictions
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Predicted values

• Where the dependent variable is logged the prediction of the Y value is not
simply the anti-log of the predicted log(Y)

• When we take the anti-log we must take account of the fact that residuals
above the line expand by more than residuals below the line

• Thus a small correction

ˆlog(Y ) = a + bX

Ŷ = e
ˆlog(Y ) ∗ eRMSE

2/2

• where RMSE is the standard deviation of the regression
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Calculations

gen ly = log(y)

reg ly x

predict lyhat

gen elyh = exp(lyhat)

gen elyh2 = elyh * exp(rmse^2/2)
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Predictions: predict log(Y) on log scale
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Predictions: only e ˆlog(Y )
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Predictions: with correction
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Predicting COVID-19

• We can apply log regression to the COVID-19 data

• A straight line on a log scale means a constant proportional increase.

• We can estimate this increase, regressing log(cases) on date.

• The slope, b, is the amount by which ˆlog cases rises per day

• eb is then the multiplier by which cases rises per day

reg lcases date
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Stata output

. reg lc date

Source SS df MS Number of obs = 20

F(1, 18) = 746.82

Model 66.1088015 1 66.1088015 Prob > F = 0.0000

Residual 1.59336573 18 .088520318 R-squared = 0.9765

Adj R-squared = 0.9752

Total 67.7021673 19 3.56327196 Root MSE = .29752

lc Coef. Std. Err. t P>|t| [95% Conf. Interval]

date .3058309 .0111911 27.33 0.000 .2823193 .3293426

_cons -6719.833 246.0411 -27.31 0.000 -7236.746 -6202.92
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Logs with log regression
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Steady increase

The log of cases rises by 0.3058 per day

This means cases rises by a factor of e0.3058 = 1.358

The increase is 1.358 - 1 = 0.358, or almost 36% per day

Implies a doubling about every 2.6 days
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But exponential increase is temporary

Exponential increase cannot go on indefinitely

Even if nothing is done, the rate of increase will decline as fewer people are left
unexposed

And interventions (isolation, tracing) will reduce the rate

See China, for example
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Wuhan, with prediction based on 1st 19 days
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Summary

If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn’t forever, but modelling the exponential helps us see
where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do
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Outline

Today we introduce logistic regression: for binary outcomes

See Agresti Ch 15 Sec 1.
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Binary outcomes and regression

• OLS (linear regression) requires an interval dependent variable

• Binary or “yes/no” dependent variables are not suitable

• Nor are rates, e.g., n successes out of m trials
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Problems with OLS

• Errors are distinctly not normal

• While predicted value can be read as a probability, can depart from 0:1 range

• Particular difficulties with multiple explanatory variables

• Nonetheless still often used
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Linear Probability Model

• If we use OLS with binary outcomes, it is called “linear probability model”:

Pr(Y = 1) = a + bX

• data is 0/1, prediction is probability

• Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too
bad

186



Credit card example

. reg card income

Source SS df MS Number of obs = 100

F(1, 98) = 34.38

Model 5.55556122 1 5.55556122 Prob > F = 0.0000

Residual 15.8344388 98 .161575906 R-squared = 0.2597

Adj R-squared = 0.2522

Total 21.39 99 .216060606 Root MSE = .40197

card Coef. Std. Err. t P>|t| [95% Conf. Interval]

income .0188458 .003214 5.86 0.000 .0124678 .0252238

_cons -.1594495 .089584 -1.78 0.078 -.3372261 .018327
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Credit card example
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Credit card example
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Logistic transformation

• Probability is bounded [0 : 1]

• OLS predicted value is unbounded

• How to transform probability to −∞ :∞ range?

• Odds: p
1−p – range is 0 :∞

• Log of odds: log p
1−p has range −∞ :∞

190



Probability to odds
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Probability to log-odds
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Rotated: the "S-shaped" curve
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Logistic regression

• Logistic regression uses this as the dependent variable:

log

(
p

1− p

)
= a + bX
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Alternatives

We can look at this in three ways

• In terms of log-odds:

log

(
Pr(Y = 1)

1− Pr(Y = 1)

)
= a + bX

• In terms of odds:

Pr(Y = 1)

1− Pr(Y = 1)
= ea+bX

• In terms of probability:

Pr(Y = 1) =
ea+bX

1 + ea+bX =
1

1 + e−a−bX
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Parameters

• The b parameter is the effect of a unit change in X on log
(

Pr(Y=1)
1−Pr(Y=1)

)
• This implies a multiplicative change of eb in Pr(Y=1)

1−Pr(Y=1) , in the Odds

• Thus an odds ratio

• But the effect of b on P depends on the level of b
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Credit card logistic regression

. logit card income

Iteration 0: log likelihood = -61.910066

Iteration 1: log likelihood = -48.707265

Iteration 2: log likelihood = -48.613215

Iteration 3: log likelihood = -48.61304

Iteration 4: log likelihood = -48.61304

Logistic regression Number of obs = 100

LR chi2(1) = 26.59

Prob > chi2 = 0.0000

Log likelihood = -48.61304 Pseudo R2 = 0.2148

card Coef. Std. Err. z P>|z| [95% Conf. Interval]

income .1054089 .0261574 4.03 0.000 .0541413 .1566765

_cons -3.517947 .7103358 -4.95 0.000 -4.910179 -2.125714
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Credit card logistic regression
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Sigmoid curve from a+bX
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Calculating predicted probabilities by hand

• We can calculate the predicted probability for any combination of values of the
independent variables

• First, plug them into the a + bX part to get the predicted log-odds

• Then take the anti-log of the log-odds to get the odds

• Then odds/(1+odds) gives us the probability
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Calculating predicted probabilities

• Example: log(odds) = 0.25 + 0.12X
• Predict for X == 10

• Predicted log-odds = 0.25 + 0.12*10 = 1.45
• Predicted odds = e1.45 = 4.263
• Predicted probability = 4.263/(1 + 4.263) = 0.810
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Web applet for practicing

https://teaching.sociology.ul.ie:/apps/logabx/
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Outline

Today we introduce logistic regression: for binary outcomes

See Agresti Ch 15 Sec 1.

203



Binary outcomes and regression

• OLS (linear regression) requires an interval dependent variable

• Binary or “yes/no” dependent variables are not suitable

• Nor are rates, e.g., n successes out of m trials

204



Problems with OLS

• Errors are distinctly not normal

• While predicted value can be read as a probability, can depart from 0:1 range

• Particular difficulties with multiple explanatory variables

• Nonetheless still often used

205



Linear Probability Model

• If we use OLS with binary outcomes, it is called “linear probability model”:

Pr(Y = 1) = a + bX

• data is 0/1, prediction is probability

• Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too
bad
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Credit card example

. reg card income

Source SS df MS Number of obs = 100

F(1, 98) = 34.38

Model 5.55556122 1 5.55556122 Prob > F = 0.0000

Residual 15.8344388 98 .161575906 R-squared = 0.2597

Adj R-squared = 0.2522

Total 21.39 99 .216060606 Root MSE = .40197

card Coef. Std. Err. t P>|t| [95% Conf. Interval]

income .0188458 .003214 5.86 0.000 .0124678 .0252238

_cons -.1594495 .089584 -1.78 0.078 -.3372261 .018327
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Credit card example
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Credit card example
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Logistic transformation

• Probability is bounded [0 : 1]

• OLS predicted value is unbounded

• How to transform probability to −∞ :∞ range?

• Odds: p
1−p – range is 0 :∞

• Log of odds: log p
1−p has range −∞ :∞
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Probability to odds
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Probability to log-odds
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Rotated: the "S-shaped" curve
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Logistic regression

• Logistic regression uses this as the dependent variable:

log

(
p

1− p

)
= a + bX
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Alternatives

We can look at this in three ways

• In terms of log-odds:

log

(
Pr(Y = 1)

1− Pr(Y = 1)

)
= a + bX

• In terms of odds:

Pr(Y = 1)

1− Pr(Y = 1)
= ea+bX

• In terms of probability:

Pr(Y = 1) =
ea+bX

1 + ea+bX =
1

1 + e−a−bX
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Parameters

• The b parameter is the effect of a unit change in X on log
(

Pr(Y=1)
1−Pr(Y=1)

)
• This implies a multiplicative change of eb in Pr(Y=1)

1−Pr(Y=1) , in the Odds

• Thus an odds ratio

• But the effect of b on P depends on the level of b
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Credit card logistic regression

. logit card income

Iteration 0: log likelihood = -61.910066

Iteration 1: log likelihood = -48.707265

Iteration 2: log likelihood = -48.613215

Iteration 3: log likelihood = -48.61304

Iteration 4: log likelihood = -48.61304

Logistic regression Number of obs = 100

LR chi2(1) = 26.59

Prob > chi2 = 0.0000

Log likelihood = -48.61304 Pseudo R2 = 0.2148

card Coef. Std. Err. z P>|z| [95% Conf. Interval]

income .1054089 .0261574 4.03 0.000 .0541413 .1566765

_cons -3.517947 .7103358 -4.95 0.000 -4.910179 -2.125714
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Credit card logistic regression
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Sigmoid curve from a+bX
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Calculating predicted probabilities by hand

• We can calculate the predicted probability for any combination of values of the
independent variables

• First, plug them into the a + bX part to get the predicted log-odds

• Then take the anti-log of the log-odds to get the odds

• Then odds/(1+odds) gives us the probability
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Calculating predicted probabilities

• Example: log(odds) = 0.25 + 0.12X
• Predict for X == 10

• Predicted log-odds = 0.25 + 0.12*10 = 1.45
• Predicted odds = e1.45 = 4.263
• Predicted probability = 4.263/(1 + 4.263) = 0.810
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Web applet for practicing

http://teaching.sociology.ul.ie:3838/logabx/
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Housing tenure

• Housing tenure: probability of owning outright, BHPS data

. logit ownocc age

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7150.2389

Iteration 2: Log likelihood = -7095.7194

Iteration 3: Log likelihood = -7095.5268

Iteration 4: Log likelihood = -7095.5268

Logistic regression Number of obs = 14,182

LR chi2(1) = 3266.30

Prob > chi2 = 0.0000

Log likelihood = -7095.5268 Pseudo R2 = 0.1871

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0633183 .0012705 49.84 0.000 .0608281 .0658084

_cons -3.974023 .0697795 -56.95 0.000 -4.110788 -3.837258
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Predictions
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Predictions

LO = a + bX

Odds = exp(a + bX)

P = Odds/(1 + Odds)

X increases by 1:

• LO by b (additive)

• Odds by eb (multiplicative)

• P is more complicated
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Predicton

• Log-odds

X = x LO(x) = a + bx
X = x+1 LO(x+1) = a + b(x + 1) = a + bx + b
Difference: LO(x+1) - LO(x) = b
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Prediction: odds scale

• Odds

X = x Odds(x) = ea+bx = eaebx

X = x+1 Odds(x+1) = ea+b(x+1) = ea+bx+b = eaebxeb

Ratio Odds(x+1)/Odds(x) = eb

• Hence odds-ratio: if X increases by 1, OR increases by factor of eb
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Odds ratio

. tab univ ownocc

ownocc

univ 0 1 Total

0 8,335 3,835 12,170

1 1,514 499 2,013

Total 9,849 4,334 14,183

OR = (499/1514) /
(3835/8335) = 0.7163

. logit ownocc i.univ

Iteration 0: Log likelihood = -8729.863

Iteration 1: Log likelihood = -8710.9025

Iteration 2: Log likelihood = -8710.8468

Iteration 3: Log likelihood = -8710.8468

Logistic regression Number of obs = 14,183

LR chi2(1) = 38.03

Prob > chi2 = 0.0000

Log likelihood = -8710.8468 Pseudo R2 = 0.0022

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

1.univ -.3336103 .0551837 -6.05 0.000 -.4417683 -.2254522

_cons -.7762941 .0195124 -39.78 0.000 -.8145376 -.7380506

eb = e−.3336103 = 0.7163
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Predictions on probability scale

• Effect of X on the probability scale is non-linear

• Low when p is either high or low

• Highest at p = 0.5, odds = 1, log-odds = 0

• The steepest slope is at p = 0.5, with a value of β4
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Marginal effects
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Multiple explanatory variables

. logit ownocc age i.univ

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7150.3435

Iteration 2: Log likelihood = -7094.4048

Iteration 3: Log likelihood = -7094.1883

Iteration 4: Log likelihood = -7094.1882

Logistic regression Number of obs = 14,182

LR chi2(2) = 3268.98

Prob > chi2 = 0.0000

Log likelihood = -7094.1882 Pseudo R2 = 0.1873

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0636471 .0012888 49.38 0.000 .061121 .0661731

1.univ .0999785 .0608614 1.64 0.100 -.0193076 .2192646

_cons -4.004807 .0724889 -55.25 0.000 -4.146883 -3.862731
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Inference

• In practice, inference is similar to OLS though based on a different logic

• For each explanatory variable, H0 : β = 0 is the interesting null

• z = β̂
SE is approximately normally distributed (large sample property)

• More usually, the Wald test is used:
(
β̂

SE

)2
has a χ2 distribution with one

degree of freedom
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Likelihood ratio tests

• The “likelihood ratio” test is thought more robust than the Wald test for smaller
samples

• Where l0 is the likelihood of the model without Xj , and l1 that with it, the
quantity

−2
(

log
l0
l1

)
= −2 (log l0 − log l1)

is χ2 distributed with one degree of freedom
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Nested models

• More generally, −2
(

log lo
l1

)
tests nested models: where model 1 contains all

the variables in model 0, plus m extra ones, it tests the null that all the extra β
coefficients are zero (χ2 with m df)

• If we compare a model against the null model (no explanatory variables, it
tests

H0 : β1 = β2 = . . . = βk = 0

• Strong analogy with F test in OLS
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Example

. qui logit ownocc age

. est store mod1

. logit ownocc age i.educ

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7136.2054

Iteration 2: Log likelihood = -7077.7722

Iteration 3: Log likelihood = -7077.5203

Iteration 4: Log likelihood = -7077.5203

Logistic regression Number of obs = 14,182

LR chi2(3) = 3302.31

Prob > chi2 = 0.0000

Log likelihood = -7077.5203 Pseudo R2 = 0.1892

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0652599 .0013433 48.58 0.000 .0626271 .0678927

educ

Med .3041599 .0673504 4.52 0.000 .1721556 .4361642

Lo -.1075582 .0461399 -2.33 0.020 -.1979907 -.0171257

_cons -4.060514 .0730524 -55.58 0.000 -4.203694 -3.917333

. lrtest mod1

Likelihood-ratio test

Assumption: mod1 nested within .

LR chi2(2) = 36.01

Prob > chi2 = 0.0000 235
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"Average Marginal Effect"

• "What would happen to the averege predicted probability if we increased X?"
• For linear regression, increase X by 1 => increase by b

• increase X by 10 => increase by b× 10
• increase X by 0.1 => increase by b× 0.1
• since it’s a straight line

• For AME in logistic we use the slope of the tangent, for each X value

• Average across the observed data

• Gives something like a LPM slope
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AME in Stata

. margins, dydx(age)

Average marginal effects Number of obs = 14,182

Model VCE: OIM

Expression: Pr(ownocc), predict()

dy/dx wrt: age

Delta-method

dy/dx std. err. z P>|z| [95% conf. interval]

age .0104836 .0001382 75.84 0.000 .0102126 .0107545
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Maximum likelihood estimation

• What is this “likelihood”?

• Unlike OLS, logistic regression (and many, many other models) are extimated
by maximum likelihood estimation

• In general this works by choosing values for the parameter estimates which
maximise the probability (likelihood) of observing the actual data

• OLS can be ML estimated, and yields exactly the same results
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Iterative search

• Sometimes the values can be chosen analytically
• A likelihood function is written, defining the probability of observing the actual

data given parameter estimates
• Differential calculus derives the values of the parameters that maximise the

likelihood, for a given data set

• Often, such “closed form solutions” are not possible, and the values for the
parameters are chosen by a systematic computerised search (multiple
iterations)

• Extremely flexible, allows estimation of a vast range of complex models within
a single framework
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Likelihood as a quantity

• Either way, a given model yields a specific maximum likelihood for a give data
set

• This is a probability, henced bounded [0 : 1]

• Reported as log-likelihood, hence bounded [−∞ : 0]

• Thus is usually a large negative number

• Where an iterative solution is used, likelihood at each stage is usually
reported – normally getting nearer 0 at each step
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Tabular data

• If all the explanatory variables are categorical (or have few fixed values) your
data set can be represented as a table

• If we think of it as a table where each cell contains n yeses and m − n noes (n
successes out of m trials) we can fit grouped logistic regression

• n successes out of m trials implies a binomial distribution of degree m

log
n

m − n
= α + βX

• The parameter estimates will be exactly the same as if the data were treated
individually
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Tabular data and goodness of fit

• But unlike with individual data, we can calculate goodness of fit, by relating
observed successes to predicted in each cell

• If these are close we cannot reject the null hypothesis that the model is
incorrect (i.e., you want a high p-value)

• Where li is the likelihood of the current model, and ls is the likelihood of the
“saturated model” the test statistic is

−2
(

log
li
ls

)

• The saturated model predicts perfectly and has as many parameters as there
are “settings” (cells in the table)

• The test has df of number of settings less number of parameters estimated,
and is χ2 distributed
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