sociology

SO5032 Lecture 4

Brendan Halpin

March 12, 2024

Outline

SO5032 Lecture 4

SO5032 Lecture 4

Formula

Formula for multiple regression

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k}+e \\
& e \sim N(0, \sigma)
\end{aligned}
$$

- Interpretation of β_{j}
- How much \hat{Y} changes for a 1-unit in X_{j} holding all other values constant
- The estimated effect on Y of a 1-unit change in X_{j}, "controlling for" or "taking account" of all the other Xs

Predictions

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k}
$$

- Enter values for all X variables to get a prediction for those values
- If we increase X_{i} by 1 , holding all others the same, \hat{Y} changes by β_{i}

Simplest example

- Simplest multiple regression model adds a binary variable to a model with a continuous X

Source	SS	df	MS	Number of obs F(2, 7942)			7,945
			946761687				
Model	$1.8935 \mathrm{e}+09$	2					0.0000
Residual	$9.4586 \mathrm{e}+09$	7,942	1190962.07	R -squared			0.1668
				Root MSE			0.1666
Total	$1.1352 \mathrm{e}+10$	7,944	1429021.17				1091.3
income	Coefficient	Std. err.	t	$P>\|t\|$	[95\% conf. interval]		
hours	33.96065	1.123629	30.22	0.000	- 31.75804		36.16326
sex							
female	-337.0889	26.44232	-12.75	0.000	$00-388.9228$		-285.255
_cons	787.1759	45.73595	17.21	0.000	00697.5214		876.8304

Predicted lines: one for each value of sex

More general 2 X-variable example

sociology

Effect of experience on wage, controlling for grade

Wage predicted by work experience and tenure

Effect of grade on wage, controlling for experience

Wage predicted by work experience and tenure

See https://teaching.sociology.ul.ie/so5032/ttlgrade.html sociology

Residuals

$$
\begin{aligned}
& \hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{k} X_{k} \\
& Y=\hat{Y}+e \\
& e \sim N(0, \sigma)
\end{aligned}
$$

- Mean of zero
- Standard deviation of σ (RMSE)
- Normally distributed
- Should have no structured relationship to X variables

SO5032 Lecture 4

\mathbf{R}^{2}

- R^{2} : coefficient of multiple determination
- TSS $=$ sum of squared deviation from the mean $=\sum\left(Y_{i}-\bar{Y}\right)^{2}$
- RSS $=$ sum of squared deviation from the regression prediction $=\sum\left(Y_{i}-\hat{Y}\right)^{2}$
- $\mathrm{R}^{2}=\frac{\text { TSS-RSS }}{\text { TSS }}$
- Range: 0 (no relationship) to 1 (perfect linear relationship)
- PRE: Proportional Reduction in Error

\mathbf{R}^{2} and correlation

- In bivariate regression, R^{2} is the square of the correlation coefficient between Y and X
- In multiple regression, it is the square of the correlation between Y and \hat{Y}
- (In bivariate regression the correlation between X and \hat{Y} is 1)

SO5032 Lecture 4

Hypothesis testing

Hypothesis testing: one parameter at a time

- t-test: $\operatorname{abs}\left(\hat{\beta}_{j} / \mathrm{se}_{j}\right)>t$
- Interpretation:
- Null: population value of β is 0 ; this variable has no influence once the other variables are taken account of

Example

sociology $>$

Hypothesis testing: all parameters together

- F-test:

$$
\text { - } \beta_{1}=\beta_{2} \ldots=\beta_{\mathrm{k}}=0
$$

- Null hypothesis: no X variable has an effect once the others are taken care of.
- A "global" test: the null is that there is no relevant variable in the model
- Calculation based on TSS and RSS, but also number of cases and number of parameters estimated
- Uses F distribution (two df parameters: k and $n-k-1, k$ is number of parameters, n the number of cases)

Hypothesis testing: additional parameters

- Delta F-test compares "nested" models
- Model 1: $\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{g} X_{g}$
- Model 1: $\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots+\beta_{g} X_{g}+\beta_{h} X_{h} \ldots+\beta_{k} X_{k}$
- Null hypothesis: $\beta_{\mathrm{h}}=\ldots=\beta_{\mathrm{k}}=0$
- That is, given the variables already in the model, the additional variables contribute no explanatory power.
- Useful when adding multi-category variables, or related groups of variables

Dummy variables

In regression models we often use "indicator coding" or "dummy coding"
With a two-category variable, we set one category to 0 and the other to 1 and interpret it as the effect of being in the second category (e.g., female) compared with the first.

Source	SS	df	MS	Number of obs		959
Model	33922983.9	2	16961492			0.0000
Residual	354670636	956	370994.389		red	0.0873
					squared	0.0854
Total	388593620	958	405630.083		MSE	609.09
income	Coef.	Std. Err .	t	$P>\|t\|$	[95\% Conf	Interval]
age	-3.144945	1.083398	-2.90	0.004	-5.271057	-1.018833
sex						
female	-352.678	39.51326	-8.93	0.000	-430.2208	-275.1353
_cons	1035.878	54.58935	18.98	0.000	928.7494	1143.007

More than two categories

With more that two categories we create a set of binary variables, "indicator variables" or "dummy variables":

	d1	d2	d3	d4
a	1	0	0	0
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

For m categories, $\mathrm{m}-1$ dummy variables are sufficient.
We interpret the parameter as the estimated effect of being in that category relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.

Example

sociology

