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Logarithms

Logarithms allow us to move between multiplicative equations and additive ones.

Logs are defined relative to a base number. If we take 10 as the base then
y = log10(x) means 10x = y .

It’s easy to calculate the log of powers of 10:

log(10) = 1 101 = 10
log(100) = 2 102 = 100
log(1000) = 3 103 = 1000
log(1000000) = 6 106 = 1000000

100 is defined as 1, so the log of 1 is zero.
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From 0 to 1

For numbers between 1 and 0, logs are negative

1
10 = 10−1 log(0.1) = -1

1
100 = 10−2 log(0.01) = -2

1
1000 = 10−3 log(0.001) = -3

The log10 of powers of 10 are integers, but we can raise 10 to non-integer powers
too, to get the log of any number greater than zero. For instance, 102.09 is 123, so
the log of 123 is 2.09.
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Multiply by adding

We can see with round powers of 10 than using logs we can move between
multiplication and addition:

100 × 1000 = 100000

102 × 103 = 105 = 102+3
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Calculate A × B

Thus do calculate A × B we do as follows:

• Calculate log(A)

• Calclate log(B)

• Calculate log(C) = log(A) + log(B)

• Take the anti-log of log(C), i.e., 10log(C) = C

5



Example

Multiply 12345 by 67890

log(12345) = 9.421

log(67890) = 11.126

9.421 + 11.126 = 20.547

1020.547 = 838102050
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An application

If you have a certain quantity (e.g., money in a bank account), whose value
increases by a constant proportion every year, its value in any year depends on a
multiplicative relationship.

Let’s say the increases is α (i.e., a 10% increase means α = 1.1)
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Compound interest

Year 0 100
Year 1 100 × α
Year 2 100 × α × α
Year 3 100 × α × α × α
Year 4 100 × α × α × α × α
Year 5 100 × α × α × α × α × α

In short, the value in year t is 100×αt

yt = 100× αt
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Constant proportional increase

Figure 1: A constant proportional increase
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Convert to logs

But if we convert to logs we can calculate it as follows

log(yt) = log(100) + t × log(α)

In other words, rather than multiplying by α every year, we add log(α).
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Plot

Figure 2: Taking the base-10 log of the sum: a straight line
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Straight line

This gives a straight line relationship (see Fig 2).

Thus we can use logs to move between multiplicative and additive (straight-line)
relationships.
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Other bases

Logs to the base 10 are easy to understand, but the base number need not be 10.
A log to the base n is defined thus:

y = logn(x)⇔ ny = x
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Natural logs

Computer scientists often use log2, but the most common log base is the special
number e ≈ 2.7183. This has some special mathematical properties that make
certain calculations easier.

Logs to base e are called natural logs, often written ln(x) etc:

y = ln(x)⇔ ey = x

See Fig 3, which shows that the natural log also gives a straight line.
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Natural log straight line

Figure 3: Taking the natural log of the sum: also a straight line
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Natural log

• Fig 4 shows the natural log of X from 0.1 (-2.303) to 100 (4.605).

• For X = 1, the log is 0.

• As X approaches 0, the log falls faster and faster.

• As X rises above 1, the log rises, but more slowly as it goes.

• Note that the log rises from X = 5 to 10 as much as it does from X = 40 to 80.
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X vs ln(X)

Figure 4: The natural log of X for X from 0.1 to 100
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Logs and COVID-19

• In the early stage of an epidemic, infections tend to increase at a steady rate

• On average each infected person infects others at a given rate, e.g., one
person every four days

• So numbers of cases tend to rise at a steady percentage
• New infections are proportional to existing infections
• 100 today means 125 tomorrow, 156 the next day, etc.
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Confirmed cases in Ireland

If we look at the raw number of cases in Ireland:

• it starts off very low

• stays there for a while

• but then starts rising

• and rising faster and faster

line cases date
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Confirmed cases in Ireland
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Log cases

If we plot the log of the cases we see a different picture

• wobbly to begin with

• then approximating a straight line

gen lcases = log(cases)

line lcases date
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Log cases
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Log cases: straight => exponential

A straight line in logs means log(ncases) increases by more or less a set amount
very day

That means ncases rises by a set proportion every day: exponential rise

Exponential: even if it starts small, if given long enough, will get very very big!
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Log scale, real cases

We can graph log(cases) but we can also graph cases with a Y log-scale

line cases date, yscale(log) ylabel(1 2 5 10 20 40 80 160 320 640)

This gives the advantages of the logging while retaining the real numbers on the
axis
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Log scale, real cases
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Log-scale graphic in the wild
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Multiplicative relationship

• Where the underlying relationship is multiplicative, linear regression doesn’t
work well

• Implies an additive increase where a multiplicative one is better
• If we take the log of the dependent variable:

• better estimates
• often cures heteroscedasticity
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Simulation: Y increases 65% for X +1
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Linear regression

. reg y x

Source SS df MS Number of obs = 1,000

F(1, 998) = 274.71

Model 12181477.5 1 12181477.5 Prob > F = 0.0000

Residual 44253675.2 998 44342.3599 R-squared = 0.2158

Adj R-squared = 0.2151

Total 56435152.7 999 56491.6443 Root MSE = 210.58

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 55.69088 3.360033 16.57 0.000 49.09734 62.28442

_cons -200.7041 20.95566 -9.58 0.000 -241.8263 -159.5819
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Predictions
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Log(Y)

. gen ly = log(y)

. reg ly x

Source SS df MS Number of obs = 1,000

F(1, 998) = 1032.66

Model 956.12538 1 956.12538 Prob > F = 0.0000

Residual 924.030142 998 .925881905 R-squared = 0.5085

Adj R-squared = 0.5080

Total 1880.15552 999 1.88203756 Root MSE = .96223

ly Coefficient Std. err. t P>|t| [95% conf. interval]

x .4933914 .0153537 32.14 0.000 .4632622 .5235205

_cons 1.062305 .0957568 11.09 0.000 .8743972 1.250213
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Interpretation

• For a 1 unit change in X, log(Ŷ ) rises by 0.4933914

• Thus for a 1 unit change in X, Y rises by e0.4933914 = 1.638

• e0.4933914 is the antilog of 0.4933914
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Predictions
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Predicted values

• Where the dependent variable is logged the prediction of the Y value is not
simply the anti-log of the predicted log(Y)

• When we take the anti-log we must take account of the fact that residuals
above the line expand by more than residuals below the line

• Thus a small correction

ˆlog(Y ) = a + bX

Ŷ = e
ˆlog(Y ) ∗ eRMSE

2/2

• where RMSE is the standard deviation of the regression
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Calculations

gen ly = log(y)

reg ly x

predict lyhat

gen elyh = exp(lyhat)

gen elyh2 = elyh * exp(rmse^2/2)
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Predictions: predict log(Y) on log scale
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Predictions: only e ˆlog(Y )
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Predictions: with correction
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Predicting COVID-19

• We can apply log regression to the COVID-19 data

• A straight line on a log scale means a constant proportional increase.

• We can estimate this increase, regressing log(cases) on date.

• The slope, b, is the amount by which ˆlog cases rises per day

• eb is then the multiplier by which cases rises per day

reg lcases date
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Stata output

. reg lc date

Source SS df MS Number of obs = 20

F(1, 18) = 746.82

Model 66.1088015 1 66.1088015 Prob > F = 0.0000

Residual 1.59336573 18 .088520318 R-squared = 0.9765

Adj R-squared = 0.9752

Total 67.7021673 19 3.56327196 Root MSE = .29752

lc Coef. Std. Err. t P>|t| [95% Conf. Interval]

date .3058309 .0111911 27.33 0.000 .2823193 .3293426

_cons -6719.833 246.0411 -27.31 0.000 -7236.746 -6202.92
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Logs with log regression
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Steady increase

The log of cases rises by 0.3058 per day

This means cases rises by a factor of e0.3058 = 1.358

The increase is 1.358 - 1 = 0.358, or almost 36% per day

Implies a doubling about every 2.6 days
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But exponential increase is temporary

Exponential increase cannot go on indefinitely

Even if nothing is done, the rate of increase will decline as fewer people are left
unexposed

And interventions (isolation, tracing) will reduce the rate

See China, for example
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Wuhan, with prediction based on 1st 19 days
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Summary

If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn’t forever, but modelling the exponential helps us see
where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do
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