sociology

SO5032 Lecture 7

Brendan Halpin
April 3, 2024

Outline

SO5032 Lecture 7

SO5032 Lecture 7

Logarithms

Logarithms

Logarithms allow us to move between multiplicative equations and additive ones.
Logs are defined relative to a base number. If we take 10 as the base then $y=\log _{10}(x)$ means $10^{x}=y$.
It's easy to calculate the log of powers of 10 :

$$
\begin{array}{ll}
\log (10)=1 & 10^{1}=10 \\
\log (100)=2 & 10^{2}=100 \\
\log (1000)=3 & 10^{3}=1000 \\
\log (1000000)=6 & 10^{6}=1000000
\end{array}
$$

10^{0} is defined as 1 , so the \log of 1 is zero.

From 0 to 1

For numbers between 1 and 0 , logs are negative

$$
\begin{array}{ll}
\frac{1}{10}=10^{-1} & \log (0.1)=-1 \\
\frac{1}{100}=10^{-2} & \log (0.01)=-2 \\
\frac{1}{1000}=10^{-3} & \log (0.001)=-3
\end{array}
$$

The $\log _{10}$ of powers of 10 are integers, but we can raise 10 to non-integer powers too, to get the log of any number greater than zero. For instance, $10^{2.09}$ is 123 , so the log of 123 is 2.09.

Multiply by adding

We can see with round powers of 10 than using logs we can move between multiplication and addition:

$$
\begin{aligned}
& 100 \times 1000=100000 \\
& 10^{2} \times 10^{3}=10^{5}=10^{2+3}
\end{aligned}
$$

Calculate $\mathbf{A} \times \mathrm{B}$

Thus do calculate $\mathrm{A} \times \mathrm{B}$ we do as follows:

- Calculate $\log (\mathrm{A})$
- Calclate $\log (\mathrm{B})$
- Calculate $\log (\mathrm{C})=\log (\mathrm{A})+\log (\mathrm{B})$
- Take the anti-log of $\log (C)$, i.e., $10^{\log (C)}=C$

Example

Multiply 12345 by 67890
$\log (12345)=9.421$
$\log (67890)=11.126$
$9.421+11.126=20.547$
$10^{20.547}=838102050$

An application

If you have a certain quantity (e.g., money in a bank account), whose value increases by a constant proportion every year, its value in any year depends on a multiplicative relationship.

Let's say the increases is α (i.e., a 10% increase means $\alpha=1.1$)

Compound interest

$$
\begin{array}{ll}
\text { Year 0 } & 100 \\
\text { Year 1 } & 100 \times \alpha \\
\text { Year 2 } & 100 \times \alpha \times \alpha \\
\text { Year 3 } & 100 \times \alpha \times \alpha \times \alpha \\
\text { Year 4 } & 100 \times \alpha \times \alpha \times \alpha \times \alpha \\
\text { Year 5 } & 100 \times \alpha \times \alpha \times \alpha \times \alpha \times \alpha
\end{array}
$$

In short, the value in year t is $100 \times \alpha^{t}$

$$
y_{t}=100 \times \alpha^{t}
$$

Constant proportional increase

Figure 1: A constant proportional increase

Convert to logs

But if we convert to logs we can calculate it as follows

$$
\log \left(y_{t}\right)=\log (100)+t \times \log (\alpha)
$$

In other words, rather than multiplying by α every year, we add $\log (\alpha)$.

Plot

Figure 2: Taking the base-10 log of the sum: a straight line

Straight line

This gives a straight line relationship (see Fig 2).
Thus we can use logs to move between multiplicative and additive (straight-line) relationships.

Other bases

Logs to the base 10 are easy to understand, but the base number need not be 10 . $\mathrm{A} \log$ to the base n is defined thus:

$$
y=\log _{n}(x) \Leftrightarrow n^{y}=x
$$

Natural logs

Computer scientists often use $\log _{2}$, but the most common log base is the special number $e \approx 2.7183$. This has some special mathematical properties that make certain calculations easier.

Logs to base e are called natural logs, often written $\operatorname{In}(x)$ etc:

$$
y=\ln (x) \Leftrightarrow e^{y}=x
$$

See Fig 3, which shows that the natural log also gives a straight line.

Natural log straight line

Figure 3: Taking the natural log of the sum: also a straight line

Natural log

- Fig 4 shows the natural log of X from 0.1 (-2.303) to 100 (4.605).
- For $X=1$, the \log is 0 .
- As X approaches 0 , the log falls faster and faster.
- As X rises above 1, the log rises, but more slowly as it goes.
- Note that the log rises from $X=5$ to 10 as much as it does from $X=40$ to 80 .

X vs $\ln (X)$

Figure 4: The natural \log of X for X from 0.1 to 100

SO5032 Lecture 7

Early pandemic: exponential curves

Logs and COVID-19

- In the early stage of an epidemic, infections tend to increase at a steady rate
- On average each infected person infects others at a given rate, e.g., one person every four days
- So numbers of cases tend to rise at a steady percentage
- New infections are proportional to existing infections
- 100 today means 125 tomorrow, 156 the next day, etc.

Confirmed cases in Ireland

If we look at the raw number of cases in Ireland:

- it starts off very low
- stays there for a while
- but then starts rising
- and rising faster and faster
line cases date

Confirmed cases in Ireland

Log cases

If we plot the log of the cases we see a different picture

- wobbly to begin with
- then approximating a straight line

```
gen lcases = log(cases)
line lcases date
```


Log cases

Log cases: straight => exponential

A straight line in logs means \log (ncases) increases by more or less a set amount very day

That means ncases rises by a set proportion every day: exponential rise
Exponential: even if it starts small, if given long enough, will get very very big!

Log scale, real cases

We can graph $\log ($ cases $)$ but we can also graph cases with a Y log-scale line cases date, yscale(log) ylabel(1 2510204080160320 640)

This gives the advantages of the logging while retaining the real numbers on the axis

Log scale, real cases

Log-scale graphic in the wild

FT graphic: John Burn-Murdoch / @jburnmurdoch
Source: FT analysis of Johns Hopkins University, CSSE; Worldometers. Data updated March 21, 19:00 GMT (c) FT

SO5032 Lecture 7

Log regression

Multiplicative relationship

- Where the underlying relationship is multiplicative, linear regression doesn't work well
- Implies an additive increase where a multiplicative one is better
- If we take the log of the dependent variable:
- better estimates
- often cures heteroscedasticity

Simulation: Y increases 65% for $\mathrm{X}+1$

bandwidth $=.8$

Linear regression

sociology

Predictions

$\log (Y)$

sociology

Interpretation

- For a 1 unit change in $X, \log (\hat{Y})$ rises by 0.4933914
- Thus for a 1 unit change in X, Y rises by $e^{0.4933914}=1.638$
- $e^{0.4933914}$ is the antilog of 0.4933914

Predictions

Predicted values

- Where the dependent variable is logged the prediction of the Y value is not simply the anti-log of the predicted $\log (\mathrm{Y})$
- When we take the anti-log we must take account of the fact that residuals above the line expand by more than residuals below the line
- Thus a small correction

$$
\begin{gathered}
\log \hat{(Y)}=a+b X \\
\hat{Y}=e^{\log (Y)} * e^{\mathrm{RMSE}^{2} / 2}
\end{gathered}
$$

- where RMSE is the standard deviation of the regression

Calculations

```
gen ly = log(y)
reg ly x
predict lyhat
gen elyh = exp(lyhat)
gen elyh2 = elyh * exp(rmse^2/2)
```


Predictions: predict $\log (\mathrm{Y})$ on log scale

Predictions: only $e^{\log (Y)}$

Predictions: with correction

Predicting COVID-19

- We can apply log regression to the COVID-19 data
- A straight line on a log scale means a constant proportional increase.
- We can estimate this increase, regressing log(cases) on date.
- The slope, b , is the amount by which \log cases rises per day
- e^{b} is then the multiplier by which cases rises per day
reg lcases date

Stata output

sociology

Logs with log regression

Steady increase

The log of cases rises by 0.3058 per day
This means cases rises by a factor of $e^{0.3058}=1.358$
The increase is $1.358-1=0.358$, or almost 36% per day
Implies a doubling about every 2.6 days

But exponential increase is temporary

Exponential increase cannot go on indefinitely
Even if nothing is done, the rate of increase will decline as fewer people are left unexposed

And interventions (isolation, tracing) will reduce the rate
See China, for example

Wuhan, with prediction based on 1st 19 days

Wuhan, prediction on days 1/19

Summary

If there is a constant rate of increase, logs give us straight lines
Graph the log, or use a log scale on the Y-axis
Log regression allows us to estimate the rate
Exponential increase isn't forever, but modelling the exponential helps us see where the rate starts to drop
Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do

