	Outline	What is Quantitative Method?
SOCIOLOGY UNVERSITY OF LIMERICK UL Summer School – Refresher Session Brendan Halpin, Sociology May 29 2023 Spring 2022/3	The Quantitative Method Sampling More on statistical tests	 Distinct in using number Large amounts of relatively shallow data Data may be shallow, but is strictly comparable: compare and contrast Tends to look to explicit causal explanations

What is Quantitative Method?	Causal relationships from empirical data?	Numbers as information
 Clearly defined meanings allocated numerical representations Thus easily manipulated Descriptive statistics and graphics Analytical statistics and graphics 	 QM often concerned with causal accounts, "low level" theories The experiment is probably the strongest way of arguing from data "Experimental control" means everything is the same except the input of interest A strong inference that differences in the result are caused by the difference in the input Experiments are rarely possible in social science: therefore we use "observational" data, and compare and contrast ("statistical control") 	 Designing – asking structured questions so answers can be mapped onto numbers Coding – turning answers to numbers and entering them on the computer Labelling – attaching meaning to the numbers (not essential but very helpful!) Reporting/analysing – very easy once the preceding steps are accomplished
sociology 💥	sociology 💥	sociology 💥

Sampling	Simple random sampling	Varieties of sampling
 The use of sampling is another characteristic of QM Calculations based on representative samples <i>approximate</i> those of the reference population <i>Random</i> sampling is a powerful way of ensuring representativity What does <i>random</i> mean? 	 In "Simple Random Sampling" every element in the reference population has the same chance of being selected SRS needs a clear <i>sampling frame</i> (e.g., a list of everyone in the population) and a random selection process E.g., a list of all students in a university, "put the names in a hat" Often difficult to get a good sampling frame SRS more important as an ideal type for reasoning about statistics 	 Non-representative: accidental sampling, volunteer sampling Quasi-representative: quota sampling Representative: SRS, cluster sampling, stratified sampling What is representativity?
sociology 💥	sociology 🗙	sociology 💥
Data distributions We have seen how to display and summarise the distribution of variables: Categorical: frequency distribution, percentage distribution, bar and pie charts Continuous (interval/ratio): mean, median, IQR, standard deviation, histogram, box-plot	<text></text>	• More often we see "heaped distributions" where more of the observations cluster around the centre, like this age example from the ESRI School-Leavers' Survey: $\int_{0}^{0} \int_{0}^{0} \int_{$
Distribution patterns There are many patterns we might see in histograms and distributions: Uniform Extremes Bimodal Uni-modal Asymmetric Positively skewed (to right) Negatively skewed (to right) Symmetric (with different levels of kurtosis) platykurtic – flatter mesokurtic – average Hordkurtic – average	Symmetric unimodal	Asymmetric bimodal

sociology 💥

sociology 💥

leptokurtic – very concentrated around centre

sociology 💥

Visualisations	Defined by mean and std deviation	Reading the Normal Distribution
https://commons.wikimedia.org/wiki/File:Galton_box.webm https://teaching.sociology.ul.ie/so4046/quincunx.mp4	 What makes the normal distribution useful is that its form is well understood: It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviation It is completely characterised by its mean and its standard deviati	 About 68% of the cases in a normal distribution will be within 1 standard deviation on either side of its mean 95% of cases will be within ± 1.96 std dev of the mean 97.5% of cases will be within ± 2.24 standard deviations of the mean 97.5% of cases will be within ± 2.24 standard deviations of the mean 97.5% of cases will be within ± 2.24 standard deviations of the mean 97.5% of cases will be within ± 1.96 std dev of the mean 97.5% of cases will be within ± 2.24 standard deviations of the mean 97.5% of cases will be within ± 2.24 standard deviations of the mean 97.5% of cases will be within ± 1.96 std deviations of the mean
Langu and the second		Lances and ²⁷ (1)
The most important thing! • The immediately most important thing about the normal distribution? • Take a large sample from a population and calculate a statistic (e.g., a mean) • Repeat a large number of times and make a histogram of your results • These will cluster around the true population mean in a normal distribution, with • Mean: μ , the true population value • Standard deviation: $\frac{\sigma}{\sqrt{N}}$ • \Rightarrow Sample statistics are normally distributed	 How wrong are samples? A random sample gives an "approximately correct" result – how wrong is it likely to be? Large samples are more correct, measures of things with more variability are likely less correct Explore a simple case: Binary outcome: yes or no (say 50:50 in population) Sample size of 4 (very small, work through the details by hand) 	Distribution of original variable
sociology	sociology	sociology 🗙
N=1,000; Replications: 10,000	App: Simulate the binomial distribution	 The Central Limit Theorem For a sufficiently large sample, sample estimates are distributed normally Mean: μ, the true population value Standard deviation: ^σ/_{√N} The "standard deviation of the sampling distribution" is called the "standard error" This holds no matter what the distribution of the original variable (Some analyses use other distributions that give better results with smaller samples)
sociology	sociology XX	sociology

Rejecting the null hypothesis?	Significance	p-values
 Rejecting the null hypothesis constitutes support for the initial or "alternative" hypothesis Failing to reject the null hypothesis means the data fail to support the initial hypothesis: "there is no evidence that the course affects wage" Failure to support the initial hypothesis may be because It is actually false, <i>i.e.</i>, <i>D_w</i> = 0 The effect is small and/or very variable, and thus the sample is too small to detect it 	 Let's say we do a hypothesis test with a 95% confidence level, and we find the zero is way outside the CI We can try again with a 99% confidence level: If it is still outside the interval we are not "at least 95%" but "at least 99%" sure that zero is not the true value If we keep trying with CIs with higher confidence levels we will eventually find one where zero is just outside the interval If that is at confidence level <i>C</i> we can say that we are <i>C</i>% sure (not "at least" any more) that zero is not the true value 	 This p = 100% - C% value is the probability that we get a sample statistic as different from zero as we did, even though the true value was zero This is known as the significance of the sample estimate, or its p-value We want it to be as small as possible, typically under 5% (0.05) p-values are widely used - stats programmes report them in many places In general the interpretation is "what's the probability of getting this result by chance if the null hypothesis was true?"
sociology	sociology	sociology 🕅
t-test shortcuts	Error in hypothesis testing	Type II error
 Rather than try repeatedly to get a CI just short of touching zero, we can calculate a t-statistic: t = x/SE If this t is greater than the "critical value", e.g., 1.96 for large samples at 95% confidence, we can reject the null hypothesis If the CI doesn't include zero, t will be greater than the critical value We can also calculate the exact p-value for the t-statistic 	 Another way of looking at significance is "the chance we would be wrong if we believe the initial hypothesis" For instance, if there is one chance in twenty (<i>p</i> = 0.05) that the true value is outside the Cl, then by basing our decision on the Cl we will be wrong one time in twenty This is known as Type I Error: rejecting the null hypothesis when it is true <i>e.g.</i>, the true value might be zero but a small number of possible samples generate Cls that don't include zero If it is very important to avoid Type I error, we use high confidence levels (<i>e.g.</i>, 99.5% instead of 95%) or insist on low p-values (<i>e.g.</i>, 0.005 instead of 0.05) 	 However, there is a second type of error, Type II Type II Error is failing to reject the null hypothesis when it is false That is, failing to support the initial hypothesis even though it is true If we raise the confidence level we reduce the risk of Type I error but raise the risk of Type II error That is, if we make a special effort not to accept an initial hypothesis unless there is very clear evidence, we necessarily fail to accept it where there is only fairly clear evidence For a given p-value, we can only reduce the Type II error by increasing the sample size
sociology 🗙	sociology XX	, sociology X
Association in tables	The χ^2 test for association in tables	Observed and Expected
 We detect association in tables many ways Comparing row percentages up and down columns Column percentages across rows Comparing observed with <i>expected</i> values "Expected" ⇒ the concept of "independence" 	 Independence: no association between two variables pattern of row percentages the same in all rows pattern of column percentages the same in all columns But even if independence holds in the population, sampling variability leads to differences in percentages How big can the differences be before we can be convinced that there is really association in the population? 	 Method: compare the real table ("observed") with hypothetical table under independence ("expected") Summarise the difference into a single figure (χ² statistic, chi-sq) Compare χ² statistic with known distribution What is the probability of getting a sample statistic "at least this big" by simple sampling variability <i>if independence holds in the population</i>?
sociology	sociology X	sociology 💥

Calculating the χ^2 statistic	χ^2 distribution	Critical values and hypothesis testing
• The "expected" table has the same row and column totals, but the cell values are such that the percentages are the same as in the total row and column: $n_{ij} = \frac{R_i C_j}{T}$ • For each cell we summarise the difference between observed (<i>O</i>) and expected (<i>E</i>) values as $\frac{(O - E)^2}{E}$ • The summary for the table as a whole is the sum of this quantity across all cells: $\chi^2 = \sum \frac{(O - E)^2}{E}$	 This statistic is known to have a predictable distribution, the χ² distribution That is, if we take a large number of samples from a population where there is no association, and calculate the statistic, they will have a distribution in a known form, and we can calculate the probability of finding a value "at least as large as" any given number The distribution depends only on the "degrees of freedom" which is the number of rows minus one times the number of columns minus one: df = (r - 1)(c - 1) 	 Reading the table, we go to the row corresponding to the degrees of freedom, and read across until we get to the column with our chosen probability level (say 0.05) – this gives us the appropriate "critical value" If our <i>χ</i>² is bigger than the critical value, then there is at most one chance in 20 (<i>i.e.</i>, 0.05) that it has arisen by sampling variability and a 95% chance (<i>i.e.</i>, 1 – 0.05) that it is due to real association in the population When using computers, the exact p-value of the calculated <i>χ</i>² statistic is reported: if <i>p</i> ≤ 0.05 then we can reject the null hypothesis of no association with 95% confidence
pciology 🕅	sociology X	sociology
Critical values for t	Multiple t-tests	The "independent-sample t-test"
 With both the χ² test and the <i>t</i> test, we calculate a "test statistic" compare it with a "critical value", and/or calculate its exact <i>p</i> value When testing for association in tables, χ² = ∑ (O-E)²/E When comparing a mean to zero, t = x̄/SE 	 We have looked at the "paired sample" t-test, where we compare a difference (between paired observations) to zero: t = x/SE This is a special case of the one-sample t-test, where we compare a sample statistic to a fixed reference value, r: t = x-f/SE This also applies to proportions, comparing to a reference value such as 50%: t = (p - r)/√p(1 - p)/N (note: use normal distribution, not t-distribution, as long as sample is large enough) 	 A third case is the "independent-sample t-test", where we compare means across different (sub-)samples If we wish to test for differences across groups (e.g., differences in income between men and women) we are comparing one sample mean with another not a sample mean with a fixed value We can consider the sample difference (x
ociology 💥	sociology X	sociology
Testing for differences in means	Test statistic	
• To construct a CI or calculate the test statistic, we need the SE • Where the groups have different variances this is $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	- The test statistic is standard, using the appropriate SE: $t = \frac{x_m - x_w}{SE}$	
• If we can assume the sub-population variances are the same it simplifies to	 The degrees of freedom are complicated to calculate in the general case In the equal-variance case they are n – 2 as two sample statistics are 	

 In the equal-variance case they are n – 2 as two sample statistics are calculated

sociology 💥

sociology 💥

 $\sqrt{rac{s^2}{n_1}+rac{s^2}{n_2}}=s\sqrt{rac{1}{n_1}+rac{1}{n_2}}$