SOCIO
UNIVERSITY OF LIMERICK
UL Summer School - Refresher Session
May 29 2023 Spring 2022/3

What is Quantitative Method?

- Clearly defined meanings allocated numerical representations
- Thus easily manipulated
- Descriptive statistics and graphics
- Analytical statistics and graphics

Outline	
The Quantitative Method	
Sampling	
More on statistical tests	
sociology炏	

Causal relationships from empirical data?

- QM often concerned with causal accounts, "low level" theories
- The experiment is probably the strongest way of arguing from data
"Experimental control" means everything is the same except the input of interest
A strong inference that differences in the result are caused by the difference in the input
- Experiments are rarely possible in social science: therefore we use "observational" data, and compare and contrast ("statistical control")

Distinct in using number

- Large amounts of relatively shallow data

Data may be shallow, but is strictly comparable: compare and contras

- Tends to look to explicit causal explanations
sociology $火$

Numbers as information

What is Quantitative Method?
Numbers as information

Example 6
Bivariate summaries of data
Numerical

- Crosstabulations
Comparing means across groups
- Correlations
- Graphical
Side-by-side and stacked bar charts, histograms, box-plots - Scatter plots

Sampling
- The use of sampling is another characteristic of QM
- Calculations based on representative samples approximate those of the
reference population
- Random sampling is a powerful way of ensuring representativity
- What does random mean?
sociology

Simple random sampling
- In "Simple Random Sampling" every element in the reference population has
the same chance of being selected
- SRS needs a clear sampling frame (e.g., a list of everyone in the population)
and a random selection process
- E.g., a list of all students in a university, "put the names in a hat"
- Often difficult to get a good sampling frame
- SRS more important as an ideal type for reasoning about statistics
sociology

| Varieties of sampling |
| :--- | :--- |
| - Non-representative: accidental sampling, volunteer sampling |
| - Quasi-representative: quota sampling |
| - Representative: SRS, cluster sampling, stratified sampling |
| - What is representativity? |

| Data distributions |
| :--- | :--- |
| - We have seen how to display and summarise the distribution of variables: |
| - Categorical: frequency distribution, percentage distribution, bar and pie charts |
| - Continous (interval/ratio): mean, median, IQR, standard deviation, histogram, |
| box-plot |

- More often we see "heaped distributions" where more of the observations cluster around the centre, like this age example from the ESRI Cluster around the cent

Distribution patterns

There are many patterns we might see in histograms and distributions:

- Uniform
- Extremes
- Bimodal
- Uni-modal

Uni-modal
Asymmetric

- Positively skewed (to right)
- Negatively skewed (to left)
- Symmetric (with different levels of kurtosis)
- platykurtic - flatter
- leptokurtic - very concentrated around centre

Symmetric unimodal

sociology

socioges)

Visualisations	Defined by mean and std deviation	Reading the Normal Distribution
https://commons.wikimedia.org/wiki/File:Galton_box.webm https://teaching.sociology.ul.ie/so4046/quincunx.mp4 sociology x "	- What makes the normal distribution useful is that its form is well understood: - It is completely characterised by its mean and its standard deviation Same mean, different SD Same SD, different mean - http://teaching.sociology.ul.ie:3838/apps/normsd	- About 68% of the cases in a normal distribution will be within 1 standard deviation on either side of its mean - 95% of cases will be within ± 1.96 std dev of the mean - 97.5% of cases will be within ± 2.24 standard deviations of the mean - http://teaching.sociology.ul.ie:3838/apps/snd sociology $火$
The most important thing!	How wrong are samples?	Sampling distribution, $\mathrm{N}=4$
- The immediately most important thing about the normal distribution? - Take a large sample from a population and calculate a statistic (e.g., a mean) - Repeat a large number of times and make a histogram of your results - These will cluster around the true population mean in a normal distribution, with - Mean: μ, the true population value - Standard deviation: $\frac{\sigma}{\sqrt{N}}$ - \Rightarrow Sample statistics are normally distributed sociology X	- A random sample gives an "approximately correct" result - how wrong is it likely to be? - Large samples are more correct, measures of things with more variability are likely less correct - Explore a simple case: - Binary outcome: yes or no (say $50: 50$ in population) - Sample size of 4 (very small, work through the details by hand)	Distribution of original variable Sampling distribution for $\mathrm{N}=4$ sociology
N=1,000; Replications: 10,000	App: Simulate the binomial distribution	The Central Limit Theorem
	http://teaching.sociology.ul.ie:3838/binsim sociology X	- For a sufficiently large sample, sample estimates are distributed normally - Mean: μ, the true population value - Standard deviation: $\frac{\sigma}{\sqrt{N}}$ - The "standard deviation of the sampling distribution" is called the "standard error" - This holds no matter what the distribution of the original variable - (Some analyses use other distributions that give better results with smaller samples)

Sampling distributions

- Therefore, any statistic calculated on a single sample can be considered as being drawn from a "sampling distribution" with mean μ and standard deviation $\frac{\sigma}{\sqrt{N}}$
- This allows us to reason about how much sampling error we can expect - For instance, 95% of the time our sample statistic will be in the range $\mu \pm 1.96 \times \frac{\sigma}{\sqrt{N}}$
- If we know that we have a 95% chance of falling in the range $\mu \pm 1.96 \times$ SE, we can turn it around:
- There is a 95% chance that the true answer is in the range $\bar{x} \pm 1.96 \times S E$ - Since we don't know σ, the population standard deviation, we estimate it using the sample standard deviation, s
- Confidence interval: $\bar{x} \pm 1.96 \times \frac{\mathrm{s}}{\sqrt{N}}$
- Interpretation: in 95% of large simple random samples, the true value will fall within the Cl

Central limit theorem: sample statistics normal

sociology y

Sample mean ± 1.96 SEs contains true mean

sociology
mean of €34.658, with standard deviation of €10.123

Sample results

sociology
sociology \qquad

- Rejecting the null hypothesis constitutes support for the initial or "alternative" hypothesis
- Failing to reject the null hypothesis means the data fail to support the initial hypothesis: "there is no evidence that the course affects wage"
- Failure to support the initial hypothesis may be because
- It is actually false, i.e., $D_{w}=0$

The effect is small and/or very variable, and thus the sample is too small to detect it
sociology

t-test shortcuts
- Rather than try repeatedly to get a CI just short of touching zero, we can
calculate a t -stataistic:
$\qquad t=\frac{\bar{x}}{S E}$
- If this t is greater than the "critical value", e.g., 1.96 for large samples at 95%
confidence, we can reject the null hypothesis
- If the CI doesn't include zero, t will be greater than the critical value
- We can also calculate the exact p-value for the t -statistic
sociology

- Let's say we do a hypothesis test with a 95% confidence level, and we find the zero is way outside the Cl
- We can try again with a 99% confidence level:
- If it is still outside the interval we are not "at least 95% " but "at least 99% " sure that zero is not the true value
- If we keep trying with Cls with higher confidence levels we will eventually find one where zero is just outside the interval
- If that is at confidence level C we can say that we are $C \%$ sure (not "at least" any more) that zero is not the true value
- This $p=100 \%-C \%$ value is the probability that we get a sample statistic as different from zero as we did, even though the true value was zero
- This is known as the significance of the sample estimate, or its p-value
- We want it to be as small as possible, typically under 5% (0.05)
- p -values are widely used - stats programmes report them in many places
- In general the interpretation is "what's the probability of getting this result by chance if the null hypothesis was true?"

Association in tables

- We detect association in tables many ways
- Comparing row percentages up and down columns
- Column percentages across rows
- Comparing observed with expected values
- "Expected" \Rightarrow the concept of "independence"
- Another way of looking at significance is "the chance we would be wrong if we believe the initial hypothesis"
- For instance, if there is one chance in twenty ($p=0.05$) that the true value is outside the Cl , then by basing our decision on the Cl we will be wrong one time in twenty
- This is known as Type I Error: rejecting the null hypothesis when it is true - e.g., the true value might be zero but a small number of possible samples generate CIs that don't include zero
- If it is very important to avoid Type I error, we use high confidence levels (e.g. 99.5% instead of 95%) or insist on low p-values (e.g., 0.005 instead of 0.05)

Type II error

- However, there is a second type of error, Type II
- Type II Error is failing to reject the null hypothesis when it is false
- That is, failing to support the initial hypothesis even though it is true
- If we raise the confidence level we reduce the risk of Type I error but raise the risk of Type II error
- That is, if we make a special effort not to accept an initial hypothesis unless there is very clear evidence, we necessarily fail to accept it where there is only fairly clear evidence
- For a given p-value, we can only reduce the Type II error by increasing the sample size
sociology

Observed and Expected

- Method: compare the real table ("observed") with hypothetical table under independence ("expected")
- Summarise the difference into a single figure (χ^{2} statistic, chi-sq)
- Compare χ^{2} statistic with known distribution
... What is the probability of getting a sample statistic "at least this big" by simple sampling variability if independence holds in the population?
- Independence: no association between two variables
- pattern of row percentages the same in all rows
- pattern of column percentages the same in all columns
- But even if independence holds in the population, sampling variability leads to differences in percentages
- How big can the differences be before we can be convinced that there is really association in the population?

Calculating the χ^{2} statistic
-The "expected" table has the same row and column totals, but the cell values are such that the percentages are the same as in the total row and column:

$$
n_{i j}=\frac{R_{i} C_{j}}{T}
$$

- For each cell we summarise the difference between observed (O) and expected (E) values as

$$
\frac{(O-E)^{2}}{E}
$$

- The summary for the table as a whole is the sum of this quantity across all cells:

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

sociology

Critical values for t

- With both the χ^{2} test and the t test, we
- calculate a "test statistic"
- compare it with a "critical value", and/or
calculate its exact p value
- When testing for association in tables, $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$
- When comparing a mean to zero, $t=\frac{\bar{x}}{S E}$
- This statistic is known to have a predictable distribution, the χ^{2} distribution
- That is, if we take a large number of samples from a population where there is no association, and calculate the statistic, they will have a distribution in a known form, and we can calculate the probability of finding a value "at least as large as" any given number
The distribution depends only on the "degrees of freedom" which is the number of rows minus one times the number of columns minus one:

$$
d f=(r-1)(c-1)
$$

sociology $火$
sociology

Reading the table, we go to the row corresponding to the degrees of freedom and read across until we get to the column with our chosen probability level (say 0.05) - this gives us the appropriate "critical value"
If our χ^{2} is bigger than the critical value, then there is at most one chance in 20 (i.e., 0.05) that it has arisen by sampling variability and a 95% chance (i.e., $1-0.05$) that it is due to real association in the population

- When using computers, the exact p-value of the calculated χ^{2} statistic is reported: if $p \leq 0.05$ then we can reject the null hypothesis of no association with 95% confidence

Critical values and hypothesis testing

$+$
\qquad

- We have looked at the "paired sample" t -test, where we compare a difference (between paired observations) to zero: $t=\frac{\bar{x}}{S E}$
- This is a special case of the one-sample t-test, where we compare a sample statistic to a fixed reference value, $r: t=\frac{x-r}{S E}$
- This also applies to proportions, comparing to a reference value such as 50%

$$
t=(p-r) / \sqrt{p(1-p) / N}
$$

(note: use normal distribution, not t-distribution, as long as sample is large enough)

- A third case is the "independent-sample t-test", where we compare means across different (sub-)samples
- If we wish to test for differences across groups (e.g., differences in income between men and women) we are comparing one sample mean with another, not a sample mean with a fixed value
- We can consider the sample difference $\left(\bar{x}_{m}-\bar{x}_{w}\right)$ to be a point estimate of the population difference
- The null hypothesis is that $\mu_{m}=\mu_{w}$, or $\mu_{m}-\mu_{w}=0$

Testing for differences in means

- To construct a Cl or calculate the test statistic, we need the SE
- Where the groups have different variances this is

$$
\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

- If we can assume the sub-population variances are the same it simplifies to

$$
\sqrt{\frac{s^{2}}{n_{1}}+\frac{s^{2}}{n_{2}}}=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

- The test statistic is standard, using the appropriate SE :

$$
t=\frac{x_{m}-x_{w}}{S E}
$$

- The degrees of freedom are complicated to calculate in the general case
- In the equal-variance case they are $n-2$ as two sample statistics are calculated

