

UL Summer School: Regression session 1

Brendan Halpin, Sociology 2023 Summer School

Outline

Session 1: Correlation and bivariate regression

Session 1: Correlation and bivariate regression

Outline

Outline

- How to summarise association between pairs of interval/ratio variables
- Linear (straight line) association
- Correlation summarises the strength and direction of the relationship
- Bivariate regression treats one variable as a response, one as a predictor
- Estimates the "effect" of the predictor on the response
- Bivariate regression generalises easily to multiple predictors, "multiple regression"

-

Session 1: Correlation and bivariate regression

Correlation

Correlation

- We can visualise relationships between interval/ratio variables with scatterplots
- · Correlation & regression seek to model the relationship as a straight line
 - · with greater and lesser success

Scatterplots

Summarising association simply

- We can see a lot of detail in a scatterplot, but sometimes we can summarise it in simple ways
- For instance the two variables may have a positive association: when one is high the other tends to be high, and vice versa
- Or a negative association: when one is high the other tends to be low

Ę

Correlation coefficient

- · How well a straight line summarises the relationship
- · Positive or negative
- Zero implies no relationship
- See http://teaching.sociology.ul.ie:3838/so5041/corr
- And http://teaching.sociology.ul.ie:3838/apps/corrspread
- Skip

Strong positive

Figure 3: Fictional data displaying a strong positive linear relationship.

Strong negative

Figure 4: Fictional data displaying a strong negative linear relationship.

Weak negative

Figure 5: Fictional data displaying a weak negative linear relationship.

No relationship

Figure 6: Fictional data displaying absence of a relationship.

Practice app

· View scatterplot, guess correlation

http://teaching.sociology.ul.ie:3838/apps/corrgame

Calculating the correlation coefficient

- Combine X deviations $(X_i \bar{X})$ and Y deviations $(Y_i \bar{Y})$ i.e., compares each point with the mean for X and the mean for Y
- With positive association, cases below average on X tend to be below average on Y (and above average on X tend to be above average on Y)
- With negative association, cases below average on X tend to be above average on Y and vice versa

Pearson Product-Moment Correlation Coefficient

Pearson Product-Moment Correlation Coefficient (r)

$$r = \frac{SXY}{\sqrt{SXX.SYY}}$$

$$SXX = \Sigma(X - \bar{X})^{2}$$

$$SYY = \Sigma(Y - \bar{Y})^{2}$$

$$SXY = \Sigma(X - \bar{X})(Y - \bar{Y})$$

- Range: $-1 \le r \le +1$
- r is a symmetric measure: $r_{xy} = r_{yx}$

Combining deviations

- With positive association below the mean, both $X_i \bar{X}$ and $Y_i \bar{Y}$ are negative, so $SXY = (X_i \bar{X})(Y_i \bar{Y})$ is positive
- With negative association, $X_i \bar{X}$ and $Y_i \bar{Y}$ tend to have opposite signs, so SXY is negative
- If no association, SXY is approximately zero
- Scaling by $\frac{1}{\sqrt{SXX.SYY}}$ makes its range $-1 \le r \le +1$

Robust to transformations

- Changing the scale of one variable (additively or multiplicatively) doesn't change the results
 - Corr(x, y) = Corr(x + c, y)
 - $Corr(x, y) = Corr(x \times c, y)$
- => "Scale invariant": the correlation between ice-cream sales and temperature doesn't change if you switch between °F and °C
- If $y = a + b \times x$:
 - $r_{xy} = r_{yx} = 1$
 - $r_{zx} = r_{zy}$
- Suits interval and ratio variables

Pitfalls

- Correlation is not causality (association is not proof of a causal relationship)
- Absence of correlation does not mean absence of relationship: non-linear relationships may exist

Non-linear!

A strong non-linear relationship and a near-zero correlation.

Correlations on data: School Leaver's Earnings

. corr grsearn netearn (obs=756)

	grsearn	netearn
grsearn	1.0000	
netearn	0.9650	1.0000

Correlations on data: BHPS

. corr ofimn oage (obs=7,934)

	ofimn	oage
ofimn	1.0000	
oage	0.2228	1.0000

Strong and weak

- There is a strong simple mechanism linking gross and net earnings, leading to a very high correlation of 0.965
- The relationship between age and income is much more complex, but is still real: thus a much lower correlation of 0.223

Hypothesis testing

- Null hypothesis: no association, correlation = 0
- Test statistic: $\frac{r}{SE}$, normally distributed (SE not in output)
- P-value: Chance of getting a correlation this far from zero if null is true

. pwcorr ofimr	ı oage, sig	
	ofimn	oage
ofimn	1.0000	
oage	0.2228 0.0000	1.0000

Estimating correlations in Stata

. pwcorr ofimn ojbhgs ojbhrs, sig

	ofimn	ojbhgs	ojbhrs
ofimn	1.0000		
ojbhgs	0.4851 0.0000	1.0000	
ojbhrs	0.4245 0.0000	0.2489	1.0000

Viewing the same correlations

Practice apps summary

- http://teaching.sociology.ul.ie:3838/so5041/corr
- http://teaching.sociology.ul.ie:3838/apps/corrspread
- http://teaching.sociology.ul.ie:3838/apps/corrgame

Session 1: Correlation and bivariate regression

Bivariate regression

Correlation is limited

- Correlation summarises straight-line association between two interval/ratio variables
- Single statistic, from -1 (perfect negative) through 0 (no association) to 1 (perfect positive)
- How well a scatter is described by a line
- Regression analysis goes one further: find the line

Bivariate regression: relating 2 (or more) interval/ratio variables

- Identifying the line that best summarises the scatterplot
- Directional: One "response" variable (Y), one (or more) "predictors" (X)
- Predictive: Given the relationship between X and Y, knowing X helps us predict Y better
- Reading: Agresti, Statistics for the Social Sciences, Ch 9 or any intro text

Bivariate vs multiple regression

- Bivariate regression: one X variable predicting one Y
- Multiple regression: multiple X variables predicting one Y
 - Estimate "net" effect of each X variables, "controlling for" the others
 - Very powerful general model, generalises easily from bivariate regression

Some geometry: equation of a line

Applet

http://teaching.sociology.ul.ie:3838/apps/abx/

What's the "best" line?

- 'Best' is defined as minimising the squared deviations between the observed data-points and the fitted line, hence often called 'least-squares' regression
- Deviations are the vertical distance between the line and the observed data points.
- Very similar logic to the mean (minimise variance).

A simple example: scatterplot

Regression in Stata

. reg y x							
Source	SS	df	MS	Number	of ob	s =	20
				F(1, 1	18)	=	17.5
Model	.820567701	1	.820567701	Prob >	F	=	0.0006
Residual	.843474028	18	.046859668	R-squa	red	=	0.493
				Adj R-	square	d =	0.4650
Total	1.66404173	19	.087581144	Root M	ISE	=	.21647
У	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval
x	.2574678	.0615269	4.18	0.001	. 1282	045	. 386731:
_cons	.7363586	.0998061	7.38	0.000	.5266	737	.946043

Regression equation

$$\hat{Y} = 0.7364 + X \times 0.2575$$

- To draw the line by hand, calculate two predicted values for Y at opposite sides of the graph
 - e.g., for X = 0, Y = a = 0.7364
 - for X = 3, Y = a + 3*b = 0.7364 + 3*0.2575 = 1.509
- Join them with a ruler!

The line

Predicted values

• The line gives a predicted value of *Y* for each value of *X*:

$$\hat{Y} = a + bX$$

$$Y = \hat{Y} + e$$

$$Y = a + bX + e$$

e is the 'residual' or deviation.

• That is, knowing X we "predict" or guess Y as a + bX

Deviations from the line

Regression equation

• Regression equation: the estimate of Y, called \hat{Y} , depends on X:

$$\hat{Y} = a + bX$$

• The regression slope *b* depends on *SXY* and *SXX*, the intercept *a* is calculated from *b* and the mean values of *Y* and *X*:

$$b = \frac{SXY}{SXX}$$
$$a = \bar{Y} - b\bar{X}$$

$$SXX = \sum (X_i - \bar{X})^2$$

 $SXY = \sum (X_i - \bar{X})(Y_i - \bar{Y})$

Pitfalls

- Spurious relationships will fit just as well as real ones (e.g., if A affects B and A affects C, B and C will seem to be related and a regression line might fit well)
- Predicting outside the range of the data: the relationship we see only holds for the data we use, and it may well not hold for higher (or lower) values of X and Y
- Like correlation, non-linear relationships may be missed

Predicting outside the range of the data: income and age for <30 years

Predicting outside the range of the data: full age range

Income and age: true relationship is non-linear

Fit: How well the straight line captures the relationship

- How well does it "fit"? We use R² to tell:
 - ranges from 0: no relationship at all
 - to 1: perfect relationship, all Ys are exactly equal to a + bX
 - values from 0.7 up indicate quite a good relationship
 - smaller values may indicate an interesting relationship
- In the case of bivariate regression (one independent variable), R^2 is the same as $r \times r$ (squared correlation coefficient).

Regression in Stata:

. reg income hours

Source	SS	df	MS	Number of o	bs =	737
				F(1, 735)	=	104.91
Model	86809818.5	1	86809818.5	Prob > F	=	0.0000
Residual	608164307	735	827434.432	R-squared	=	0.1249
				Adj R-squar	ed =	0.1237
Total	694974126	736	944258.323	Root MSE	=	909.63
	' 					
income	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
hours	28.27485	2.760468			5551	33.69419
_cons	742.3841	97.00251	7.65	0.000 551	.949	932.8191

4:

Predicted regression line

Hypothesis testing

- · Linear regression is asking whether Y is "affected by" X
- The interpretation of the b estimate is the effect of a 1-unit change in X on the predicted \hat{Y}
- If X has no effect, the true value of b is zero
- Can we reject the null hypothesis that b = 0?
 - · Does the CI around b include zero?
 - Is the absolute value of b/SE greater than the critical value of t?

Example

- In the previous example, b=39.34, with an SE of 1.05
 - Confidence interval: $b \pm SE \times 1.96$: 37.28011 to 41.40393 <- excludes zero
 - t-stat: $\frac{b}{SF} = 37.4 >> 1.96$
- Conclusion: null hypothesis of no effect extremely unlikely to be true
- More formally: the pattern in this sample very unlikely to be observed if no effect in population

The key numbers to read

. reg ofimn ojbhrs

Source	SS	df	MS	Number of obs	=	7,945
				F(1, 7943)	=	1398.95
Model	1.7000e+09	1	1.7000e+09	Prob > F	=	0.0000
Residual	9.6522e+09	7,943	1215179.2	R-squared	=	0.1497
				- Adj R-squared	=	0.1496
Total	1.1352e+10	7,944	1429021.17	Root MSE	=	1102.4
ofimn	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
ojbhrs	39.34202	1.051854	37.40	0.000 37.280	11	41.40393
_cons	434.7389	36.8029	11.81	0.000 362.59	55	506.8822

Practice apps

- Equation of a line: http://teaching.sociology.ul.ie:3838/apps/abx
- Reading regression output: http://teaching.sociology.ul.ie:3838/bivar

Session 1: Correlation and bivariate regression

Multiple Regression

Multiple explanatory variables

- Regression analysis can be extended to the case where there is more than one explanatory variable – multiple regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, while taking account of the other variables

Example

- Example: income may be affected by gender, and also by work time:
 competing explanations one or the other, or both could have effects
- · We can fit bivariate regressions:

$$Income = a + b \times Worktime$$

or

$$Income = a + b \times Female$$

We can also fit a single multiple regression

$$Income = a + b \times Worktime + c \times Female$$

Dichotomous variables

- We deal with gender in a special way: this is a binary or dichotomous variable
 has two values
- We turn it into a yes/no or 0/1 variable e.g., female or not
- If we put this in as an explanatory variable a *one unit change in the* explanatory variable is the difference between being male and female
- Thus the c coefficient we get in the Income = a + b × Worktime + c × Female regression is the net change in predicted domestic work time for females, once you take account of paid work time.
- The *b* coefficient is then the net effect of a unit change in paid work time, once you take gender into account.

Sex and income: independent samples t-test

. ttest income, by(sex)

Two-sample t test with equal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
male female	346 391	1991.997	55.94547 40.95243	1040.646	1881.959 1313.598	2102.034 1474.628
Combined	737	1674.802	35.79412	971.7296	1604.531	1745.073
diff		597.8836	68.29865		463.7999	731.9673

Sex only predicting income

. reg income i.sex

Source	SS	df	MS	Number of o	bs =	737
				F(1, 735)	=	76.63
Model	65617342.3	1	65617342.3	Prob > F	=	0.0000
Residual	629356784	735	856267.733	R-squared	=	0.0944
				- Adj R-squar	ed =	0.0932
Total	694974126	736	944258.323	Root MSE	=	925.35
income	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
sex						
female	-597.8836	68.29865	-8.75	0.000 -731.	9673	-463.7999
_cons	1991.997	49.74698	40.04	0.000 1894	.333	2089.66

Sex and job hours predicting income

. reg income hours i.sex

Source	SS	df	MS	Numb	er of ob	s =	737
				F(2,	734)	=	70.91
Model	112534221	2	56267110.4	Prob	> F	=	0.0000
Residual	582439905	734	793514.857	R-sq	uared	=	0.1619
				Adj	R-square	d =	0.1596
Total	694974126	736	944258.323	Root	MSE	=	890.79
income	Coefficient	Std. err.	t	P> t	Γ95%	conf.	interval]
hours	22.29842	2.899927	7.69	0.000	16.60	528	27.99156
110415	22120012	2.00002.		0.000	10100	020	21100100
sex							
female	-401.5815	70.53076	-5.69	0.000	-540.0	475	-263.1154
_cons	1152.519	119.2162	9.67	0.000	918.4	/35	1386.564

Sex and hours

