## UL Summer School: Regression session 1

Brendan Halpin, Sociology

2023 Summer School

## Outline

Session 1: Correlation and bivariate regression
sociology

# Session 1: Correlation and bivariate regression 

Outline

## Outline

- How to summarise association between pairs of interval/ratio variables
- Linear (straight line) association
- Correlation summarises the strength and direction of the relationship
- Bivariate regression treats one variable as a response, one as a predictor
- Estimates the "effect" of the predictor on the response
- Bivariate regression generalises easily to multiple predictors, "multiple regression"


# Session 1: Correlation and bivariate regression 

Correlation

## Correlation

- We can visualise relationships between interval/ratio variables with scatterplots
- Correlation \& regression seek to model the relationship as a straight line
- with greater and lesser success


## Scatterplots




## sociology

## Summarising association simply

- We can see a lot of detail in a scatterplot, but sometimes we can summarise it in simple ways
- For instance the two variables may have a positive association: when one is high the other tends to be high, and vice versa
- Or a negative association: when one is high the other tends to be low


## Correlation coefficient

- How well a straight line summarises the relationship
- Positive or negative
- Zero implies no relationship
- See http://teaching.sociology.ul.ie:3838/so5041/corr
- And http://teaching.sociology.ul.ie:3838/apps/corrspread
- Skip


## Strong positive

Figure 3: Fictional data displaying a strong positive linear relationship.


## Strong negative

Figure 4: Fictional data displaying a strong negative linear relationship.


## Weak negative

Figure 5: Fictional data displaying a weak negative linear relationship.

Correlation


## No relationship

Figure 6: Fictional data displaying absence of a relationship.


## Practice app

- View scatterplot, guess correlation
http://teaching.sociology.ul.ie:3838/apps/corrgame


## Calculating the correlation coefficient

- Combine $X$ deviations $\left(X_{i}-\bar{X}\right)$ and $Y$ deviations $\left(Y_{i}-\bar{Y}\right)$ - i.e., compares each point with the mean for $X$ and the mean for $Y$
- With positive association, cases below average on X tend to be below average on Y (and above average on X tend to be above average on Y )
- With negative association, cases below average on X tend to be above average on Y and vice versa



## Pearson Product-Moment Correlation Coefficient

- Pearson Product-Moment Correlation Coefficient (r)

$$
\begin{gathered}
r=\frac{S X Y}{\sqrt{S X X . S Y Y}} \\
S X X=\Sigma(X-\bar{X})^{2} \\
S Y Y=\Sigma(Y-\bar{Y})^{2} \\
S X Y=\Sigma(X-\bar{X})(Y-\bar{Y})
\end{gathered}
$$

- Range: $-1 \leq r \leq+1$
- $r$ is a symmetric measure: $r_{x y}=r_{y x}$


## Combining deviations

- With positive association below the mean, both $X_{i}-\bar{X}$ and $Y_{i}-\bar{Y}$ are negative, so $S X Y=\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$ is positive
- With negative association, $X_{i}-\bar{X}$ and $Y_{i}-\bar{Y}$ tend to have opposite signs, so SXY is negative
- If no association, $S X Y$ is approximately zero
- Scaling by $\frac{1}{\sqrt{\text { SXX.SYY }}}$ makes its range $-1 \leq r \leq+1$


## Robust to transformations

- Changing the scale of one variable (additively or multiplicatively) doesn't change the results
- $\operatorname{Corr}(\mathrm{x}, \mathrm{y})=\operatorname{Corr}(\mathrm{x}+\mathrm{c}, \mathrm{y})$
- $\operatorname{Corr}(\mathrm{x}, \mathrm{y})=\operatorname{Corr}(\mathrm{x} \times \mathrm{c}, \mathrm{y})$
- => "Scale invariant": the correlation between ice-cream sales and temperature doesn't change if you switch between ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$
- If $y=a+b \times x$ :
- $r_{x y}=r_{y x}=1$
- $r_{z x}=r_{z y}$
- Suits interval and ratio variables


## Pitfalls

- Correlation is not causality (association is not proof of a causal relationship)
- Absence of correlation does not mean absence of relationship: non-linear relationships may exist


## Non-linear!

A strong non-linear relationship and a near-zero correlation.


## Correlations on data: School Leaver's Earnings

- corr grsearn netearn (obs=756)

|  | grsearn | netearn |
| :--- | :--- | :--- |
| grsearn | 1.0000 |  |
| netearn | 0.9650 | 1.0000 |

Gross and net earnings


## Correlations on data: BHPS

| . corr of imn oage |  |  |
| :--- | :--- | ---: |
| (obs=7,934) | ofimn | oage |
|  |    <br> ofimn   <br> oage 1.0000  <br>  0.2228 1.0000 |  |



## Strong and weak

- There is a strong simple mechanism linking gross and net earnings, leading to a very high correlation of 0.965
- The relationship between age and income is much more complex, but is still real: thus a much lower correlation of 0.223


## Hypothesis testing

- Null hypothesis: no association, correlation $=0$
- Test statistic: $\frac{r}{S E}$, normally distributed (SE not in output)
- P-value: Chance of getting a correlation this far from zero if null is true

| . pwcorr ofimn oage, sig |  |  |
| :---: | :---: | :---: |
| ofimn | 1.0000 |  |
| ofimn | oage |  |
|  |   <br>  0.2228 <br> 0.0000 1.0000 |  |

## Estimating correlations in Stata

- pwcorr ofimn ojbhgs ojbhrs, sig

|  | ofimn | ojbhgs | ojbhrs |
| :---: | :---: | :---: | :---: |
| ofimn | 1.0000 |  |  |
| ojbhgs | 0.4851 1.0000  <br>  0.0000  <br> ojbhrs 0.4245 0.2489 <br>  0.0000 0.0000 |  |  |

## Viewing the same correlations



## Practice apps summary

- http://teaching.sociology.ul.ie:3838/so5041/corr
- http://teaching.sociology.ul.ie:3838/apps/corrspread
- http://teaching.sociology.ul.ie:3838/apps/corrgame


# Session 1: Correlation and bivariate regression 

Bivariate regression

## Correlation is limited

- Correlation summarises straight-line association between two interval/ratio variables
- Single statistic, from -1 (perfect negative) through 0 (no association) to 1 (perfect positive)
- How well a scatter is described by a line
- Regression analysis goes one further: find the line


## Bivariate regression: relating 2 (or more) interval/ratio variables

- Identifying the line that best summarises the scatterplot
- Directional: One "response" variable (Y), one (or more) "predictors" (X)
- Predictive: Given the relationship between $X$ and $Y$, knowing $X$ helps us predict $Y$ better
- Reading: Agresti, Statistics for the Social Sciences, Ch 9 or any intro text


## Bivariate vs multiple regression

- Bivariate regression: one $X$ variable predicting one $Y$
- Multiple regression: multiple $X$ variables predicting one $Y$
- Estimate "net" effect of each X variables, "controlling for" the others
- Very powerful general model, generalises easily from bivariate regression


## Some geometry: equation of a line

$$
Y=a+b X
$$



## Applet

http://teaching.sociology.ul.ie:3838/apps/abx/

## What's the "best" line?

- 'Best' is defined as minimising the squared deviations between the observed data-points and the fitted line, hence often called 'least-squares' regression
- Deviations are the vertical distance between the line and the observed data points.
- Very similar logic to the mean (minimise variance).


## A simple example: scatterplot



## Regression in Stata

- reg $\mathrm{y} x$

| Source | SS | df | MS | Number of obs | = | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F(1, 18) | = | 17.51 |
| Model | . 820567701 | 1 | . 820567701 | Prob > F | = | 0.0006 |
| Residual | . 843474028 | 18 | . 046859668 | R -squared | = | 0.4931 |
|  |  |  |  | Adj R-squared | = | 0.4650 |
| Total | 1.66404173 | 19 | . 087581144 | Root MSE | = | . 21647 |


| y | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| x | .2574678 | .0615269 | 4.18 | 0.001 | .1282045 | .3867311 |
| _cons | .7363586 | .0998061 | 7.38 | 0.000 | .5266737 | .9460435 |

## sociology

## Regression equation

$$
\hat{Y}=0.7364+X \times 0.2575
$$

- To draw the line by hand, calculate two predicted values for Y at opposite sides of the graph
- e.g., for $X=0, Y=a=0.7364$
- for $X=3, Y=a+3^{*} b=0.7364+3^{*} 0.2575=1.509$
- Join them with a ruler!


## The line



## Predicted values

- The line gives a predicted value of $Y$ for each value of $X$ :

$$
\begin{gathered}
\hat{Y}=a+b X \\
Y=\hat{Y}+e \\
Y=a+b X+e
\end{gathered}
$$

$e$ is the 'residual' or deviation.

- That is, knowing $X$ we "predict" or guess $Y$ as $a+b X$


## Deviations from the line

Regression line with deviations


## Regression equation

- Regression equation: the estimate of $Y$, called $\hat{Y}$, depends on $X$ :

$$
\hat{Y}=a+b X
$$

- The regression slope $b$ depends on $S X Y$ and $S X X$, the intercept $a$ is calculated from $b$ and the mean values of $Y$ and $X$ :

$$
\begin{gathered}
b=\frac{S X Y}{S X X} \\
a=\bar{Y}-b \bar{X} \\
S X X=\sum\left(X_{i}-\bar{X}\right)^{2} \\
S X Y=\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
\end{gathered}
$$

## Pitfalls

- Spurious relationships will fit just as well as real ones (e.g., if A affects B and $A$ affects $C, B$ and $C$ will seem to be related and a regression line might fit well)
- Predicting outside the range of the data: the relationship we see only holds for the data we use, and it may well not hold for higher (or lower) values of $X$ and Y
- Like correlation, non-linear relationships may be missed


## Predicting outside the range of the data: income and age for $<\mathbf{3 0}$ years



## Predicting outside the range of the data: full age range



## Income and age: true relationship is non-linear



## Fit: How well the straight line captures the relationship

- How well does it "fit"? We use $R^{2}$ to tell:
- ranges from 0: no relationship at all
- to 1: perfect relationship, all $Y$ s are exactly equal to $a+b X$
- values from 0.7 up indicate quite a good relationship
- smaller values may indicate an interesting relationship
- In the case of bivariate regression (one independent variable), $R^{2}$ is the same as $r \times r$ (squared correlation coefficient).


## Regression in Stata:

. reg income hours


## sociology

## Predicted regression line



## Hypothesis testing

- Linear regression is asking whether Y is "affected by" X
- The interpretation of the $b$ estimate is the effect of $a 1$-unit change in $X$ on the predicted $\hat{Y}$
- If $X$ has no effect, the true value of $b$ is zero
- Can we reject the null hypothesis that $\mathrm{b}=0$ ?
- Does the Cl around b include zero?
- Is the absolute value of $b /$ SE greater than the critical value of $t$ ?


## Example

- In the previous example, $b=39.34$, with an SE of 1.05
- Confidence interval: $b \pm S E \times 1.96$ : 37.28011 to 41.40393 <- excludes zero
- t-stat: $\frac{b}{S E}=37.4 \gg 1.96$
- Conclusion: null hypothesis of no effect extremely unlikely to be true
- More formally: the pattern in this sample very unlikely to be observed if no effect in population


## The key numbers to read

. reg ofimn ojbhrs


## sociology

## Practice apps

- Equation of a line: http://teaching.sociology.ul.ie:3838/apps/abx
- Reading regression output: http://teaching.sociology.ul.ie:3838/bivar


# Session 1: Correlation and bivariate regression 

Multiple Regression

## Multiple explanatory variables

- Regression analysis can be extended to the case where there is more than one explanatory variable - multiple regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, while taking account of the other variables


## Example

- Example: income may be affected by gender, and also by work time: competing explanations - one or the other, or both could have effects
- We can fit bivariate regressions:

$$
\text { Income }=a+b \times \text { Worktime }
$$

or

$$
\text { Income }=a+b \times \text { Female }
$$

- We can also fit a single multiple regression

$$
\text { Income }=a+b \times \text { Worktime }+c \times \text { Female }
$$

## Dichotomous variables

- We deal with gender in a special way: this is a binary or dichotomous variable - has two values
- We turn it into a yes/no or 0/1 variable - e.g., female or not
- If we put this in as an explanatory variable a one unit change in the explanatory variable is the difference between being male and female
- Thus the $c$ coefficient we get in the Income $=a+b \times$ Worktime $+c \times$ Female regression is the net change in predicted domestic work time for females, once you take account of paid work time.
- The $b$ coefficient is then the net effect of a unit change in paid work time, once you take gender into account.


## Sex and income: independent samples t-test

. ttest income, by (sex)
Two-sample t test with equal variances

| Group | Obs | Mean | Std. err. | Std. dev. | [95\% con | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| male | 346 | 1991.997 | 55.94547 | 1040.646 | 1881.959 | 2102.034 |
| female | 391 | 1394.113 | 40.95243 | 809.7818 | 1313.598 | 1474.628 |
| Combined | 737 | 1674.802 | 35.79412 | 971.7296 | 1604.531 | 1745.073 |
| diff |  | 597.8836 | 68.29865 |  | 463.7999 | 731.9673 |
| diff = mean(male) - mean(female) |  |  |  |  | $\mathrm{t}=$ | 8.7540 |
| HO: diff $=0$ |  |  |  | Degrees of freedom $=$ |  | 735 |

```
    Ha: diff < O
```

$\operatorname{Pr}(T<t)=1.0000$
Ha: diff != 0
$\operatorname{Pr}(|T|>|t|)=0.0000$
Ha: diff > 0
$\operatorname{Pr}(T>t)=0.0000$

## Sex only predicting income



## sociology

## Sex and job hours predicting income



## sociology

## Sex and hours



## sociology

