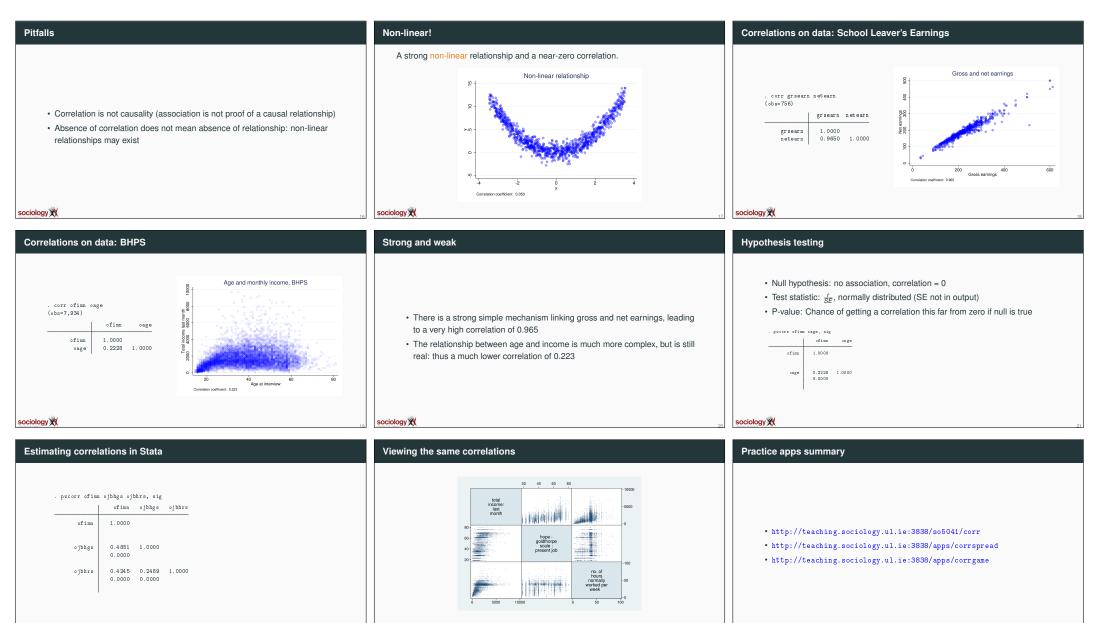

Sociology XXX UNIVERSITY OF LIMERICK UL Summer School: Regression session 1 Brendan Halpin, Sociology 2023 Summer School	Outline Session 1: Correlation and bivariate regression	Session 1: Correlation and bivariate regression Outline
	sociology 🕅	
 Outline How to summarise association between pairs of interval/ratio variables Linear (straight line) association Correlation summarises the strength and direction of the relationship Bivariate regression treats one variable as a response, one as a predictor Estimates the "effect" of the predictor on the response Bivariate regression generalises easily to multiple predictors, "multiple regression" 	Session 1: Correlation and bivariate regression Correlation	 Correlation We can visualise relationships between interval/ratio variables with scatterplots Correlation & regression seek to model the relationship as a straight line with greater and lesser success
sociology 🕅		sociology 🕅
Scatterplots	Summarising association simply	Correlation coefficient
Gross and net earnings Gross	 We can see a lot of detail in a scatterplot, but sometimes we can summarise it in simple ways For instance the two variables may have a positive association: when one is high the other tends to be high, and vice versa Or a negative association: when one is high the other tends to be low 	 How well a straight line summarises the relationship Positive or negative Zero implies no relationship See http://teaching.sociology.ul.ie:3838/so5041/corr And http://teaching.sociology.ul.ie:3838/apps/corrspread Skip
sociology 🕱	sociology 🗙	sociology 🗙



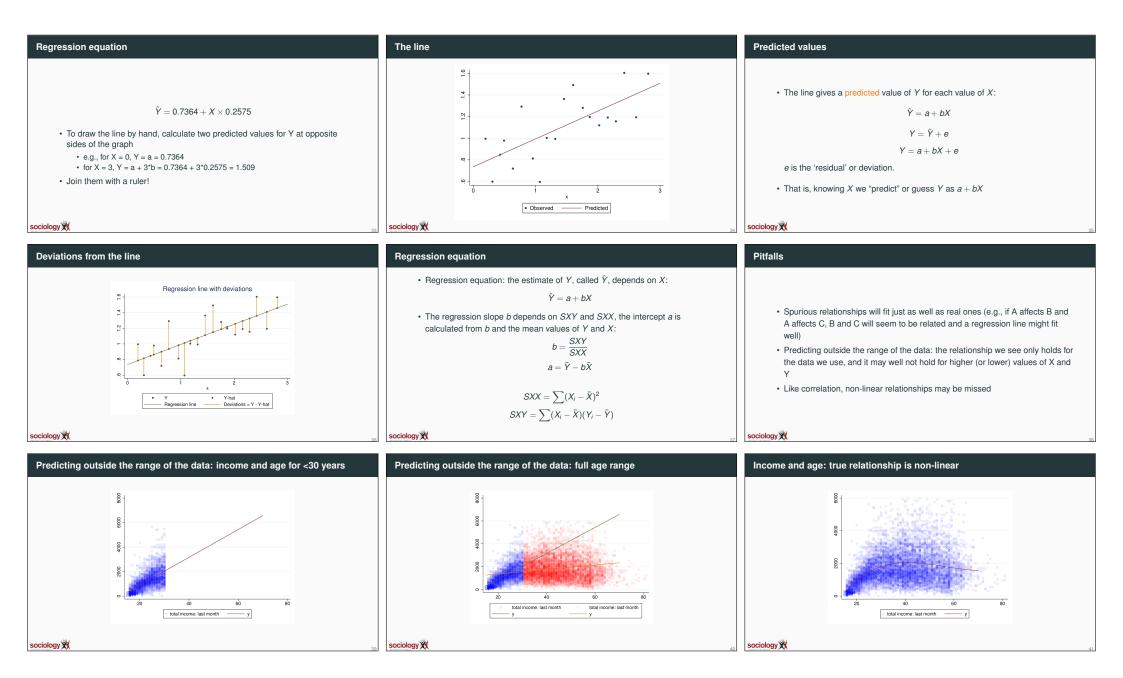
sociology 💥

• *r* is a symmetric measure: $r_{xy} = r_{yx}$

sociology 💥

sociology X

sociology 💥


sociology 💥

sociology 💥

	Correlation is limited	Bivariate regression: relating 2 (or more) interval/ratio variables
Session 1: Correlation and bivariate regression Bivariate regression	 Correlation summarises straight-line association between two interval/ratio variables Single statistic, from -1 (perfect negative) through 0 (no association) to 1 (perfect positive) How well a scatter is described by a line Regression analysis goes one further: find the line 	 Identifying the line that best summarises the scatterplot Directional: One "response" variable (Y), one (or more) "predictors" (X) Predictive: Given the relationship between X and Y, knowing X helps us predict Y better Reading: Agresti, <i>Statistics for the Social Sciences</i>, Ch 9 or any intro text
	sociology 🕅	sociology 🗙

Bivariate vs multiple regression	Some geometry: equation of a line	Applet
 Bivariate regression: one X variable predicting one Y Multiple regression: multiple X variables predicting one Y Estimate "net" effect of each X variables, "controlling for" the others Very powerful general model, generalises easily from bivariate regression 	Y = a + bX	http://teaching.sociology.ul.ie:3838/apps/abx/
sociology 🗙	sociology	sociology

What's the "best" line? Regression in Stata A simple example: scatterplot 1.6 . reg y x 4 Source SS df MS Number of obs = 20 $\begin{array}{rcl} F(1, 18) &=& 17.51 \\ Prob > F &=& 0.0006 \end{array}$. Model .820567701 1 .820567701 Prob > F • 'Best' is defined as minimising the squared deviations between the observed ₽. Residual . 84 34 74 02 8 18 .046859668 R-squared = 0.4931 data-points and the fitted line, hence often called 'least-squares' regression AdjR-squared = 0.4650 19 .087581144 Root MSE = .21647 ≻ Total 1.66404173 Deviations are the vertical distance between the line and the observed data points. Coef. Std. Err. t P>|t| [95% Conf. Interval] у · Very similar logic to the mean (minimise variance). .2574678 .0615269 4.18 0.001 .1282045 .3867311 x .7363586 .0998061 7.38 0.000 .5266737 .9460435 _ cons 2 3 sociology 💥 sociology 💥 sociology 💥

Fit: How well the straight line captures the relationship	Regression in Stata:	Predicted regression line
 How well does it "fit"? We use R² to tell: ranges from 0: no relationship at all to 1: perfect relationship, all Ys are exactly equal to a + bX values from 0.7 up indicate quite a good relationship smaller values may indicate an interesting relationship In the case of bivariate regression (one independent variable), R² is the same as r × r (squared correlation coefficient). 	. reg income hours Source SS df MS Number of obs = 737 F(1, 735) = 104,91 Model 86809818.5 1 86809818.5 Frob > F = 0.0000 Residual 608164307 735 827434.42 R =quared = 0.1249 Adj R=quared = 0.1237 Total 694974126 736 944258.323 Root MSE = 909.63 income Coefficient Std.err. t P> t [95% conf.interval] hours 28.27485 2.760468 10.24 0.000 22.8551 33.69419 _cons 742.3841 97.00251 7.65 0.000 551.949 932.8191	sociology
Hypothesis testing	Example	The key numbers to read
 Linear regression is asking whether Y is "affected by" X The interpretation of the b estimate is the effect of a 1-unit change in X on the predicted Ŷ If X has no effect, the true value of b is zero Can we reject the null hypothesis that b = 0? Does the Cl around b include zero? Is the absolute value of b/SE greater than the critical value of t? 	 In the previous example, b=39.34, with an SE of 1.05 Confidence interval: b ± SE × 1.96: 37.28011 to 41.40393 <- excludes zero t-stat: ^B/_{SE} = 37.4 >> 1.96 Conclusion: null hypothesis of no effect extremely unlikely to be true More formally: the pattern in this sample very unlikely to be observed if no effect in population 	. reg of inn ojbhrs Source SS df MS Number of obs = 7,945 F(1, 7943) = 1398.95 Model 1.7000e+09 1 1.7000e+09 Prob > F = 0.0000 Residual 9.6522e+09 7,943 1215179.2 R-squared = 0.1497 Adj R-squared = 0.1497 dj R-squared = 0.1496 Total 1.1352e+10 7,944 1429021.17 Root MSE = 1102.4 of inn Coef. Std. Err. t P> t [95% Conf. Interval] ojbhrs 39.34202 1.051854 37.40 0.000 37.28011 41.40393 _cons 434.7389 36.8029 11.81 0.000 362.5955 506.8822 Sociology
Practice apps		Multiple explanatory variables
 Equation of a line: http://teaching.sociology.ul.ie:3838/apps/abx Reading regression output: http://teaching.sociology.ul.ie:3838/bivar 	Session 1: Correlation and bivariate regression Multiple Regression	 Regression analysis can be extended to the case where there is more than one explanatory variable – multiple regression This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, <i>while taking account of the other variables</i>
sociology 🕅		sociology 💥

Example

- Example: income may be affected by gender, and also by work time: competing explanations - one or the other, or both could have effects
- We can fit bivariate regressions:

 $Income = a + b \times Worktime$

or

- $Income = a + b \times Female$
- We can also fit a single multiple regression

 $Income = a + b \times Worktime + c \times Female$

sociology 💥

					.sex	. reg income :
737		Number of obs	MS	df	SS	Source
76.63	-	F(1, 735)			45 44 70 40 0	
0.0000		Prob > F	65617342.3	1	65617342.3	Model
0.0944	=	R-squared	856267.733	735	629356784	Residual
0.0932 925.35	ed =	Adj R-squared Root MSE	944258.323	736	694974126	Total
interval]	conf.	> t [95% d	t F	Std. err.	Coefficient	income
						s ex
-463.7999	9673	.000 -731.96	-8.75 (68.29865	-597.8836	female
2089.66	. 333	.000 1894.3	40.04 (49.74698	1991.997	_cons

Dichotomous variables

- We deal with gender in a special way: this is a *binary* or *dichotomous* variable - has two values
- We turn it into a yes/no or 0/1 variable e.g., female or not
- If we put this in as an explanatory variable a one unit change in the explanatory variable is the difference between being male and female
- Thus the *c* coefficient we get in the $Income = a + b \times Worktime + c \times Female$ regression is the net change in predicted domestic work time for females, once you take account of paid work time.
- The *b* coefficient is then the net effect of a unit change in paid work time, once you take gender into account.

df MS Number of obs =

2 56267110.4 Prob > F

582439905 734 793514.857 R-squared = 0.1619

694974126 736 944258.323 Root MSE = 890.79

Coefficient Std. err. t P>|t| [95% conf. interval]

22.29842 2.899927 7.69 0.000 16.60528 27.99156

-401.5815 70.53076 -5.69 0.000 -540.0475 -263.1154

1152.519 119.2162 9.67 0.000 918.4735 1386.564

737

F(2, 734) = 70.91 Prob > F = 0.0000

_____ Adj R-squared = 0.1596

sociology 💥

sociology 💥

Sex and job hours predicting income

SS

112534221

. reg income hours i.sex

Source

Model

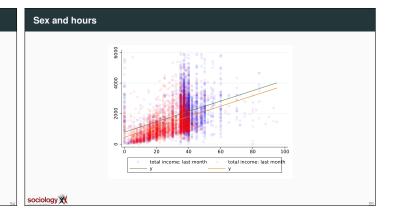
Total income

hours

female

sex

_cons


Residual

Sex and income: independent samples t-test

ttest income, by(sex) Two-sample t test with equal variances Group Obs Mean Std. err. Std. dev. [95% conf. interval]

male	34.6	1991.997	55.94547	1040.646	1881.959	2102.034
female	391	1394.113	40.95243	809.7818	1313.598	1474.628
Comb in ed	737	1674.802	35.79412	971.7296	1604.531	1745.073
diff		597.8836	68.29865		463.7999	731.9673
diff = HO: diff =	= mean(male) = 0	- mean(fem	ale)	Degrees	t of freedom	= 8.7540 = 735
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) =	-		iff > 0) = 0.0000

sociology

