UL Summer School: Regression session 2

Brendan Halpin, Sociology
2023 Summer School

Outline

Session 2

Session 2

Outline

Outline

- Multiple regression: more than 1 explanatory variable
- Estimate net effects of each variable, controlling for the others
- Very important class of statistical model
- Begin by considering 3-way relationships in the abstract
- Then consider the mechanics of multiple regression

Session 2

Multidimensional causality

Multidimensional causality

- Regression analysis never proves causal relationships, but it "thinks" in causal terms
- To use it we need to understand causal relationships: what process generates the data we see, and what can regression tell us about it.
- Start by considering the relationship between variables and patterns of association

3-variable pictures

- Let's consider patterns of causality and association between three variables, X 1 and X 2 , and Y
- If X 1 and X 2 are not correlated with each other, their separate effects on Y more or less just add up

X2

Correlated X variables

- But if X1 and X2 are correlated, things can get funny:

- In particular, if we measure the effect of one X without taking account of the other we will likely over-estimate it

Spurious association

- X1 may have an association with Y, implying a causal relationship
- But if X 2 affects both X 1 and Y the relationship between X 1 and Y may be spurious

Spurious association: Maths and height

- (Artificial) example: students in secondary school are given a standardised maths test
- And their height is measured
- A strong correlation between height (X1) and test score (Y): a causal relationship?

Maths and height: X1 -> Y?

Height predicts Maths?

Maths and height: X1 <-> X2

Age is correlated with Height

Maths and height: X2 -> Y

Maths and height: control for year group

Controlling for year group

Indirect effects

- Where there is a time-order (X1 before X2), we may see direct and indirect effects
- X1 may affect X2, which affects Y , but not affect Y directly
- Thus there is association between X 1 and Y without a direct causal effect

$$
X 1 \longrightarrow X 2 \longrightarrow Y
$$

Direct and indirect effects

- However, it is possible for both direct and indirect effects to be present at the same time

Suppression

- Where X1 and X2 have positive effects on Y, but a negative correlation, or different effects on Y with a positive correlation, the association between X 1 and Y may be supressed
- That is, it may be invisible if we don't take account of X 2

Interactions

- An interaction effect is where the effect of one variable on Y changes depending on the value of another

Session 2

Multiple regression

Multiple explanatory variables

- Regression analysis can be extended to the case where there is more than one explanatory variable - multiple regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, while taking account of the other variables

Unpicking multiple effects

- We will see how regression can be used to throw light on the 3-variable problems we have described above
- Over-estimation of X1's effect
- Spurious X1
- X1 with an indirect (mediated) effect
- Under-estimation of X1's effect (suppression)
- X1's effect differing according to the values of X2 (interaction)

Example: Over-estimation

- Example: income may be affected by gender, and also by work hours: competing explanations - one or the other, or both could have effects
- We can fit bivariate regressions:

$$
\text { Income }=a+b \times \text { WorkTime }
$$

or

$$
\text { Income }=a+b \times \text { Female }
$$

- We can also fit a single multivariate regression

$$
\text { Income }=a+b \times \text { WorkTime }+c \times \text { Female }
$$

Aside: Dichotomous variables

- We deal with gender in a special way: this is a binary or dichotomous variable - has two values
- We turn it into a yes/no or 0/1 variable - e.g., female or not
- If we put this in as an explanatory variable a one-unit change in the explanatory variable is the difference between being male and female
- Thus the c coefficient we get in the Income $=a+b \times$ WorkTime $+c \times$ Female regression is the net change in predicted income of females, once you take account of work hours.
- The b coefficient is then the net effect of a unit change in work hours, once you take gender into account.

3-variable Logic

- X1 (hours) is correlated with income (higher H , higher I)
- X2 (gender) affects income (females lower)
- Hours and gender are strongly associated (females lower)

Income, hours and gender

. corr Income Gender Hours ($\mathrm{obs}=506$)

	Income	Gender	Hours
Income	1.0000		
Gender	-0.3280	1.0000	
Hours	0.3638	-0.4360	1.0000

Income, hours and gender

T-test: Income by gender

. ttest Income, by (Gender)
Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Con	Interval]
male	437	1618.348	59.11677	1235.809	1502.159	1734.537
female	531	992.1805	40.82127	940.6625	911.9892	1072.372
combined	968	1274.861	36.23219	1127.281	1203.759	1345.964
diff		626.1674	70.00484		488.7883	763.5465
diff = mean(male) - mean (female)				degrees of freedom		
Ho: diff $=0$						966
Ha: d		Ha: diff != 0			Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t}$. 0000	$\operatorname{Pr}(\|T\|>\|t\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$	

sociology

Regression: Just hours

sociology

Regression: Hours and binary gender

sociology

3-var logic

- The gender gap reduces (but not to zero) if you control for hours
- The effect of hours controlling for gender falls

Spurious relationship

- Sometimes controlling for X2 makes the effect of X1 entirely disappear
- X 1 -> Y is a "spurious" relationship

Maths and height by regression

Source	SS	df	MS	Number of obs F(1, 998)		=	1,000
							1706.40
Model	235991.871	1	235991.871		Prob >F		0.0000
Residual	138021.727	998	138.298324		R -squared		0.6310
					Adj R-squared		0.6306
Total	374013.599	999	374.387987		Root MSE	=	11.76
maths	Coefficient	Std. err.	t	$P>\|t\|$	tl [95\% con		interval]
height	1.058213	. 0256173	41.31	0.000	0001.007943		1.108483
_cons	-89.11602	4.200327	-21.22	0.000	-97.3585		-80.87353

sociology

Spurious relationship: controlled for

Source	SS	df	MS	Number of obs $F(2,997)$ Prob > F R -squared Adj R-squared Root MSE			1,000
Model	268802.74	2	134401.37				0.0000
Residual	105210.858	997	105.527441				0.7187
							0.7181
Total	374013.599	999	374.387987			=	10.273
maths	Coefficient	Std. err.	t	$P>\|t\|$	[95\% conf. interval]		
height	-. 0067167	. 0644065	-0.10	0.917	-. 1331045		. 1196711
age	9.579467	. 5432693	17.63	0.000	8.513385		10.64555
_cons	-57.88381	4.074241	-14.21	0.000	-65.87888		-49.88874

sociology

Regression controls for linear effects

- We have seen this spurious relationship debunked visually
- by separating into 6 year groups (subsetting the sample)
- Regression does it by attributing an effect to age
- Accounting for age strips the effect of height
- Regression can be more efficient than subsetting the sample
- if the effect is linear, additive.

Regression: Direct and indirect 1

Source	SS	df	MS	Number of obs$F(1,998)$		=	$\begin{aligned} & 1,000 \\ & 53.50 \end{aligned}$
Model	13269.3853	1	13269.3853				0.0000
Residual	247525.861	998	248.021905	R-squared Adj R-squared			0.0509
							0.0499
Total	260795.247	999	261.056303	Root MSE		=	15.749
ownscore	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con		Interval]
fatherscore	. 2370829	. 032413	7.31	0.000	. 1734773		. 3006884
_cons	37.90861	1.672157	22.67	0.000	34.62726		41.18996

sociology

Regression: Direct and indirect 2

sociology

Regression: Direct and indirect 3

Source	SS	df	MS	Number of obs F(1, 998)		$=$	1,000
							447.54
Model	80742.8091	1	80742.8091		Prob > F		0.0000
Residual	180052.437	998	180.413264		R -squared		0.3096
					Adj R-squared		0.3089
Total	260795.247	999	261.056303		Root MSE	=	13.432
ownscore	Coef.	Std. Err.	t	$p>\|t\|$	tl [95\% Con		Interval]
education	5.096871	. 2409273	21.16	0.000	0004.624089		5.569653
_cons	33.87079	. 8556481	39.58	0.000	O 32.19171		35.54986

sociology

Regression: Direct and indirect 4

sociology

Interaction

- Where the effect of X1 changes across values of X2, we have "interaction"

Regression: for men only

sociology

Regression: for women only

sociology

Regression: interaction

sociology

