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• Multiple regression: more than 1 explanatory variable

• Estimate net effects of each variable, controlling for the others

• Very important class of statistical model

• Begin by considering 3-way relationships in the abstract

• Then consider the mechanics of multiple regression
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Multidimensional causality

• Regression analysis never proves causal relationships, but it "thinks" in causal
terms

• To use it we need to understand causal relationships: what process generates
the data we see, and what can regression tell us about it.

• Start by considering the relationship between variables and patterns of
association
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3-variable pictures

• Let’s consider patterns of causality and association between three variables,
X1 and X2, and Y

• If X1 and X2 are not correlated with each other, their separate effects on Y
more or less just add up

X1

X2

Y

4



Correlated X variables

• But if X1 and X2 are correlated, things can get funny:

X1

X2

Y

• In particular, if we measure the effect of one X without taking account of the
other we will likely over-estimate it
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Spurious association

• X1 may have an association with Y, implying a causal relationship

• But if X2 affects both X1 and Y the relationship between X1 and Y may be
spurious

X1

X2

Y
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Spurious association: Maths and height

• (Artificial) example: students in secondary school are given a standardised
maths test

• And their height is measured

• A strong correlation between height (X1) and test score (Y): a causal
relationship?

7



Maths and height: X1 -> Y?
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Maths and height: X1 <-> X2
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Maths and height: X2 -> Y
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Maths and height: control for year group
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Indirect effects

• Where there is a time-order (X1 before X2), we may see direct and indirect
effects

• X1 may affect X2, which affects Y, but not affect Y directly

• Thus there is association between X1 and Y without a direct causal effect

X1 X2 Y
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Direct and indirect effects

• However, it is possible for both direct and indirect effects to be present at the
same time

X1 X2 Y
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Suppression

• Where X1 and X2 have positive effects on Y, but a negative correlation, or
different effects on Y with a positive correlation, the association between X1
and Y may be supressed

• That is, it may be invisible if we don’t take account of X2

X1

X2

Y
+

+-
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Interactions

• An interaction effect is where the effect of one variable on Y changes
depending on the value of another

X1

X2

Y
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Multiple explanatory variables

• Regression analysis can be extended to the case where there is more than
one explanatory variable – multiple regression

• This allows us to estimate the net simultaneous effect of many variables, and
thus to begin to disentangle more complex relationships

• Interpretation is relatively easy: each variable gets its own slope coefficient,
standard error and significance

• The slope coefficient is the effect on the dependent variable of a 1 unit
change in the explanatory variable, while taking account of the other variables
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Unpicking multiple effects

• We will see how regression can be used to throw light on the 3-variable
problems we have described above

• Over-estimation of X1’s effect
• Spurious X1
• X1 with an indirect (mediated) effect
• Under-estimation of X1’s effect (suppression)
• X1’s effect differing according to the values of X2 (interaction)
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Example: Over-estimation

• Example: income may be affected by gender, and also by work hours:
competing explanations – one or the other, or both could have effects

• We can fit bivariate regressions:

Income = a + b × WorkTime

or
Income = a + b × Female

• We can also fit a single multivariate regression

Income = a + b × WorkTime + c × Female
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Aside: Dichotomous variables

• We deal with gender in a special way: this is a binary or dichotomous variable
– has two values

• We turn it into a yes/no or 0/1 variable – e.g., female or not

• If we put this in as an explanatory variable a one-unit change in the
explanatory variable is the difference between being male and female

• Thus the c coefficient we get in the
Income = a + b × WorkTime + c × Female regression is the net change in
predicted income of females, once you take account of work hours.

• The b coefficient is then the net effect of a unit change in work hours, once
you take gender into account.
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3-variable Logic

• X1 (hours) is correlated with income (higher H, higher I)

• X2 (gender) affects income (females lower)

• Hours and gender are strongly associated (females lower)
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Income, hours and gender

. corr Income Gender Hours

(obs=506)

Income Gender Hours

Income 1.0000

Gender -0.3280 1.0000

Hours 0.3638 -0.4360 1.0000
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Income, hours and gender
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T-test: Income by gender

. ttest Income, by(Gender)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

male 437 1618.348 59.11677 1235.809 1502.159 1734.537

female 531 992.1805 40.82127 940.6625 911.9892 1072.372

combined 968 1274.861 36.23219 1127.281 1203.759 1345.964

diff 626.1674 70.00484 488.7883 763.5465

diff = mean(male) - mean(female) t = 8.9446

Ho: diff = 0 degrees of freedom = 966

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000
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Regression: Just hours

. reg Income Hours

Source SS df MS Number of obs = 506

F(1, 504) = 76.86

Model 86947928.8 1 86947928.8 Prob > F = 0.0000

Residual 570128215 504 1131206.78 R-squared = 0.1323

Adj R-squared = 0.1306

Total 657076144 505 1301140.88 Root MSE = 1063.6

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 37.82204 4.314061 8.77 0.000 29.34628 46.2978

_cons 449.7435 150.1722 2.99 0.003 154.703 744.7841

24



Regression: Hours and binary gender

. reg Income Hours i.Gender

Source SS df MS Number of obs = 506

F(2, 503) = 50.70

Model 110236231 2 55118115.6 Prob > F = 0.0000

Residual 546839912 503 1087156.88 R-squared = 0.1678

Adj R-squared = 0.1645

Total 657076144 505 1301140.88 Root MSE = 1042.7

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 28.33857 4.699451 6.03 0.000 19.1056 37.57155

Gender

female -478.4214 103.3684 -4.63 0.000 -681.5084 -275.3344

_cons 1022.139 192.2717 5.32 0.000 644.3844 1399.893
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3-var logic

• The gender gap reduces (but not to zero) if you control for hours

• The effect of hours controlling for gender falls
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Spurious relationship

• Sometimes controlling for X2 makes the effect of X1 entirely disappear

• X1 -> Y is a "spurious" relationship
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Maths and height by regression

. reg maths height

Source SS df MS Number of obs = 1,000

F(1, 998) = 1706.40

Model 235991.871 1 235991.871 Prob > F = 0.0000

Residual 138021.727 998 138.298324 R-squared = 0.6310

Adj R-squared = 0.6306

Total 374013.599 999 374.387987 Root MSE = 11.76

maths Coefficient Std. err. t P>|t| [95% conf. interval]

height 1.058213 .0256173 41.31 0.000 1.007943 1.108483

_cons -89.11602 4.200327 -21.22 0.000 -97.3585 -80.87353
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Spurious relationship: controlled for

. reg maths height age

Source SS df MS Number of obs = 1,000

F(2, 997) = 1273.62

Model 268802.74 2 134401.37 Prob > F = 0.0000

Residual 105210.858 997 105.527441 R-squared = 0.7187

Adj R-squared = 0.7181

Total 374013.599 999 374.387987 Root MSE = 10.273

maths Coefficient Std. err. t P>|t| [95% conf. interval]

height -.0067167 .0644065 -0.10 0.917 -.1331045 .1196711

age 9.579467 .5432693 17.63 0.000 8.513385 10.64555

_cons -57.88381 4.074241 -14.21 0.000 -65.87888 -49.88874
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Regression controls for linear effects

• We have seen this spurious relationship debunked visually
• by separating into 6 year groups (subsetting the sample)

• Regression does it by attributing an effect to age

• Accounting for age strips the effect of height
• Regression can be more efficient than subsetting the sample

• if the effect is linear, additive.
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Regression: Direct and indirect 1

. reg ownscore fatherscore

Source SS df MS Number of obs = 1,000

F(1, 998) = 53.50

Model 13269.3853 1 13269.3853 Prob > F = 0.0000

Residual 247525.861 998 248.021905 R-squared = 0.0509

Adj R-squared = 0.0499

Total 260795.247 999 261.056303 Root MSE = 15.749

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

fatherscore .2370829 .032413 7.31 0.000 .1734773 .3006884

_cons 37.90861 1.672157 22.67 0.000 34.62726 41.18996
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Regression: Direct and indirect 2

. reg education fatherscore

Source SS df MS Number of obs = 1,000

F(1, 998) = 111.01

Model 311.104929 1 311.104929 Prob > F = 0.0000

Residual 2797.00607 998 2.80261129 R-squared = 0.1001

Adj R-squared = 0.0992

Total 3108.111 999 3.11122222 Root MSE = 1.6741

education Coef. Std. Err. t P>|t| [95% Conf. Interval]

fatherscore .0363018 .0034455 10.54 0.000 .0295405 .0430631

_cons 1.295213 .1777516 7.29 0.000 .9464035 1.644023
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Regression: Direct and indirect 3

. reg ownscore education

Source SS df MS Number of obs = 1,000

F(1, 998) = 447.54

Model 80742.8091 1 80742.8091 Prob > F = 0.0000

Residual 180052.437 998 180.413264 R-squared = 0.3096

Adj R-squared = 0.3089

Total 260795.247 999 261.056303 Root MSE = 13.432

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

education 5.096871 .2409273 21.16 0.000 4.624089 5.569653

_cons 33.87079 .8556481 39.58 0.000 32.19171 35.54986
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Regression: Direct and indirect 4

. reg ownscore education fatherscore

Source SS df MS Number of obs = 1,000

F(2, 997) = 226.41

Model 81453.7212 2 40726.8606 Prob > F = 0.0000

Residual 179341.525 997 179.881169 R-squared = 0.3123

Adj R-squared = 0.3109

Total 260795.247 999 261.056303 Root MSE = 13.412

ownscore Coef. Std. Err. t P>|t| [95% Conf. Interval]

education 4.937369 .2535982 19.47 0.000 4.439722 5.435017

fatherscore .0578475 .0290984 1.99 0.047 .0007463 .1149486

_cons 31.51367 1.461439 21.56 0.000 28.64582 34.38152
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Interaction

• Where the effect of X1 changes across values of X2, we have "interaction"

35



Regression: for men only

. reg Income Hours if Gender==1

Source SS df MS Number of obs = 232

F(1, 230) = 5.36

Model 8009519.02 1 8009519.02 Prob > F = 0.0215

Residual 343845612 230 1494980.92 R-squared = 0.0228

Adj R-squared = 0.0185

Total 351855131 231 1523182.38 Root MSE = 1222.7

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 24.61855 10.63597 2.31 0.022 3.662162 45.57495

_cons 1164.366 414.4901 2.81 0.005 347.6826 1981.049
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Regression: for women only

. reg Income Hours if Gender==2

Source SS df MS Number of obs = 274

F(1, 272) = 42.63

Model 31772944.2 1 31772944.2 Prob > F = 0.0000

Residual 202744304 272 745383.469 R-squared = 0.1355

Adj R-squared = 0.1323

Total 234517248 273 859037.537 Root MSE = 863.36

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 29.70376 4.549594 6.53 0.000 20.74687 38.66065

_cons 504.6153 140.3614 3.60 0.000 228.2824 780.9482
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Regression: interaction

. reg Income c.Hours##i.Gender

Source SS df MS Number of obs = 506

F(3, 502) = 33.82

Model 110486228 3 36828742.8 Prob > F = 0.0000

Residual 546589915 502 1088824.53 R-squared = 0.1681

Adj R-squared = 0.1632

Total 657076144 505 1301140.88 Root MSE = 1043.5

Income Coef. Std. Err. t P>|t| [95% Conf. Interval]

Hours 24.61855 9.076915 2.71 0.007 6.785132 42.45198

Gender

female -659.7502 392.3082 -1.68 0.093 -1430.518 111.0181

Gender#c.Hours

female 5.085207 10.61255 0.48 0.632 -15.76529 25.9357

_cons 1164.366 353.7327 3.29 0.001 469.3865 1859.345
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