

UL Summer School: Regression session 2

Brendan Halpin, Sociology 2023 Summer School

Outline

Session 2

Session 2

Outline

Outline

- Multiple regression: more than 1 explanatory variable
- · Estimate net effects of each variable, controlling for the others
- Very important class of statistical model
- Begin by considering 3-way relationships in the abstract
- Then consider the mechanics of multiple regression

Session 2

Multidimensional causality

Multidimensional causality

- Regression analysis never proves causal relationships, but it "thinks" in causal terms
- To use it we need to understand causal relationships: what process generates the data we see, and what can regression tell us about it.
- Start by considering the relationship between variables and patterns of association

3-variable pictures

- Let's consider patterns of causality and association between three variables,
 X1 and X2, and Y
- If X1 and X2 are not correlated with each other, their separate effects on Y more or less just add up

Correlated X variables

• But if X1 and X2 are correlated, things can get funny:

• In particular, if we measure the effect of one X without taking account of the other we will likely over-estimate it

sociology

Ę

Spurious association

- X1 may have an association with Y, implying a causal relationship
- But if X2 affects both X1 and Y the relationship between X1 and Y may be spurious

Spurious association: Maths and height

- (Artificial) example: students in secondary school are given a standardised maths test
- · And their height is measured
- A strong correlation between height (X1) and test score (Y): a causal relationship?

Maths and height: X1 -> Y?

Maths and height: X1 <-> X2

Maths and height: X2 -> Y

Maths and height: control for year group

Indirect effects

- Where there is a time-order (X1 before X2), we may see direct and indirect effects
- X1 may affect X2, which affects Y, but not affect Y directly
- · Thus there is association between X1 and Y without a direct causal effect

$$X1 \longrightarrow X2 \longrightarrow Y$$

Direct and indirect effects

 However, it is possible for both direct and indirect effects to be present at the same time

Suppression

- Where X1 and X2 have positive effects on Y, but a negative correlation, or different effects on Y with a positive correlation, the association between X1 and Y may be supressed
- That is, it may be invisible if we don't take account of X2

Interactions

 An interaction effect is where the effect of one variable on Y changes depending on the value of another

Session 2

Multiple regression

Multiple explanatory variables

- Regression analysis can be extended to the case where there is more than one explanatory variable – multiple regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, while taking account of the other variables

Unpicking multiple effects

- We will see how regression can be used to throw light on the 3-variable problems we have described above
 - Over-estimation of X1's effect
 - Spurious X1
 - X1 with an indirect (mediated) effect
 - Under-estimation of X1's effect (suppression)
 - X1's effect differing according to the values of X2 (interaction)

Example: Over-estimation

- Example: income may be affected by gender, and also by work hours: competing explanations one or the other, or both could have effects
- We can fit bivariate regressions:

$$Income = a + b \times WorkTime$$

or

$$Income = a + b \times Female$$

We can also fit a single multivariate regression

$$Income = a + b \times WorkTime + c \times Female$$

Aside: Dichotomous variables

- We deal with gender in a special way: this is a binary or dichotomous variable
 has two values
- We turn it into a yes/no or 0/1 variable e.g., female or not
- If we put this in as an explanatory variable a *one-unit change in the* explanatory variable is the difference between being male and female
- Thus the c coefficient we get in the
 Income = a + b × WorkTime + c × Female regression is the net change in predicted income of females, once you take account of work hours.
- The *b* coefficient is then the net effect of a unit change in work hours, once you take gender into account.

3-variable Logic

- X1 (hours) is correlated with income (higher H, higher I)
- X2 (gender) affects income (females lower)
- Hours and gender are strongly associated (females lower)

Income, hours and gender

. corr Income Gender Hours
(obs=506)

	Income	Gender	Hours
Income	1.0000		
Gender	-0.3280	1.0000	
Hours	0.3638	-0.4360	1.0000

Income, hours and gender

T-test: Income by gender

. ttest Income, by(Gender)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
male female	437 531	1618.348 992.1805	59.11677 40.82127	1235.809 940.6625	1502.159 911.9892	1734.537 1072.372
combined	968	1274.861	36.23219	1127.281	1203.759	1345.964
diff		626.1674	70.00484		488.7883	763.5465

```
diff = mean(male) - mean(female)
                                                                     8.9446
Ho: diff = 0
                                                degrees of freedom =
                                                                          966
```

Ha: diff > 0
$$Pr(T > t) = 0.000$$

Regression: Just hours

. reg Income Hours

Source	SS	df	MS	Number of o	bs =	506
				F(1, 504)	=	76.86
Model	86947928.8	1	86947928.8	Prob > F	=	0.0000
Residual	570128215	504	1131206.78	R-squared	=	0.1323
				Adj R-squar	ed =	0.1306
Total	657076144	505	1301140.88	Root MSE	=	1063.6
Income	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
Hours	37.82204	4.314061	8.77	0.000 29.3	4628	46.2978
_cons	449.7435	150.1722	2.99	0.003 154	.703	744.7841

Regression: Hours and binary gender

-478.4214

1022.139

reg Income Hours i Gender

Gender female

_cons

. reg inco	ine i	iours i.dender					
Sour	се	SS	df	MS	Number of obs	=	506
					F(2, 503)	=	50.70
Mod	el	110236231	2	55118115.6	6 Prob > F	=	0.0000
Residu	al	546839912	503	1087156.88	B R-squared	=	0.1678
					Adj R-squared	i =	0.1645
Tota	al	657076144	505	1301140.88	B Root MSE	=	1042.7
Inco	me	Coef.	Std. Err.	t	P> t [95% C	Conf.	Interval]
Hou	rs	28.33857	4.699451	6.03	0.000 19.10	56	37.57158

-4.63

5.32

0.000

0.000

-681.5084

644.3844

103.3684

192.2717

25

-275.3344

1399.893

3-var logic

- The gender gap reduces (but not to zero) if you control for hours
- The effect of hours controlling for gender falls

Spurious relationship

- Sometimes controlling for X2 makes the effect of X1 entirely disappear
- X1 -> Y is a "spurious" relationship

Maths and height by regression

. reg maths height

Source	SS	df	MS	Numb	er of obs	=	1,000
				- F(1,	998)	=	1706.40
Model	235991.871	1	235991.87	1 Prob	> F	=	0.0000
Residual	138021.727	998	138.29832	4 R-sq	uared	=	0.6310
				- Adj	R-squared	=	0.6306
Total	374013.599	999	374.38798	7 Root	MSE	=	11.76
maths	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
height	1.058213	.0256173	41.31	0.000	1.00794	-	1.108483
	-89.11002	4.200327	-21.22	0.000	-97.330		-00.07333

Spurious relationship: controlled for

. reg maths height age

-,	MS	df	SS	Source
F(2, 997) = 1273.62				
01.37 Prob > F = 0.0000	134401.3	2	268802.74	Model
27441 R-squared = 0.7187	105.52744	997	105210.858	Residual
Adj R-squared = 0.7181				
87987 Root MSE = 10.273	374.38798	999	374013.599	Total
t P> t [95% conf. interval]	t	Std. err.	Coefficient	maths
10 0.9171331045 .1196711	-0.10	.0644065	0067167	height
63 0.000 8.513385 10.64555	17.63	.5432693	9.579467	age
21 0.000 -65.87888 -49.88874	-14.21	4.074241	-57.88381	_cons

Regression controls for linear effects

- · We have seen this spurious relationship debunked visually
 - by separating into 6 year groups (subsetting the sample)
- Regression does it by attributing an effect to age
- · Accounting for age strips the effect of height
- Regression can be more efficient than subsetting the sample
 - · if the effect is linear, additive.

. reg ownscore fatherscore

SS	df	MS	Numb	er of obs	=	1,000
			— F(1,	998)	=	53.50
13269.3853	1	13269.385	3 Prob	> F	=	0.0000
247525.861	998	248.02190)5 R-sq	ıared	=	0.0509
			- Adj	R-squared	=	0.0499
260795.247	999	261.05630	3 Root	MSE	=	15.749
1						
Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
.2370829	.032413	7.31	0.000	. 173477	73	. 3006884
37.90861	1.672157	22.67	0.000	34.6272	26	41.18996
	13269.3853 247525.861 260795.247 Coef.	13269.3853 1 247525.861 998 260795.247 999 Coef. Std. Err2370829 .032413	13269.3853	F(1, 13269.3853	F(1, 998) 13269.3853	F(1, 998) = 13269.3853

. reg education fatherscore

Source	SS	df	MS	Numb	er of obs	=	1,000
				- F(1,	998)	=	111.01
Model	311.104929	1	311.10492	29 Prob	> F	=	0.0000
Residual	2797.00607	998	2.8026112	29 R-sq	ıared	=	0.1001
				— Adj	R-squared	=	0.0992
Total	3108.111	999	3.1112222	22 Root	MSE	=	1.6741
	'						
education	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
fatherscore _cons	.0363018	.0034455	10.54	0.000	. 029540		.0430631
	1,230210		1120				1.011020

. reg ownscore education

Source	SS	df	MS	Numbe	r of obs	=	1,000
				- F(1,	998)	=	447.54
Model	80742.8091	1	80742.809	1 Prob	> F	=	0.0000
Residual	180052.437	998	180.41326	4 R-squ	ared	=	0.3096
				- Adj R	-squared	=	0.3089
Total	260795.247	999	261.05630	3 Root	MSE	=	13.432
	·						
ownscore	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
education_cons	5.096871 33.87079	.2409273	21.16 39.58	0.000	4.6240		5.569653 35.54986
	00.07070				02.101		

. reg ownscore education fatherscore

Source	SS	df	MS		of ob	_	1,000
Model	81453.7212	2	40726.8606	F(2, 9		=	226.41
		_					
Residual	179341.525	997	179.881169	R-squa	red	=	0.3123
				Adj R	s quare	d =	0.3109
Total	260795.247	999	261.056303	Root N	ISE	=	13.412
ownscore	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
education	4.937369	.2535982	19.47	0.000	4.439	722	5.435017
fatherscore	.0578475	.0290984	1.99	0.047	.0007	463	. 1149486
_cons	31.51367	1.461439	21.56	0.000	28.64	582	34.38152

Interaction

• Where the effect of X1 changes across values of X2, we have "interaction"

Regression: for men only

. reg Income Hours if Gender==1

Source	SS	df	MS	Number	of obs	=	232
				F(1, 2	30)	=	5.36
Model	8009519.02	1	8009519.02	Prob >	F	=	0.0215
Residual	343845612	230	1494980.92	R-squa	red	=	0.0228
				Adj R-	squared	=	0.0185
Total	351855131	231	1523182.38	Root M	SE	=	1222.7
Income	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
Hours	24.61855	10.63597	2.31	0.022	3.6621	62	45.57495
_cons	1164.366	414.4901	2.81	0.005	347.68	26	1981.049

Regression: for women only

. reg Income Hours if Gender==2

Source	SS	df	MS	Number o	f obs =	274
				F(1, 272) =	42.63
Model	31772944.2	1	31772944.2	Prob > F	=	0.0000
Residual	202744304	272	745383.469	R-square	d =	0.1355
				Adj R-sq	uared =	0.1323
Total	234517248	273	859037.537	Root MSE	=	863.36
Income	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
Hours	29.70376	4.549594	6.53	0.000 2	0.74687	38.66065
_cons	504.6153	140.3614	3.60	0.000 2	28.2824	780.9482

Regression: interaction

. reg Income c.Hours##i.Gender

Source	SS	df	MS	Number o	f obs	=	506
				F(3, 50	2)	=	33.82
Model	110486228	3	36828742.8	Prob > E	,	=	0.0000
Residual	546589915	502	1088824.53	R-square	d	=	0.1681
				Adj R-s	quared	=	0.1632
Total	657076144	505	1301140.88	Root MSI	Z.	=	1043.5
Income	Coef.	Std. Er:	r. t	P> t	[95%	Conf.	Interval]
Hours	24.61855	9.07691	5 2.71	0.007	6.78	5132	42.45198
Gender female	-659.7502	392.308	2 -1.68	0.093	-1430	. 518	111.0181
Gender#c.Hours female	5.085207	10.6125	5 0.48	0.632	-15.70	6529	25.9357
_cons	1164.366	353.732	7 3.29	0.001	469.	3865	1859.345

