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Formula for multiple regression

Y = β0 + β1 X1 + β2 X2 . . . + βk Xk + e

e ∼ N(0, σ)

• Interpretation of βj

• How much Ŷ changes for a 1-unit in Xj holding all other values constant
• The estimated effect on Y of a 1-unit change in Xj, "controlling for" or "taking

account" of all the other Xs
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Residuals

Ŷ = β0 + β1X1 + β2X2...+ βkXk

Y = Ŷ + e

e ∼ N(0, σ)

• Mean of zero

• Standard deviation of σ (RMSE)

• Normally distributed

• Should have no structured relationship to X variables
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R2

• R2: coefficient of multiple determination

• TSS = sum of squared deviation from the mean =
∑

(Yi − Ȳ )2

• RSS = sum of squared deviation from the regression prediction =
∑

(Yi − Ŷ )2

• R2 = TSS−RSS
TSS

• Range: 0 (no relationship) to 1 (perfect linear relationship)

• PRE: Proportional Reduction in Error
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R2 and correlation

• In bivariate regression, R2 is the square of the correlation coefficient between
Y and X

• In multiple regression, it is the square of the correlation between Y and Ŷ

• (In bivariate regression the correlation between X and Ŷ is 1)
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Multicategory explanatory variables -> Indicator variables

• We often use "indicator coding" or "dummy coding"

• For 2-category variables, set one category to 0, the other to 1: interpret as the
effect of being in the second category (e.g., female) compared with the first.

. reg income age i.sex

Source SS df MS Number of obs = 959

F(2, 956) = 45.72

Model 33922983.9 2 16961492 Prob > F = 0.0000

Residual 354670636 956 370994.389 R-squared = 0.0873

Adj R-squared = 0.0854

Total 388593620 958 405630.083 Root MSE = 609.09

income Coefficient Std. err. t P>|t| [95% conf. interval]

age -3.144945 1.083398 -2.90 0.004 -5.271057 -1.018833

sex

female -352.678 39.51326 -8.93 0.000 -430.2208 -275.1353

_cons 1035.878 54.58935 18.98 0.000 928.7494 1143.007
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More than two categories

With more that two categories we create a set of binary variables, "indicator
variables" or "dummy variables":

d1 d2 d3 d4
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

For m categories, m-1 dummy variables are sufficient.

We interpret the parameter as the estimated effect of being in that category
relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.
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Example: education

. reg income age i.sex i.qual

Source SS df MS Number of obs = 959

F(5, 953) = 54.14

Model 85960604.5 5 17192120.9 Prob > F = 0.0000

Residual 302633015 953 317558.253 R-squared = 0.2212

Adj R-squared = 0.2171

Total 388593620 958 405630.083 Root MSE = 563.52

income Coefficient Std. err. t P>|t| [95% conf. interval]

age -.3897295 1.04777 -0.37 0.710 -2.445933 1.666474

sex

female -336.9623 36.75947 -9.17 0.000 -409.1011 -264.8234

qual

A-level, other sub-d.. -459.9208 78.54165 -5.86 0.000 -614.0554 -305.7862

O-level, commercial,.. -701.695 77.16016 -9.09 0.000 -853.1185 -550.2716

Sub-O-level, no qual -864.9695 76.41768 -11.32 0.000 -1014.936 -715.0032

_cons 1563.508 81.83797 19.10 0.000 1402.904 1724.111
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Hypothesis testing: one parameter at a time

• t-test: abs(β̂j/sej) > t
• Interpretation:

• Null: population value of β is 0; this variable has no influence once the other
variables are taken account of
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Example

. reg income age i.sex

Source SS df MS Number of obs = 959

F(2, 956) = 45.72

Model 33922983.9 2 16961492 Prob > F = 0.0000

Residual 354670636 956 370994.389 R-squared = 0.0873

Adj R-squared = 0.0854

Total 388593620 958 405630.083 Root MSE = 609.09

income Coefficient Std. err. t P>|t| [95% conf. interval]

age -3.144945 1.083398 -2.90 0.004 -5.271057 -1.018833

sex

female -352.678 39.51326 -8.93 0.000 -430.2208 -275.1353

_cons 1035.878 54.58935 18.98 0.000 928.7494 1143.007
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Hypothesis testing: all parameters together

• F-test:
• β1 = β2 . . . = βk = 0

• Null hypothesis: no X variable has an effect once the others are taken care of.

• A "global" test: the null is that there is no relevant variable in the model

• Calculation based on TSS and RSS, but also number of cases and number of
parameters estimated

• Uses F distribution (two df parameters: k and n-k-1, k is number of
parameters, n the number of cases)
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Hypothesis testing: additional parameters

• Delta F-test compares "nested" models
• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg

• Model 1: Ŷ = β0 + β1X1 + β2X2...+ βgXg + βhXh...+ βk Xk

• Null hypothesis: βh = . . . = βk = 0

• That is, given the variables already in the model, the additional variables
contribute no explanatory power.

• Useful when adding multi-category variables, or related groups of variables
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delta-F example: group of indicator variables

. qui reg income age i.sex

. est store base

. qui reg income age i.sex i.qual

. ftest base

Assumption: base nested in .

F( 3, 953) = 54.62

prob > F = 0.0000

Note: ftest is an add-on command. Do ssc install ftest to install
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Multicollinearity

• Multicollinearity arises where variable that individually "work" share too much
of their explanatory power

• When both are in the model, they may both be insignificant

• Not simply correlation, but that they share too much of their correlation with Y

• Often arises when the 2 variables both measure the same phenomenon

• Usually a small sample problem

• Don’t worry unless you see variables inexplicably becoming insignficant
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Bodyfat correlations

. use http://www.stata-press.com/data/r14/bodyfat

(Body Fat)

. corr *

(obs=20)

triceps thigh midarm bodyfat

triceps 1.0000

thigh 0.9238 1.0000

midarm 0.4578 0.0847 1.0000

bodyfat 0.8433 0.8781 0.1424 1.0000
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Triceps predicting bodyfat

. reg bodyfat tricep

Source SS df MS Number of obs = 20

F(1, 18) = 44.30

Model 352.269824 1 352.269824 Prob > F = 0.0000

Residual 143.119689 18 7.95109386 R-squared = 0.7111

Adj R-squared = 0.6950

Total 495.389513 19 26.0731323 Root MSE = 2.8198

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

triceps .8571866 .1287808 6.66 0.000 .5866282 1.127745

_cons -1.496107 3.319235 -0.45 0.658 -8.46956 5.477347
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Thigh predicting bodyfat

. reg bodyfat thigh

Source SS df MS Number of obs = 20

F(1, 18) = 60.62

Model 381.965845 1 381.965845 Prob > F = 0.0000

Residual 113.423669 18 6.30131492 R-squared = 0.7710

Adj R-squared = 0.7583

Total 495.389513 19 26.0731323 Root MSE = 2.5102

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

thigh .8565467 .1100156 7.79 0.000 .6254124 1.087681

_cons -23.63449 5.657414 -4.18 0.001 -35.52028 -11.74871
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Midarm predicting bodyfat

. reg bodyfat midarm

Source SS df MS Number of obs = 20

F(1, 18) = 0.37

Model 10.0516092 1 10.0516092 Prob > F = 0.5491

Residual 485.337904 18 26.9632169 R-squared = 0.0203

Adj R-squared = -0.0341

Total 495.389513 19 26.0731323 Root MSE = 5.1926

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

midarm .1994287 .3266297 0.61 0.549 -.4867949 .8856523

_cons 14.68678 9.095926 1.61 0.124 -4.423052 33.79661
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Omnibus model: none significant

. reg bodyfat tricep thigh midarm

Source SS df MS Number of obs = 20

F(3, 16) = 21.52

Model 396.984607 3 132.328202 Prob > F = 0.0000

Residual 98.4049068 16 6.15030667 R-squared = 0.8014

Adj R-squared = 0.7641

Total 495.389513 19 26.0731323 Root MSE = 2.48

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

triceps 4.334085 3.015511 1.44 0.170 -2.058512 10.72668

thigh -2.856842 2.582015 -1.11 0.285 -8.330468 2.616785

midarm -2.186056 1.595499 -1.37 0.190 -5.568362 1.19625

_cons 117.0844 99.78238 1.17 0.258 -94.44474 328.6136
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VIF for the model

. estat vif

Variable VIF 1/VIF

triceps 708.84 0.001411

thigh 564.34 0.001772

midarm 104.61 0.009560

Mean VIF 459.26
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Drop triceps

. reg bodyfat thigh midarm

Source SS df MS Number of obs = 20

F(2, 17) = 29.40

Model 384.279748 2 192.139874 Prob > F = 0.0000

Residual 111.109765 17 6.53586854 R-squared = 0.7757

Adj R-squared = 0.7493

Total 495.389513 19 26.0731323 Root MSE = 2.5565

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

thigh .8508818 .1124482 7.57 0.000 .6136367 1.088127

midarm .0960295 .1613927 0.60 0.560 -.2444792 .4365383

_cons -25.99696 6.99732 -3.72 0.002 -40.76001 -11.2339
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New VIF

. estat vif

Variable VIF 1/VIF

midarm 1.01 0.992831

thigh 1.01 0.992831

Mean VIF 1.01
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Residuals

Y = b0 + b1X1 + ...+ bkXk + e

e ∼ N(0, σ)

22



Characteristics

• Residuals will
• have mean 0
• be as small as possible
• have no linear relationship to X variables

• Residuals should
• be approximately normally distributed (symmetric is often enough)
• not have a non-linear relationship to any X variable
• have a constant spread, that is not related to X or Y values

• If correlated with variables not in the model, perhaps those variables should
be included
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Examining residuals: ideal
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Examining residuals: Non-linear
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Examining residuals: asymmetric
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Examining residuals: heteroscedasticity
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Examining residuals: Spotting outliers
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Examining residuals: Influence of outliers
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Outliers may have undue influence

• dfbeta

• Cook’s distance
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Outlier interactive app

http://teaching.sociology.ul.ie:3838/influence/
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Multiplicative relationship

• Where the underlying relationship is multiplicative, linear regression doesn’t
work well

• Implies an additive increase where a multiplicative one is better
• If we take the log of the dependent variable:

• better estimates
• often cures heteroscedasticity
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Simulation: Y increases 65% for X +1
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Linear regression

. reg y x

Source SS df MS Number of obs = 1,000

F(1, 998) = 274.71

Model 12181477.5 1 12181477.5 Prob > F = 0.0000

Residual 44253675.2 998 44342.3599 R-squared = 0.2158

Adj R-squared = 0.2151

Total 56435152.7 999 56491.6443 Root MSE = 210.58

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 55.69088 3.360033 16.57 0.000 49.09734 62.28442

_cons -200.7041 20.95566 -9.58 0.000 -241.8263 -159.5819
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Predictions
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Log(Y)

. gen ly = log(y)

. reg ly x

Source SS df MS Number of obs = 1,000

F(1, 998) = 1032.66

Model 956.12538 1 956.12538 Prob > F = 0.0000

Residual 924.030142 998 .925881905 R-squared = 0.5085

Adj R-squared = 0.5080

Total 1880.15552 999 1.88203756 Root MSE = .96223

ly Coefficient Std. err. t P>|t| [95% conf. interval]

x .4933914 .0153537 32.14 0.000 .4632622 .5235205

_cons 1.062305 .0957568 11.09 0.000 .8743972 1.250213

36



Interpretation

• For a 1 unit change in X, log(Ŷ ) rises by 0.4933914

• Thus for a 1 unit change in X, Y rises by e0.4933914 = 1.638

• e0.4933914 is the antilog of 0.4933914
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Predictions
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Predicted values

• Where the dependent variable is logged the prediction of the Y value is not
simply the anti-log of the predicted log(Y)

• When we take the anti-log we must take account of the fact that residuals
above the line expand by more than residuals below the line

• Thus a small correction

ˆlog(Y ) = a + bX

Ŷ = e
ˆlog(Y ) ∗ eRMSE

2/2

• where RMSE is the standard deviation of the regression
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Calculations

gen ly = log(y)

reg ly x

predict lyhat

gen elyh = exp(lyhat)

gen elyh2 = elyh * exp(rmse^2/2)
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Predictions: predict log(Y) on log scale
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Predictions: only e ˆlog(Y )
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Predictions: with correction
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Predicting COVID-19

• We can apply log regression to the COVID-19 data

• A straight line on a log scale means a constant proportional increase.

• We can estimate this increase, regressing log(cases) on date.

• The slope, b, is the amount by which ˆlog cases rises per day

• eb is then the multiplier by which cases rises per day

reg lcases date
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Stata output

. reg lc date

Source SS df MS Number of obs = 20

F(1, 18) = 746.82

Model 66.1088015 1 66.1088015 Prob > F = 0.0000

Residual 1.59336573 18 .088520318 R-squared = 0.9765

Adj R-squared = 0.9752

Total 67.7021673 19 3.56327196 Root MSE = .29752

lc Coef. Std. Err. t P>|t| [95% Conf. Interval]

date .3058309 .0111911 27.33 0.000 .2823193 .3293426

_cons -6719.833 246.0411 -27.31 0.000 -7236.746 -6202.92
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Logs with log regression
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Steady increase

The log of cases rises by 0.3058 per day

This means cases rises by a factor of e0.3058 = 1.358

The increase is 1.358 - 1 = 0.358, or almost 36% per day

Implies a doubling about every 2.6 days
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But exponential increase is temporary

Exponential increase cannot go on indefinitely

Even if nothing is done, the rate of increase will decline as fewer people are left
unexposed

And interventions (isolation, tracing) will reduce the rate

See China, for example
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Wuhan, with prediction based on 1st 19 days
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Summary

If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn’t forever, but modelling the exponential helps us see
where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do
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