Formula

$$\begin{split} \mathbf{Y} &= \beta_0 + \beta_1 \; \mathbf{X}_1 + \beta_2 \; \mathbf{X}_2 \, \dots \, + \beta_k \; \mathbf{X}_k + \mathbf{e} \\ &\mathbf{e} \sim N(\mathbf{0}, \sigma) \end{split}$$

- Interpretation of β_j
 - How much \hat{Y} changes for a 1-unit in X_j holding all other values constant
 - The estimated effect on Y of a 1-unit change in $X_j,$ "controlling for" or "taking account" of all the other Xs

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_k X_k$$
$$Y = \hat{Y} + \boldsymbol{e}$$

 $\pmb{e} \sim \pmb{N}(\pmb{0},\sigma)$

- Mean of zero
- Standard deviation of σ (RMSE)
- · Normally distributed
- · Should have no structured relationship to X variables

R²

- R²: coefficient of multiple determination
- TSS = sum of squared deviation from the mean = $\sum (Y_i \bar{Y})^2$
- RSS = sum of squared deviation from the regression prediction = $\sum (Y_i \hat{Y})^2$
- $R^2 = \frac{TSS RSS}{TSS}$
- Range: 0 (no relationship) to 1 (perfect linear relationship)
- PRE: Proportional Reduction in Error

- In bivariate regression, R^2 is the square of the correlation coefficient between Y and X
- In multiple regression, it is the square of the correlation between Y and \hat{Y}
- (In bivariate regression the correlation between X and \hat{Y} is 1)

Indicator variables

Multicategory explanatory variables -> Indicator variables

- We often use "indicator coding" or "dummy coding"
- For 2-category variables, set one category to 0, the other to 1: interpret as the effect of being in the second category (e.g., female) compared with the first.

	reg	income	age	i.sex
--	-----	--------	-----	-------

Source	SS	df	MS	Number of obs	; =	959
				F(2, 956)	-	45.72
Model	33922983.9	2	16961492	Prob > F	=	0.0000
Residual	354670636	956	370994.389	R-squared	=	0.0873
				Adj R-squared	=	0.0854
Total	388593620	958	405630.083	Root MSE	=	609.09
income	Coefficient	Std. err.	t	P> t [95% d	onf.	interval]
ag e	-3.144945	1.083398	-2.90	0.004 -5.2710)57	-1.018833
sex						
female	-352.678	39.51326	-8.93	0.000 -430.22	208	-275.1353
_cons	1035.878	54.58935	18.98	0.000 928.74	94	1143.007

With more that two categories we create a set of binary variables, "indicator variables" or "dummy variables":

	d1	d2	d3	d4
а	1	0	0	0
b	0	1	0	0
С	0	0	1	0
d	0	0	0	1

For m categories, m-1 dummy variables are sufficient.

We interpret the parameter as the estimated effect of being in that category relative to the omitted or "reference" category.

Stata handles this automatically with the i. prefix.

. reg income age i.sex i.qual

Source SS		df	MS		of obs	=	959	
Model Residual			Prob > F		Prob > F		54.14 0.0000 0.2212	
Total	38859362	20 958	405630.083	-	Adj R-squared Root MSE		0.2171 563.52	
	income	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	age	3897295	1.04777	-0.37	0.710	- 2	. 445933	1.666474
	sex female	-336.9623	36.75947	-9.17	0.000	- 4	09.1011	-264.8234
qual A-level, other sub-d O-level, commercial, Sub-O-level, no qual		-459.9208 -701.695 -864.9695	78.54165 77.16016 76.41768	-5.86 -9.09 -11.32	0.000 0.000 0.000	- 8	14.0554 53.1185 014.936	-305.7862 -550.2716 -715.0032
	_cons	1563.508	81.83797	19.10	0.000	1	402.904	1724.111

Hypothesis testing

- t-test: $abs(\hat{eta}_j/\mathrm{se}_j) > t$
- Interpretation:
 - Null: population value of β is 0; this variable has no influence once the other variables are taken account of

Example

. reg income age i.sex

Source	SS	df	MS	Numbe	er of obs	=	959
				- F(2,	956)	=	45.72
Model	33922983.9	2	16961492	2 Prob	> F	=	0.0000
Residual	354670636	956	370994.389	R-squ	ared	=	0.0873
				- Adj F	l-squared	=	0.0854
Total	388593620	958	405630.083	8 Root	MSE	=	609.09
income	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
age	-3.144945	1.083398	-2.90	0.004	-5.2710	57	-1.018833
5							
sex							
female	-352.678	39.51326	-8.93	0.000	-430.22	80	-275.1353
_cons	1035.878	54.58935	18.98	0.000	928.74	94	1143.007

- F-test:
 - $\beta_1 = \beta_2 \dots = \beta_k = 0$
- Null hypothesis: no X variable has an effect once the others are taken care of.
- A "global" test: the null is that there is no relevant variable in the model
- Calculation based on TSS and RSS, but also number of cases and number of parameters estimated
- Uses F distribution (two df parameters: k and n-k-1, k is number of parameters, n the number of cases)

- · Delta F-test compares "nested" models
 - Model 1: $\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_g X_g$
 - Model 1: $\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_g X_g + \beta_h X_h \dots + \beta_k X_k$
- Null hypothesis: $\beta_h = \ldots = \beta_k = 0$
- That is, given the variables already in the model, the additional variables contribute no explanatory power.
- · Useful when adding multi-category variables, or related groups of variables


```
. qui reg income age i.sex
```

```
. est store base
```

```
. qui reg income age i.sex i.qual
```

. ftest base

Assumption: base nested in .

```
F( 3, 953) = 54.62
prob > F = 0.0000
```

Note: ftest is an add-on command. Do ssc install ftest to install

Multicollinearity

- Multicollinearity arises where variable that individually "work" share too much of their explanatory power
- · When both are in the model, they may both be insignificant
- Not simply correlation, but that they share too much of their correlation with Y
- Often arises when the 2 variables both measure the same phenomenon
- Usually a small sample problem
- · Don't worry unless you see variables inexplicably becoming insignficant


```
. use http://www.stata-press.com/data/r14/bodyfat (Body Fat)
```

. corr *

(obs=20)

	triceps	thigh	midarm	bodyfat
triceps	1.0000			
thigh	0.9238	1.0000		
midarm	0.4578	0.0847	1.0000	
bodyfat	0.8433	0.8781	0.1424	1.0000

. reg bodyfat tricep

Source	SS	df	MS	Number	of obs	=	20
				- F(1, 18	3)	=	44.30
Model	352.269824	1	352.269824	ł Prob >	F	=	0.0000
Residual	143.119689	18	7.95109386	6 R-squar	red	=	0.7111
				- Adj R-s	quared	=	0.6950
Total	495.389513	19	26.0731323	B Root MS	SE	=	2.8198
bodyfat	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
triceps	.8571866	.1287808	6.66 -0.45	0.000	.586628	-	1.127745
_cons	-1.490107	9.919299	-0.45	0.000	-0.4095	0	5.4//34/

. reg bodyfat thigh

Source	SS	df	MS	Numbe	r of obs	=	20
				- F(1,	18)	=	60.62
Model	381.965845	1	381.965845	5 Prob	> F	=	0.0000
Residual	113.423669	18	6.30131492	2 R-squ	ared	=	0.7710
				- Adj R	-squared	=	0.7583
Total	495.389513	19	26.0731323	3 Root	Root MSE		2.5102
bodyfat	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
thigh	.8565467	.1100156	7.79	0.000	. 62541	.24	1.087681
_cons	-23.63449	5.657414	-4.18	0.001	-35.520)28	-11.74871

. reg bodyfat midarm

Source	SS	df	MS	Numbe	r of obs	5 =	20
				- F(1,	18)	=	0.37
Model	10.0516092	1	10.0516092	2 Prob	> F	=	0.5491
Residual	485.337904	18	26.9632169	R-squ	ared	=	0.0203
				- Adj R	-squared	d =	-0.0341
Total	495.389513	19	26.0731323	3 Root	MSE	=	5.1926
bodyfat	Coefficient	Std. err.	t	P> t	[95% d	conf.	interval]
midarm	.1994287	.3266297	0.61	0.549	48679		.8856523
_cons	14.68678	9.095926	1.61	0.124	-4.4230	052	33.79661

. reg bodyfat tricep thigh midarm

Source	SS	df	MS	Numb	er of obs	=	20
				F(3,	16)	=	21.52
Model	396.984607	3	132.328202	Prob	> F	=	0.0000
Residual	98.4049068	16	6.15030667	R-sq	uared	=	0.8014
				Adjl	R-squared	l =	0.7641
Total	495.389513	19	26.0731323	Root	MSE	=	2.48
bodyfat	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
triceps	4.334085	3.015511	1.44	0.170	-2.0585	512	10.72668
thigh	-2.856842	2.582015	-1.11	0.285	-8.3304	68	2.616785
midarm	-2.186056	1.595499	-1.37	0.190	-5.5683	362	1.19625
_cons	117.0844	99.78238	1.17	0.258	-94.444	474	328.6136

. estat vif

Variable	VIF	1/VIF
triceps thigh midarm	708.84 564.34 104.61	0.001411 0.001772 0.009560
Mean VIF	459.26	

. reg bodyfat thigh midarm

Source	SS	df	MS	Numb	er of obs	=	20
				- F(2,	17)	=	29.40
Model	384.279748	2	192.139874	Prob	> F	=	0.0000
Residual	111.109765	17	6.53586854	R-sq	uared	=	0.7757
				Adj	R-squared	=	0.7493
Total	495.389513	19	26.0731323	B Root	MSE	=	2.5565
bodyfat	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
thigh	.8508818	.1124482	7.57	0.000	. 613636	7	1.088127
midarm	.0960295	.1613927	0.60	0.560	244479	2	.4365383
_cons	-25.99696	6.99732	-3.72	0.002	-40.7600	1	-11.2339

. estat vif

Variable	VIF	1/VIF
midarm thigh	1.01 1.01	0.992831 0.992831
Mean VIF	1.01	

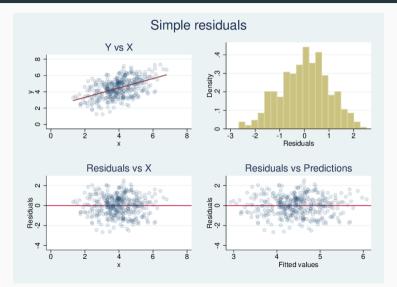
Residuals

$$Y = b_0 + b_1 X_1 + \ldots + b_k X_k + e$$

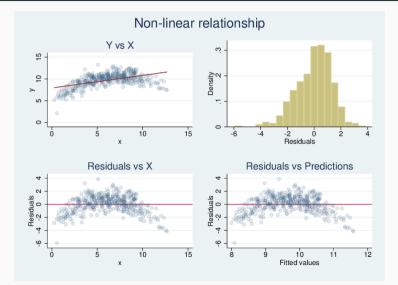
 $e \sim N(0, \sigma)$

- Residuals will
 - have mean 0
 - · be as small as possible
 - · have no linear relationship to X variables
- · Residuals should
 - be approximately normally distributed (symmetric is often enough)
 - · not have a non-linear relationship to any X variable
 - · have a constant spread, that is not related to X or Y values
- If correlated with variables not in the model, perhaps those variables should be included

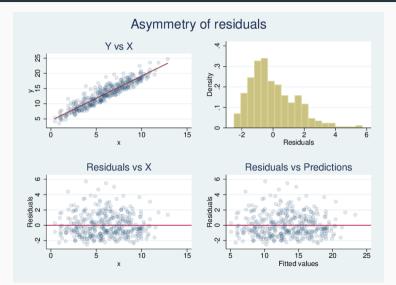
Examining residuals: ideal



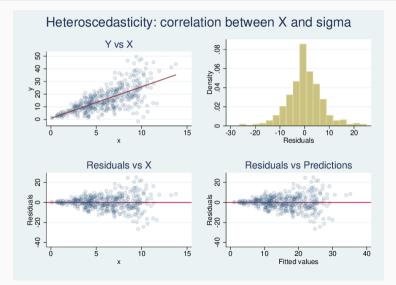
Examining residuals: Non-linear



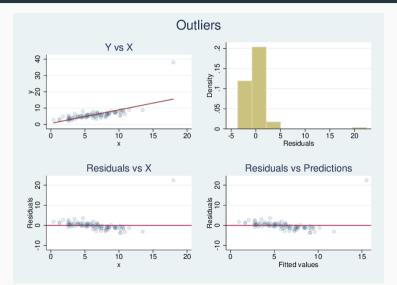
Examining residuals: asymmetric



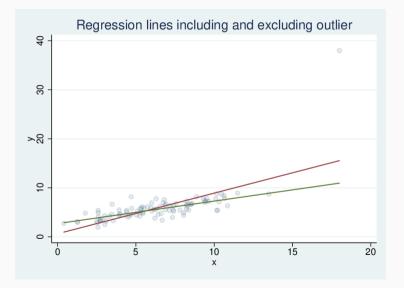
Examining residuals: heteroscedasticity



Examining residuals: Spotting outliers



Examining residuals: Influence of outliers



Influence

- dfbeta
- · Cook's distance

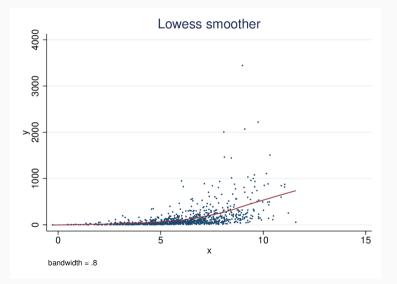
http://teaching.sociology.ul.ie:3838/influence/

Session 3: Further regression

Log regression

- Where the underlying relationship is multiplicative, linear regression doesn't work well
- · Implies an additive increase where a multiplicative one is better
- If we take the log of the dependent variable:
 - · better estimates
 - · often cures heteroscedasticity

Simulation: Y increases 65% for X +1



. reg y x

Source	SS	df	MS	Numbe	er of obs	=	1,000
				- F(1,	998)	=	274.71
Model	12181477.5	1	12181477.5	5 Prob	> F	=	0.0000
Residual	44253675.2	998	44342.3599	R-squ	ared	=	0.2158
				- Adj F	l-squared	=	0.2151
Total	56435152.7	999	56491.6443	8 Root	MSE	=	210.58
У	Coefficient	Std. err.	t	P> t	[95% cc	onf.	interval]
x	55.69088	3.360033	16.57	0.000	49.0973	-	62.28442
_cons	-200.7041	20.95566	-9.58	0.000	-241.826	33	-159.5819

Predictions

Y vs X 4000 . 3000 y 2000 · . 1000 0 15 10 Ò 5 х

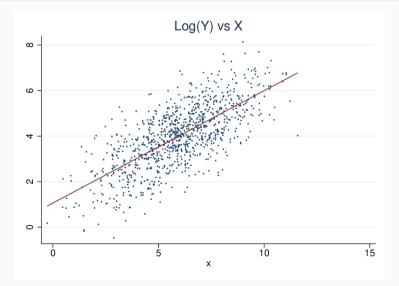
. gen ly = log(y)

. reg ly x

Source	SS	df	MS	Number of ob	s =	1,000
				F(1, 998)	=	1032.66
Model	956.12538	1	956.12538	Prob > F	=	0.0000
Residual	924.030142	998	.925881905	R-squared	=	0.5085
				- Adj R-square	d =	0.5080
Total	1880.15552	999	1.88203756	Root MSE	=	.96223
ly	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
x _cons	.4933914 1.062305	.0153537 .0957568	32.14 11.09	0.000 .4632 0.000 .8743		.5235205

- + For a 1 unit change in X, $log(\hat{Y})$ rises by 0.4933914
- Thus for a 1 unit change in X, Y rises by $e^{0.4933914} = 1.638$
- $e^{0.4933914}$ is the antilog of 0.4933914

Predictions



- Where the dependent variable is logged the prediction of the Y value is not simply the anti-log of the predicted log(Y)
- When we take the anti-log we must take account of the fact that residuals above the line expand by more than residuals below the line
- · Thus a small correction

$$log(Y) = a + bX$$

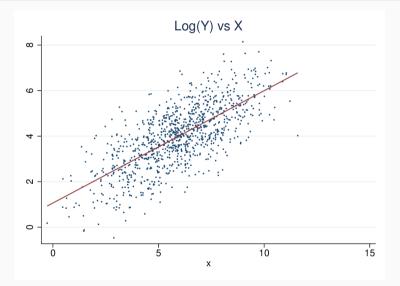
 $\hat{Y} = e^{log(Y)} * e^{\text{RMSE}^2/2}$

· where RMSE is the standard deviation of the regression

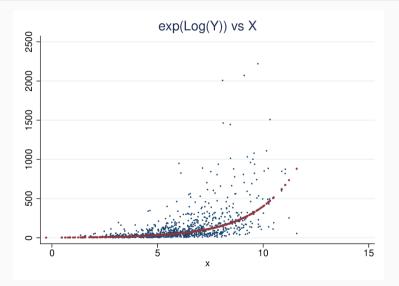

```
predict lyhat
gen elyh = exp(lyhat)
gen elyh2 = elyh * exp(rmse<sup>2</sup>/2)
```

```
gen ly = log(y)
reg ly x
```

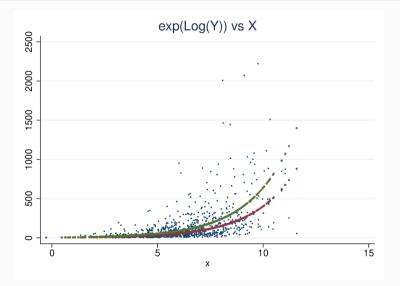
Predictions: predict log(Y) on log scale



Predictions: only $e^{log(Y)}$



Predictions: with correction



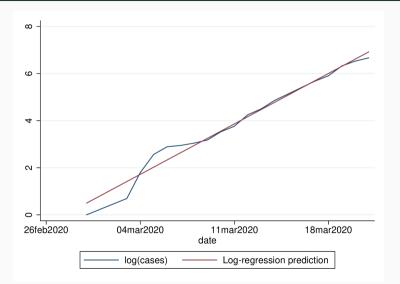
- · We can apply log regression to the COVID-19 data
- A straight line on a log scale means a constant proportional increase.
- We can estimate this increase, regressing log(cases) on date.
- The slope, b, is the amount by which $\log\hat{\mathrm{cases}}$ rises per day
- e^b is then the multiplier by which cases rises per day

reg lcases date

. reg lc date

Source	SS	df	MS	Number	of ob	s =	20
				· F(1, 1	.8)	=	746.82
Model	66.1088015	1	66.1088015	Prob >	F	=	0.0000
Residual	1.59336573	18	.088520318	R-squa	red	=	0.9765
				- Adj R	square	d =	0.9752
Total	67.7021673	19	3.56327196	Root N	ISE	=	. 29752
lc	Coef.	Std. Err.	t	P> t	[Q5%	Conf	[Interval]
10	COEI.	Stu. EII.	U.	F> U	[90%		Intervalj
date	.3058309	.0111911	27.33	0.000	. 2823	193	. 3293426
_cons	-6719.833	246.0411	-27.31	0.000	-7236.	746	-6202.92

Logs with log regression




```
The log of cases rises by 0.3058 per day
This means cases rises by a factor of e^{0.3058} = 1.358
The increase is 1.358 - 1 = 0.358, or almost 36% per day
Implies a doubling about every 2.6 days
```

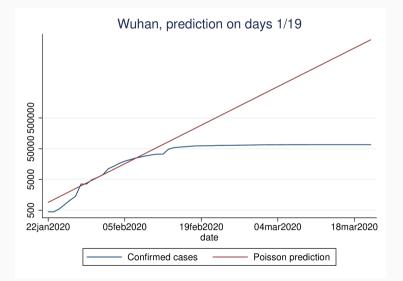

Exponential increase cannot go on indefinitely

Even if nothing is done, the rate of increase will decline as fewer people are left unexposed

And interventions (isolation, tracing) will reduce the rate

See China, for example

Wuhan, with prediction based on 1st 19 days



If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn't forever, but modelling the exponential helps us see where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do

