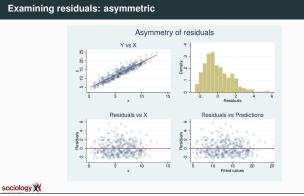
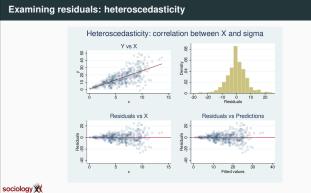
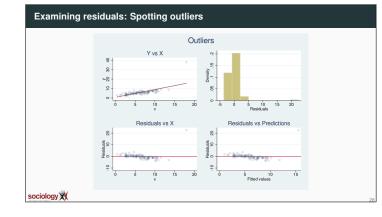
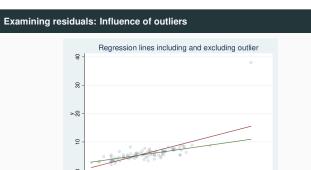

	Formula for multiple regression	Residuals		
Session 3: Further regression Formula	$\begin{split} & Y = \beta_0 + \beta_1 \; X_1 + \beta_2 \; X_2 \; \ldots \; + \; \beta_k \; X_k + e \\ & \boldsymbol{e} \sim \mathcal{N}(0, \sigma) \\ & \bullet \; \text{Interpretation of } \beta_j \\ & \bullet \; \text{How much } \hat{Y} \; \text{changes for a 1-unit in } X_j \; \text{holding all other values constant} \\ & \bullet \; \text{The estimated effect on } Y \; \text{of a 1-unit change in } X_j, \; \text{"controlling for" or "taking} \\ & account" \; \text{of all the other } Xs \end{split}$	$\begin{split} \hat{Y} &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_k X_k \\ Y &= \hat{Y} + e \\ e &\sim N(0, \sigma) \\ & \cdot \text{ Mean of zero} \\ & \cdot \text{ Standard deviation of } \sigma \text{ (RMSE)} \\ & \cdot \text{ Normally distributed} \\ & \cdot \text{ Should have no structured relationship to X variables} \end{split}$		
	sociology	sociology X		
	R ²	R ² and correlation		
Session 3: Further regression R ²	• R ² : coefficient of multiple determination • TSS = sum of squared deviation from the mean = $\sum (Y_i - \bar{Y})^2$ • RSS = sum of squared deviation from the regression prediction = $\sum (Y_i - \hat{Y})^2$ • R ² = $\frac{ISS-RSS}{TSS}$ • Range: 0 (no relationship) to 1 (perfect linear relationship) • PRE: Proportional Reduction in Error	 In bivariate regression, R² is the square of the correlation coefficient between Y and X In multiple regression, it is the square of the correlation between Y and Ŷ (In bivariate regression the correlation between X and Ŷ is 1) 		
	sociology 💥	sociology 🕅		
	Multicategory explanatory variables -> Indicator variables	More than two categories		
Session 3: Further regression	 We often use "indicator coding" or "dummy coding" For 2-category variables, set one category to 0, the other to 1: interpret as the effect of being in the second category (e.g., female) compared with the first. 	With more that two categories we create a set of binary variables, "indicator variables" or "dummy variables": $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	sociology	Stata handles this automatically with the i. prefix.		

Example: education		Hypothesis testing: one parameter at a time		
. reg income ge i.er i.qual Surre SS df NS Bubber of 05 - 950 F(5, 963) - 54,14 Hodel 85960004.5 5 17122120.0 Residual 52033015 963 317588.203 Adj In-reared - 0.2171 Tital 368593020 966 405630.003 Rost HSE - 563.52 Cefficient Std.err. t P)tl [95% conf. interval] age - 3897298 1.04777 -0.37 0.710 -2.445933 1.666474 -336.9623 36.75947 -0.17 0.000 -609.1011 -264.8234 qual A-lavel, ctmer tod Sub-D-lavel, an qual _ cms 1668.508 01.63797 19.10 0.000 1402.004 1724.111	Session 3: Further regression Hypothesis testing	 t-test: abs(β̂_j/se_j) > t Interpretation: Null: population value of β is 0; this variable has no influence once the other variables are taken account of 		
sociology X		sociology		
Example	Hypothesis testing: all parameters together	Hypothesis testing: additional parameters		
. reg income age i.sex Source SS df MS Model 33922933.9 2 16961492 Residual 354670636 956 370994.389 Total 388593620 9568 405630.083 Root MSE = 0.0873 Adj R-squared = 0.0873 Adj R-squared = 0.0874 Adj R-squared = 0.0874 income Coefficient Std. err. t P> t [96% conf. interval] age -3.144945 1.083398 -2.90 0.004 -5.271057 -1.018833 sex female -352.678 39.51326 -8.93 0.000 -430.2208 -275.1353 1035.878 54.58935 18.98 0.000 928.7494 1143.007	 F-test: β₁ = β₂ = β_k = 0 Null hypothesis: no X variable has an effect once the others are taken care of. A "global" test: the null is that there is no relevant variable in the model Calculation based on TSS and RSS, but also number of cases and number of parameters estimated Uses F distribution (two df parameters: k and n-k-1, k is number of parameters, n the number of cases) 	 Delta F-test compares "nested" models Model 1: Ŷ = β₀ + β₁X₁ + β₂X₂ + β_gX_g Model 1: Ŷ = β₀ + β₁X₁ + β₂X₂ + β_gX_g + β_hX_h + β_kX_k Null hypothesis: β_h = = β_k = 0 That is, given the variables already in the model, the additional variables contribute no explanatory power. Useful when adding multi-category variables, or related groups of variables 		
Langipus (************************************	Landstone 10			
<pre>delta-F example: group of indicator variables . qui reg income age i.sex . ent store base . qui reg income age i.sex i.qual . ftest base Assumption: base nested in . F(3, 953) = 54.62 prob > F = 0.0000 Note: ftest is an add-on command. Do ssc install ftest to install</pre>	Session 3: Further regression Multicollinearity	 Multicollinearity Multicollinearity arises where variable that individually "work" share too much of their explanatory power When both are in the model, they may both be insignificant Not simply correlation, but that they share too much of their correlation with Y Often arises when the 2 variables both measure the same phenomenon Usually a small sample problem Don't worry unless you see variables inexplicably becoming insignificant 		
sociology 🗙		sociology 💥		
sociology		sociology		

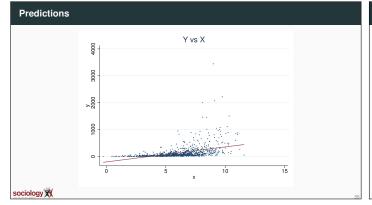

lyfat correlations	Triceps predicting bodyfat	Thigh predicting bodyfat
. use http://www.stata-press.com/data/r14/bodyfat (Sody Fat) . corr * (obs=20) triceps thigh midarm bodyfat triceps 1.0000 thigh 0.9238 1.0000 midarm 0.4578 0.0847 1.0000 bodyfat 0.9433 0.8781 0.1424 1.0000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $. reg bodyfat thigh Source S5 df MS Number of obs = 20 Model 381.965945 1 381.965945 Prob > F = 0.062 Residual 113.422669 18 6.30131492 R-aquared = 0.7710 Adj R-aquared 19 26.0731323 Root MSE = 2.6102 bodyfat Coefficient Std. err. t P>t1 [95% conf. interval] thigh .8665467 .1100156 7.79 0.000 .6254124 1.087681 _cons -23.63449 5.667414 -4.18 0.001 -36.52028 -11.74871
ау 🕅	sociology 💥	sociology 💥
arm predicting bodyfat	Omnibus model: none significant	VIF for the model
. reg bodyfat midarm Source SS df MS Number of obs = 20 Nodel 10.0516092 1 10.0516092 Prob > F = 0.5491 Residual 465.337904 12 26.985216 9 Total 495.389513 19 26.0731323 Root MSE = 5.1926 bodyfat Coefficient Std. err. t Py[t] [95% conf. interval] midarm .1994267 .3266297 0.61 0.5494867049 .8856523 _cons 14.68678 9.095926 1.61 0.124 -4.423052 33.79661	. reg bodyfat tricep thigh midarm Source SS df MS Number of obs = 20 F(3, 16) = 21.52 Model 396.094607 3 132.328202 Frob > F = 0.0000 Residual 98.4049068 16 6.15030667 R-squared = 0.8014 Adj 3-squared = 0.8014 Adj 3-squared = 2.48 bodyfat Coefficient Std. err. t $P > t $ [95% conf. interval] triceps 4.334085 3.015611 1.44 0.170 -2.058512 10.72668 thigh -2.868642 2.682015 -1.11 0.258 -8.33468 2.616765 midarm -2.180056 1.595499 -1.37 0.190 -5.563382 1.19625 _cons 117.0844 99.78238 1.17 0.258 -94.44474 328.6138	. estat vif Variable VIF 1/VIF triceps 708.84 0.001411 thigh 564.34 0.001772 midarm 104.61 0.009560 Neam VIF 459.26
ay 💥	17 sociology 💥	sociology
p triceps	New VIF	Session 3: Further regression Residuals


sociology 💥


sociology 💥

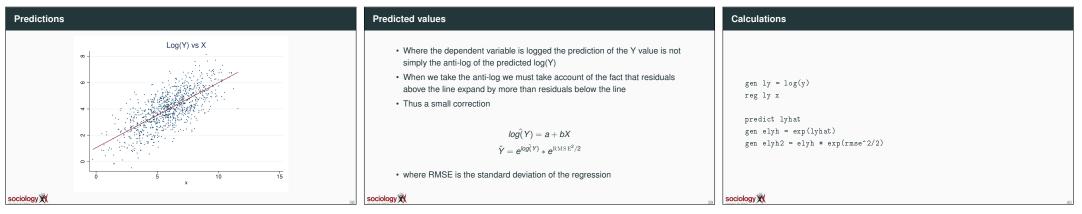


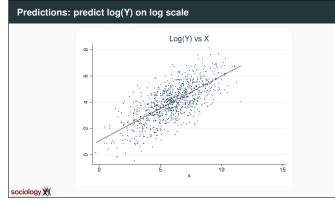
sociology 💥

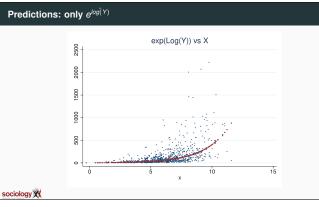

Outliers may have undue influence	Outlier interactive app	
• dfbeta • Cook's distance	http://teaching.sociology.ul.ie:3838/influence/	Session 3: Further regression Log regression
sociology	sociology 🕅 31	

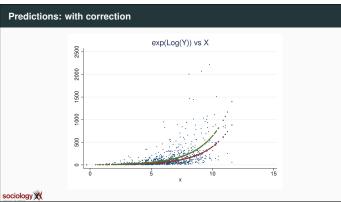
sociology 💥

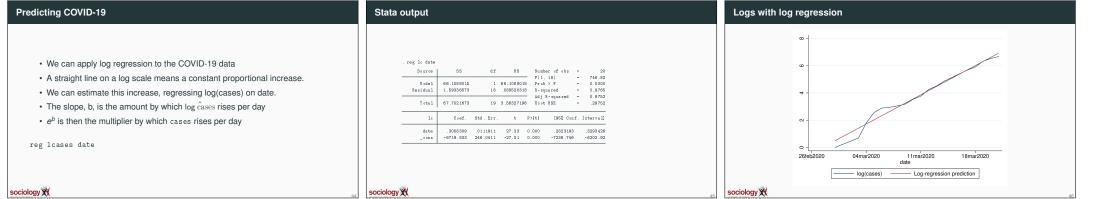
near	regressio	on						
	reg y x							
	Source	SS	df	MS	Numb	er of obs	=	1,000
-					- F(1,	998)	=	274.71
	Model	12181477.5	1	12181477.	5 Prob	> F	=	0.0000
	Residual	44253675.2	998	44342.359	9 R-sq	lu ar ed	=	0.2158
-					- Adj	R-squared	=	0.2151
	Tot al	56435152.7	999	56491.644	3 Root	MSE	=	210.58
-	у	Coefficient	Std. err.	t	P> t	[95% cor	f.	interval]
_	x	55.69088	3.360033	16.57	0.000	49.09734		62.28442
	_cons	-200.7041	20.95566	-9.58	0.000	-241.8263		-159.5819


sociology 💥




Log(Y)		Interpretation
	2 998 .92588100 A = equared = 0.1085 2 999 1.88203765 Root MSE = 0.9223 t Std. err. t P> t [950, conf. interval] .0153537 32.14 0.000 .4632622 .5235205	• For a 1 unit change in X, $log(\hat{Y})$ rises by 0.4933914 • Thus for a 1 unit change in X, Y rises by $e^{0.4933914} = 1.638$ • $e^{0.4933914}$ is the antilog of 0.4933914


sociology 💥


15

Steady increase	But exponential increase is temporary	Wuhan, with prediction based on 1st 19 days			
The log of cases rises by 0.3058 per day This means cases rises by a factor of $e^{0.3058} = 1.358$ The increase is 1.358 - 1 = 0.358, or almost 36% per day Implies a doubling about every 2.6 days	Exponential increase cannot go on indefinitely Even if nothing is done, the rate of increase will decline as fewer people are left unexposed And interventions (isolation, tracing) will reduce the rate See China, for example	Wuhan, prediction on days 1/19 Wuhan, prediction on days 1/19			
sociology 🕅	sociology 🗙	sociology X			

Summary

If there is a constant rate of increase, logs give us straight lines

Graph the log, or use a log scale on the Y-axis

Log regression allows us to estimate the rate

Exponential increase isn't forever, but modelling the exponential helps us see where the rate starts to drop

Code available here: http://teaching.sociology.ul.ie/so5032/irecovid.do

sociology 💥