UL Summer School: Categorical Data Analysis

Brendan Halpin, Sociology
2022 Summer School

Outline

Association in tables

Logistic regression

Multinomial logistic regression

Ordinal logit
sociology

Association in tables

Association in tables

Association in tables

- Tables display association between categorical variables
- Made evident by patterns of percentages
- Tested by χ^{2} test

Association

How do we characterise association?

- Is there association?
-What form does it take?
- How strong is it?

Q1: Is there association?

- This is what the χ^{2} test determines - evidence of association
- Does not characterise nature or size!
- Depends on N
- Other tests exist, such as Fisher's exact test

Q2: What form does it take?

- Examine percentages
- Compare observed and expected: residuals
- Standardised residuals: behave like z, i.e., should lie in range -2 : +2 about 95% of time, if independence is true

$$
\begin{gathered}
Z=\frac{O-E}{\sqrt{E(1-\text { row proportion })(1-\text { col proportion })}} \\
=\frac{O-E}{\sqrt{E\left(1-\frac{R}{T}\right)\left(1-\frac{C}{T}\right)}}
\end{gathered}
$$

Q3: How strong is it?

Many possible measures of association

- Difference in proportions
- Ratio of proportions or "relative rate"
- Ratio of odds or "odds ratio"
(see http://teaching.sociology.ul.ie:3838/apps/orrr/)

Ordinal variables

- Ordinal variables may have more structured association
- Simpler pattern, analogous to correlation
- X high, Y high; X low, Y low

Characterising ordinal association

- Focus on concordant/discordant pairs
- Pairs of cases which differ on both variables
- Concordant: case that is higher on one variable also higher on other
- Discordant: higher on one, lower on the other
- Gamma, $\hat{\gamma}=\frac{C-D}{C+D}$
- Values range $-1 \leq \gamma \leq+1$
- Like correlation in interpretation
- Has asymptotic standard error \Rightarrow t-test possible

Higher order tables

- We can consider association in higher-order tables, e.g., 3-way
- Is the association between A and B the same for different values of C ?
- Does the association between A and B disappear1 if we control for C ?

Simpson's paradox etc.

- Scouting example (ch 10): negative association between scouting and delinquency
- Control for family characteristics (church attendance) and it disappears
- See also death penalty example: note pattern of odds ratios
- Cochran-Mantel-Haenszel test: $2 \times 2 \times k$ table
- H_{0} : within each of $k 2 \times 2$ panels, $O R=1$

Scouting 1/3

scout	delinq		
	Yes	No	Total
Yes	36	364	400
No	60	340	400
Total	96	704	800

Scouting 2/3

scout	church and delinq					
	--- Low --		-- Med ---		-- High --	
	Yes	No	Yes	No	Yes	No
Yes	10	40	18	132	8	192
No	40	160	18	132	2	48

Scouting 3/3

	church			Total
scout	Low	Med	High \|	
Yes	50	150	200 \|	400
No	200	150	50 \|	400
Total	250	300	250 \|	800

Loglinear modelling

- More complex questions and larger tables can be handled by loglinear modelling
- Treats all variables as "dependent variables"
- Can test null hypothesis of independence, as well as specified patterns of interaction

Logistic regression

Logistic regression

Logistic regression

- OLS regression requires interval dependent variable
- Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials
- Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- Particular difficulties with multiple explanatory variables.

Linear Probability Model

- OLS gives the "linear probability model" in this case:

$$
\operatorname{Pr}(Y=1)=a+b X
$$

- data is $0 / 1$, prediction is probability
- Assumptions violated, but if predicted probabilities in range $0.2-0.8$, not too bad
- See credit card example: becomes unrealistic only at very low or high income

Logistic transformation

- Probability is bounded [0:1]
- OLS predicted value is unbounded
- How to transform probability to $-\infty$: ∞ range?
- Odds: $\frac{p}{1-p}$ - range is $0: \infty$
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty: \infty$

Logistic regression

- Logistic regression uses this as the dependent variable:

$$
\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)=a+b X
$$

- Alternatively:

$$
\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}=e^{a+b X}
$$

- Or:

$$
\operatorname{Pr}(Y=1)=\frac{e^{a+b X}}{1+e^{a+b X}}=\frac{1}{1+e^{-a-b X}}
$$

Parameters

- The b parameter is the effect of a unit change in X on $\log \left(\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right)$
- This implies a multiplicative change of e^{b} in $\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}$, in the Odds
- Thus an odds ratio
- But the effect of b on P depends on the level of b
- See credit card example
- Death penalty example allows us to see the link between odds ratios and estimates

Logistic regression

Inference

Inference

- In practice, inference is similar to OLS though based on a different logic
- For each explanatory variable, $H_{0}: \beta=0$ is the interesting null
- $z=\frac{\hat{\beta}}{S E}$ is approximately normally distributed (large sample property)
- More usually, the Wald test is used: $\left(\frac{\hat{\beta}}{S E}\right)^{2}$ has a χ^{2} distribution with one degree of freedom

Likelihood ratio tests

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where I_{0} is the likelihood of the model without X_{j}, and I_{1} that with it, the quantity

$$
-2\left(\log \frac{I_{0}}{I_{1}}\right)=-2\left(\log I_{0}-\log I_{1}\right)
$$

is χ^{2} distributed with one degree of freedom

LR test in practice

qui logit univ c.age\#\#c.age i.sex
est store base
logit univ c.age\#\#.age i.sex i.gold
Iteration 0: log likelihood $=-258.63227$ Iteration 1: \quad log likelihood $=-235.46647$ Iteration 2: \quad log likelihood $=-224.18885$ Iteration 3: $\quad \log$ likelihood $=-223.79947$ Iteration 4: $\quad \log$ likelihood $=-223.79762$ Iteration 5: $\quad \log$ likelihood $=-223.79762$
Logistic regression
Number of obs $=998$ LR chi2 (7) $=69.67$ Prob > chi2 $=0.0000$ Pseudo R2 $=0.1347$

univ	Coefficient	Std. err.	z	$p>\|z\|$	[95\% conf. interval]	
age	.2135413	.0556893	3.83	0.000	.1043923	.3226903
c.age\#c.age	-.0025071	.0006445	-3.89	0.000	-.0037704	-.0012439
sex						
female	-.5470423	.2591863	-2.11	0.035	-1.055038	-.0390465
gold						
RNM	-1.241583	.5610744	-2.21	0.027	-2.341268	-.1418974
Prop	-1.388413	.3982332	-3.49	0.000	-2.168936	-.6078902
Skilled	-1.519483	.3206528	-4.74	0.000	-2.147951	-.8910149
Un/semi-skilled	-2.334295	.4599521	-5.08	0.000	-3.235785	-1.432806
_cons	-5.155577	1.135296	-4.54	0.000	-7.380716	-2.930438

lrtest base

Likelihood-ratio test
Assumption: base nested within
LR chi2 (4) $=43.01$
Prob > chi2 $=0.0000$

sociology

Nested models

- More generally, $-2\left(\log \frac{l_{0}}{1_{1}}\right)$ tests nested models: where model 1 contains all the variables in model 0 , plus m extra ones, it tests the null that all the extra β s are zero (χ^{2} with m df)
- If we compare a model against the null model (no explanatory variables, it tests

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0
$$

- Strong analogy with F test in OLS

Logistic regression

Maximum likelihood

Maximum likelihood estimation

- What is this "likelihood"?
- Unlike OLS, logistic regression (and many, many other models) are extimated by maximum likelihood estimation
- In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data
- OLS can be ML estimated, and yields exactly the same results

Iterative search

- Sometimes the values can be chosen analytically
- A likelihood function is written, defining the probability of observing the actual data given parameter estimates
- Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set
- Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations)
- Extremely flexible, allows estimation of a vast range of complex models within a single framework

Likelihood as a quantity

- Either way, a given model yields a specific maximum likelihood for a give data set
- This is a probability, henced bounded [0:1]
- Reported as log-likelihood, hence bounded [- : 0]
- Thus is usually a large negative number
- Where an iterative solution is used, likelihood at each stage is usually reported - normally getting nearer 0 at each step

Logistic regression

Tabular data

Tabular data

- If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table
- If we think of it as a table where each cell contains n yeses and $m-n$ noes (n successes out of m trials) we can fit grouped logistic regression
- n successes out of m trials implies a binomial distribution of degree m

$$
\log \frac{n}{m-n}=\alpha+\beta X
$$

- The parameter estimates will be exactly the same as if the data were treated individually

Tabular data and goodness of fit

- But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell
- If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value)
- Where l_{i} is the likelihood of the current model, and I_{s} is the likelihood of the "saturated model" the test statistic is

$$
-2\left(\log \frac{I_{i}}{I_{s}}\right)
$$

- The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table)
- The test has $d f$ of number of settings less number of parameters estimated, and is χ^{2} distributed

Logistic regression

Goodness of fit and accuracy of classification

Fit with individual data

- Where the number of "settings" (combinations of values of explanatory variables) is large, this approach to fit is not feasible
- Cannot be used with continuous covariates
- Hosmer-Lemeshow statistic attempts to create an analogy
- Divide sample into deciles of predicted probability
- Calculate a fit measure based on observed and predicted numbers in the ten groups
- Simulation shows this is χ^{2} distributed with 2 df
- Not a perfect solution, sensitive to how the cuts are made
- Pseudo- R^{2} measures exist, but none approaches the clean interpretation as in OLS
- See http:

```
//www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
```


Predicting outcomes

- Another way of assessing the adequacy of a logit model is its accuracy of classification:

$\left.$| | True yes |
| :---: | :---: |
| | True no |
| Predicted yes | a | c \right\rvert\,

- Proportion correctly classified: $\frac{a+d}{a+b+c+d}$
- Sensitivity: $\frac{a}{a+b}$; Specificity: $\frac{d}{c+d}$
- False positive: $\frac{c}{a+c}$; False negative: $\frac{b}{b+d}$
- Stata: estat class

Some problems

- Zero cells in tables can cause problems: no yeses or no noes for particular settings
- Not automatically a problem but can give rise to attempts to estimate a parameter as $-\infty$ or $+\infty$
- If this happens, you will see a large parameter estimate and a huge standard error
- In individual data, sometimes certain combinations of variables have only successes or only failures
- In Stata, these cases are dropped from estimation - you need to be aware of this as it changes the interpretation (you may wish to drop one of the offending variables instead)

Multinomial logistic regression

Baseline-category extension of binary

 logistic
What if we have multiple possible outcomes, not just two?

- Logistic regression is binary: yes/no
- Many interesting dependent variables have multiple categories
- voting intention by party
- first destination after second-level education
- housing tenure type
- We can use binary logistic by
- recoding into two categories
- dropping all but two categories
- But that would lose information

Multinomial logistic regression

- Another idea:
- Pick one of the J categories as baseline
- For each of $J-1$ other categories, fit binary models contrasting that category with baseline
- Multinomial logistic effectively does that, fitting $J-1$ models simultaneously

$$
\log \frac{P(Y=j)}{P(Y=J)}=\alpha_{j}+\beta_{j} X, j=1, \ldots, c-1
$$

- Which category is baseline is not critically important, but better for interpretation if it is reasonably large and coherent (i.e. "Other" is a poor choice)

$J-1$ contrasts

Compare each of J - categories against a baseline

Predicting p from formula

$$
\begin{gathered}
\log \frac{\pi_{j}}{\pi_{J}}=\alpha_{j}+\beta_{j} X \\
\frac{\pi_{j}}{\pi_{J}}=e^{\alpha_{j}+\beta_{j} X} \\
\pi_{j}=\pi_{J} e^{\alpha_{j}+\beta_{j} X} \\
\pi_{J}=1-\sum_{k=1}^{J-1} \pi_{k}=1-\pi_{J} \sum_{k=1}^{J-1} e^{\alpha_{k}+\beta_{k} X} \\
\pi_{J}=\frac{1}{1+\sum_{k=1}^{J-1} e^{\alpha_{k}+\beta_{k} X}}=\frac{e^{\alpha_{j}+\beta_{j} X}}{\sum_{k=1}^{J} e^{\alpha_{k}+\beta_{k} X}} \\
\Rightarrow \pi_{j}=\frac{1}{\sum_{k=1}^{J} e^{\alpha_{k}+\beta_{k} X}}
\end{gathered}
$$

Multinomial logistic regression

Interpreting example, inference

Example

- Let's attempt to predict housing tenure
- Owner occupier
- Local authority renter
- Private renter
- using age and employment status
- Employed
- Unemployed
- Not in labour force
- mlogit ten3 age i.eun

Stata output

Multinomial logistic regression	Number of obs	$=$	15490
	LR chi2 (6)	$=$	1256.51
	Prob $>$ chi2	$=$	0.0000
Log likelihood $=-10204.575$	Pseudo R2	$=$	0.0580

Interpretation

- Stata chooses category 1 (owner) as baseline
- Each panel is similar in interpretation to a binary regression on that category versus baseline
- Effects are on the log of the odds of being in category j versus the baseline

Inference

- At one level inference is the same:
- Wald test for $H_{0}: \beta_{k}=0$
- LR test between nested models
- However, each variable has $J-1$ parameters
- Better to consider the LR test for dropping the variable across all contrasts: $H_{0}: \forall j: \beta_{j} k=0$
- Thus retain a variable even for contrasts where it is insignificant as long as it has an effect overall
- Which category is baseline affects the parameter estimates but not the fit (log-likelihood, predicted values, LR test on variables)

Predicting ordinal outcomes

- While mlogit is attractive for multi-category outcomes, it is imparsimonious
- For nominal variables this is necessary, but for ordinal variables there should be a better way
- We consider three useful models
- Stereotype logit
- Proportional odds logit
- Continuation ratio or sequential logit
- Each approaches the problem is a different way

Ordinal logit

Stereotype logit

Stereotype logit

- If outcome is ordinal we should see a pattern in the parameter estimates:

Ordered parameter estimates

- Low education is the baseline
- The effect of age:
- -0.045 for high vs low
- -0.038 for medium vs low
- 0.000, implicitly for low vs low
- Sex: -0.435, -0.129 and 0.000
- Stereotype logit fits a scale factor ϕ to the parameter estimates to capture this pattern

Scale factor

- Compare mlogit:

$$
\log \frac{P(Y=j)}{P(Y=J)}=\alpha_{j}+\beta_{1 j} X_{1}+\beta_{2 j} X, j=1, \ldots, J-1
$$

- with slogit

$$
\log \frac{P(Y=j)}{P(Y=J)}=\alpha_{j}+\phi_{j} \beta_{1} X_{1}+\phi_{j} \beta_{2} X_{2}, \quad j=1, \ldots, J-1
$$

- ϕ is zero for the baseline category, and 1 for the maximum
- It won't necessarily rank your categories in the right order: sometimes the effects of other variables do not coincide with how you see the ordinality

Slogit example

- Age and sex predicting education for those $30 y r s-p l u s$

(educ=Lo is the base outcome)

Interpreting ϕ

- With low education as the baseline, we find ϕ estimates thus:

High	1
Medium	0.786
Low	0

- That is, averaging across the variables, the effect of medium vs low is 0.786 times that of high vs low
- The /theta terms are the $\alpha_{j} \mathrm{~s}$

Surprises from slogit

- slogit is not guaranteed to respect the order
- if we include younger people as well as those over 30 , lifecourse and cohort effects mean age has a non-linear effect
- \Rightarrow changes the order of ϕ

(educ= Lg is the base outcome)

Recover by including non-linear age

Stereotype logistic regression				Number of obs Wald chi2(3)		$\begin{array}{r} 14321 \\ 984.66 \end{array}$
Log likelihood	$=-13581.04$					0.0000
(1) [phi1_1]_cons = 1						
educ	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathbf{z}\|$	[95\% Conf. Interval]	
age	-. 1275568	. 0071248	-17.90	0.000	-. 1415212	-. 1135924
c.age\#c.age	. 0015888	. 0000731	21.74	0.000	. 0014456	. 0017321
2.sex	. 3161976	. 0380102	8.32	0.000	. 2416989	. 3906963
/phi1_1	1 (constrained)			0.000	. 4600854	. 6478639
/phi1_2	. 5539747	. 0479035	11.56			
/phi1_3		(base outcome)				
/theta1	-1.948551	. 1581395	-12.32	0.000	-2.258499	-1.638604
/theta2	-2.154373	. 078911	-27.30	0.000	-2.309036	-1.999711
/theta3	0	(base outc				

(educ=Lo is the base outcome)

sociology

Stereotype logit

- Stereotype logit treats ordinality as ordinality in terms of the explanatory variables
- There can be therefore disagreements between variables about the pattern of ordinality
- It can be extended to more dimensions, which makes sense for categorical variables whose categories can be thought of as arrayed across more than one dimension
- See Long and Freese, Ch 6.8

Ordinal logit

Proportional odds

The proportional odds model

- The most commonly used ordinal logistic model has another logic
- It assumes the ordinal variable is based on an unobserved latent variable
- Unobserved cutpoints divide the latent variable into the groups indexed by the observed ordinal variable
- The model estimates the effects on the log of the odds of being higher rather than lower across the cutpoints

The model

- For $j=1$ to $J-1$,

$$
\log \frac{P(Y>j)}{P(Y<=j)}=\alpha_{j}+\beta x
$$

- Only one β per variable, whose interpretation is the effect on the odds of being higher rather than lower
- One α per contrast, taking account of the fact that there are different proportions in each one

$J-1$ contrasts again, but different

But rather than compare categories against a baseline it splits into high and low, with all the data involved each time

An example

- Using data from the BHPS, we predict the probability of each of 5 ordered responses to the assertion "homosexual relationships are wrong"
- Answers from 1: strongly agree, to 5: strongly disagree
- Sex and age as predictors - descriptively women and younger people are more likely to disagree (i.e., have high values)

Ordered logistic: Stata output

sociology

Interpretation

- The betas are straightforward:
- The effect for women is .8339 . The OR is $e^{.8339}$ or 2.302
- Women's odds of being on the "approve" rather than the "disapprove" side of each contrast are 2.302 times as big as men's
- Each year of age reduced the log-odds by . 03716 (OR 0.964).
- The cutpoints are odd: Stata sets up the model in terms of cutpoints in the latent variable, so they are actually $-\alpha_{j}$

Linear predictor

- Thus the $\alpha+\beta X$ or linear predictor for the contrast between strongly agree (1) and the rest is ($2-5$ versus 1)

$$
3.834+0.8339 \times \text { female }-0.03716 \times \text { age }
$$

- Between strongly disagree (5) and the rest (1-4 versus 5)

$$
-0.3371+0.8339 \times \text { female }-0.03716 \times \text { age }
$$

and so on.

Predicted log odds

Predicted log odds per contrast

- The predicted log-odds lines are straight and parallel
- The highest relates to the $1-4$ vs 5 contrast
- Parallel lines means the effect of a variable is the same across all contrasts
- Exponentiating, this means that the multiplicative effect of a variable is the same on all contrasts: hence "proportional odds"
- This is a key assumption

Predicted probabilities relative to contrasts

Predicted probabilities relative to contrasts

- We predict the probabilities of being above a particular contrast in the standard way
- Since age has a negative effect, downward sloping sigmoid curves
- Sigmoid curves are also parallel (same shape, shifted left-right)
- We get probabilities for each of the five states by subtraction

Inference

- The key elements of inference are standard: Wald tests and LR tests
- Since there is only one parameter per variable it is more straightforward than MNL
- However, the key assumption of proportional odds (that there is only one parameter per variable) is often wrong.
- The effect of a variable on one contrast may differ from another
- Long and Freese's SPost Stata add-on contains a test for this

Testing proportional odds

- It is possible to fit each contrast as a binary logit
- The brant command does this, and tests that the parameter estimates are the same across the contrast
- It needs to use Stata's old-fashioned xi: prefix to handle categorical variables:

```
xi: ologit ropfamr i.rsex rage
brant, detail
```


Brant test output

Estimated	coefficients from j-1 binary regressions			
	$y>1$	$y>2$	$y>3$	$\mathrm{y}>4$
_Irsex_2	1.0198492	. 91316651	. 76176797	. 8150246
rage	-. 02716537	-. 03064454	-. 03652048	-. 04571137
_cons	3. 2067856	2.5225826	1.1214759	-. 00985108

Brant Test of Parallel Regression Assumption
Variable | chi2 p>chi2 df
-------------+---------------------------
All | $101.13 \quad 0.000 \quad 6$
_Irsex_2 | $15.88 \quad 0.001 \quad 3$

| rage 1 | $81.07 \quad 0.000 \quad 3$ |
| :--- | :--- | :--- | :--- |

A significant test statistic provides evidence that the parallel regression assumption has been violated.

sociology

What to do?

- In this case the assumption is violated for both variables, but looking at the individual estimates, the differences are not big
- It's a big data set (14 k cases) so it's easy to find departures from assumptions
- However, the departures can be meaningful. In this case it is worth fitting the "Generalised Ordinal Logit" model

Generalised Ordinal Logit

- This extends the proportional odds model in this fashion

$$
\log \frac{P(Y>j)}{P(Y<=j)}=\alpha_{j}+\beta_{j} x
$$

- That is, each variable has a per-contrast parameter
- At the most imparsimonious this is like a reparameterisation of the MNL in ordinal terms
- However, can constrain β s to be constant for some variables
- Get something intermediate, with violations of PO accommodated, but the parsimony of a single parameter where that is acceptable
- Download Richard William's gologit2 to fit this model:

```
ssc install gologit2
```


Ordinal logit

Sequential logit

Sequential logit

- Different ways of looking at ordinality suit different ordinal regression formations
- categories arrayed in one (or more) dimension(s): slogit
- categories derived by dividing an unobserved continuum: ologit etc
- categories that represent successive stages: the continuation-ratio model
- Where you get to higher stages by passing through lower ones, in which you could also stay
- Educational qualification: you can only progress to the next stage if you have completed all the previous ones
- Promotion: you can only get to a higher grade by passing through the lower grades

"Continuation ratio" model

- Here the question is, given you reached level j, what is your chance of going further:

$$
\log \frac{P(Y>j)}{P(Y=j)}=\alpha+\beta X_{j}
$$

- For each level, the sample is anyone in level j or higher, and the outcome is being in level $j+1$ or higher
- That is, for each contrast except the lowest, you drop the cases that didn't make it that far

$J-1$ contrasts again, again different

But rather than
splitting high and
low, with all the data involved each time, it drops cases below the baseline

Fitting CR

- This model implies one equation for each contrast
- Can be fitted by hand by defining outcome variable and subsample for each contrast (ed has 4 values):

```
gen con1 = ed>1
gen con2 = ed>2
replace con2 = . if ed<=1
gen con3 = ed>3
replace con3 = . if ed<=2
logit con1 odoby i.osex
logit con2 odoby i.osex
logit con3 odoby i.osex
```


seqlogit

- Maarten Buis's seqlogit does it more or less automatically:

```
seqlogit ed odoby i.osex, tree(1 : 2 3 4, 2 : 3 4 , 3 : 4)
```

- you need to specify the contrasts
- You can impose constraints to make parameters equal across contrasts

