

UL Summer School: Categorical Data Analysis

Brendan Halpin, Sociology 2022 Summer School

Outline

Association in tables

Logistic regression

Multinomial logistic regression

Ordinal logit

Association in tables

Association in tables

Association in tables

- Tables display association between categorical variables
- Made evident by patterns of percentages
- Tested by χ^2 test

Association

How do we characterise association?

- Is there association?
- · What form does it take?
- How strong is it?

Q1: Is there association?

- This is what the χ^2 test determines evidence of association
- · Does not characterise nature or size!
- Depends on N
- · Other tests exist, such as Fisher's exact test

Q2: What form does it take?

- Examine percentages
- · Compare observed and expected: residuals
- Standardised residuals: behave like z, i.e., should lie in range -2:+2 about 95% of time, if independence is true

$$Z = \frac{O - E}{\sqrt{E(1 - \text{row proportion})(1 - \text{col proportion})}}$$
$$= \frac{O - E}{\sqrt{E(1 - \frac{R}{T})(1 - \frac{C}{T})}}$$

Ę

Q3: How strong is it?

Many possible measures of association

- Difference in proportions
- Ratio of proportions or "relative rate"
- · Ratio of odds or "odds ratio"

```
(see http://teaching.sociology.ul.ie:3838/apps/orrr/)
```


Ordinal variables

- · Ordinal variables may have more structured association
- Simpler pattern, analogous to correlation
- X high, Y high; X low, Y low

Characterising ordinal association

- · Focus on concordant/discordant pairs
- · Pairs of cases which differ on both variables
 - · Concordant: case that is higher on one variable also higher on other
 - · Discordant: higher on one, lower on the other
- Gamma, $\hat{\gamma} = \frac{C-D}{C+D}$
- Values range $-1 \le \gamma \le +1$
- Like correlation in interpretation
- Has asymptotic standard error ⇒ t-test possible

Higher order tables

- We can consider association in higher-order tables, e.g., 3-way
- Is the association between A and B the same for different values of C?
- Does the association between A and B disappear1 if we control for C?

Ç

Simpson's paradox etc.

- Scouting example (ch 10): negative association between scouting and delinquency
- Control for family characteristics (church attendance) and it disappears
- · See also death penalty example: note pattern of odds ratios
- Cochran-Mantel-Haenszel test: $2 \times 2 \times k$ table
- H_0 : within each of k 2 × 2 panels, OR = 1

Scouting 1/3

	0	lelinq	
scout	Ye	es No	o Total
	+		+
Yes	3	36 364	400
No	6	340	400
	+		-+
Total	9	96 704	ł 800

Scouting 2/3

	1			church	and	delinq			
		Low			Med			High	
scout		Yes	No	у У	es	No	Υe	es	No
	+-								
Yes		10	4()	18	132		8	192
No		40	160)	18	132		2	48

Scouting 3/3

	1	church		
scout	Low	Med	High	Total
	-+			-+
Yes	J 50	150	200	400
No	200	150	50	400
	+			+
Total	250	300	250	800

Loglinear modelling

- More complex questions and larger tables can be handled by loglinear modelling
- · Treats all variables as "dependent variables"
- Can test null hypothesis of independence, as well as specified patterns of interaction

Logistic regression

Logistic regression

Logistic regression

- · OLS regression requires interval dependent variable
- · Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials
- Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- Particular difficulties with multiple explanatory variables.

Linear Probability Model

• OLS gives the "linear probability model" in this case:

$$Pr(Y = 1) = a + bX$$

- data is 0/1, prediction is probability
- Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too bad
- · See credit card example: becomes unrealistic only at very low or high income

Logistic transformation

- Probability is bounded [0 : 1]
- · OLS predicted value is unbounded
- How to transform probability to $-\infty : \infty$ range?
- Odds: $\frac{p}{1-p}$ range is 0 : ∞
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty : \infty$

Logistic regression

Logistic regression uses this as the dependent variable:

$$\log\left(\frac{Pr(Y=1)}{1-Pr(Y=1)}\right)=a+bX$$

Alternatively:

$$\frac{Pr(Y=1)}{1-Pr(Y=1)}=e^{a+bX}$$

• Or:

$$Pr(Y = 1) = \frac{e^{a+bX}}{1 + e^{a+bX}} = \frac{1}{1 + e^{-a-bX}}$$

Parameters

- The b parameter is the effect of a unit change in X on $\log \left(\frac{Pr(Y=1)}{1-Pr(Y=1)} \right)$
- This implies a multiplicative change of e^b in $\frac{Pr(Y=1)}{1-Pr(Y=1)}$, in the Odds
- · Thus an odds ratio
- But the effect of b on P depends on the level of b
- See credit card example
- Death penalty example allows us to see the link between odds ratios and estimates

Logistic regression

Inference

Inference

- In practice, inference is similar to OLS though based on a different logic
- For each explanatory variable, $H_0: \beta = 0$ is the interesting null
- $z = \frac{\hat{\beta}}{SE}$ is approximately normally distributed (large sample property)
- More usually, the Wald test is used: $\left(\frac{\hat{\beta}}{SE}\right)^2$ has a χ^2 distribution with one degree of freedom

Likelihood ratio tests

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where I_0 is the likelihood of the model without X_j , and I_1 that with it, the quantity

$$-2\left(\log\frac{l_0}{l_1}\right) = -2\left(\log l_0 - \log l_1\right)$$

is χ^2 distributed with one degree of freedom

LR test in practice

```
. qui logit univ c.age##c.age i.sex
```

. est store base

. logit univ c.age##c.age i.sex i.gold

| Iteration 0: | log likelihood = -258.63227 | Iteration 1: | log likelihood = -258.66647 | Iteration 2: | log likelihood = -224.18885 | Iteration 3: | log likelihood = -223.79762 | Iteration 4: | log likelihood = -223.79762 | Iteration 5: | log likelihood = -233.79762 | Iteration 5: | log

Logistic regression

Number of obs = 998 LR chi2(7) = 69.67 Prob > chi2 = 0.0000

Pseudo R2 = 0.1347

Log likelihood = -223.79762

univ	Coefficient	Std. err.	z	P > z	[95% conf.	interval]
age	. 2135413	.0556893	3.83	0.000	.1043923	.3226903
c.age#c.age	0025071	.0006445	-3.89	0.000	0037704	0012439
sex female	5470423	.2591863	-2.11	0.035	-1.055038	0390465
g o ld RNM Prop	-1.241583 -1.388413	.5610744	-2.21	0.027	-2.341268 -2.168936	1418974 6078902
Skilled	-1.519483	.3206528	-4.74	0.000	-2.147951	8910149
Un/semi-skilled	-2.334295	.4599521	-5.08	0.000	-3.235785	-1.432806
_cons	-5 . 155577	1.135296	-4.54	0.000	-7.380716	-2.930438

[.] Irtest base

Likelihood-ratio test Assumption: base mested within .

LR chi2(4) = 43.01 Prob > chi2 = 0.0000

Nested models

- More generally, $-2\left(\log\frac{l_0}{l_1}\right)$ tests nested models: where model 1 contains all the variables in model 0, plus m extra ones, it tests the null that all the extra β s are zero (χ^2 with m df)
- If we compare a model against the null model (no explanatory variables, it tests

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

Strong analogy with F test in OLS

Logistic regression

Maximum likelihood

Maximum likelihood estimation

- · What is this "likelihood"?
- Unlike OLS, logistic regression (and many, many other models) are extimated by *maximum likelihood estimation*
- In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data
- OLS can be ML estimated, and yields exactly the same results

Iterative search

- Sometimes the values can be chosen analytically
 - A likelihood function is written, defining the probability of observing the actual data given parameter estimates
 - Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set
- Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations)
- Extremely flexible, allows estimation of a vast range of complex models within a single framework

Likelihood as a quantity

- Either way, a given model yields a specific maximum likelihood for a give data set
- This is a probability, henced bounded [0 : 1]
- Reported as log-likelihood, hence bounded $[-\infty:0]$
- Thus is usually a large negative number
- Where an iterative solution is used, likelihood at each stage is usually reported – normally getting nearer 0 at each step

Logistic regression

Tabular data

Tabular data

- If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table
- If we think of it as a table where each cell contains n yeses and m-n noes (n successes out of m trials) we can fit grouped logistic regression
- n successes out of m trials implies a binomial distribution of degree m

$$\log \frac{n}{m-n} = \alpha + \beta X$$

 The parameter estimates will be exactly the same as if the data were treated individually

Tabular data and goodness of fit

- But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell
- If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value)
- Where I_i is the likelihood of the current model, and I_s is the likelihood of the "saturated model" the test statistic is

$$-2\left(\log\frac{I_i}{I_s}\right)$$

- The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table)
- The test has df of number of settings less number of parameters estimated, and is χ^2 distributed

Logistic regression

Goodness of fit and accuracy of classification

Fit with individual data

- Where the number of "settings" (combinations of values of explanatory variables) is large, this approach to fit is not feasible
- Cannot be used with continuous covariates
- · Hosmer-Lemeshow statistic attempts to create an analogy
 - · Divide sample into deciles of predicted probability
 - Calculate a fit measure based on observed and predicted numbers in the ten groups
 - Simulation shows this is χ^2 distributed with 2 df
 - · Not a perfect solution, sensitive to how the cuts are made
- Pseudo-R² measures exist, but none approaches the clean interpretation as in OLS
- See http:

```
//www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
```


Predicting outcomes

 Another way of assessing the adequacy of a logit model is its accuracy of classification:

	True yes	True no
Predicted yes	а	С
Predicted no	b	d

- Proportion correctly classified: $\frac{a+d}{a+b+c+d}$
- Sensitivity: $\frac{a}{a+b}$; Specificity: $\frac{d}{c+d}$
- False positive: $\frac{c}{a+c}$; False negative: $\frac{b}{b+d}$
- Stata: estat class

Some problems

- Zero cells in tables can cause problems: no yeses or no noes for particular settings
- Not automatically a problem but can give rise to attempts to estimate a parameter as $-\infty$ or $+\infty$
- If this happens, you will see a large parameter estimate and a huge standard error
- In individual data, sometimes certain combinations of variables have only successes or only failures
- In Stata, these cases are dropped from estimation you need to be aware of this as it changes the interpretation (you may wish to drop one of the offending variables instead)

Multinomial logistic regression

Baseline-category extension of binary logistic

What if we have multiple possible outcomes, not just two?

- · Logistic regression is binary: yes/no
- Many interesting dependent variables have multiple categories
 - · voting intention by party
 - first destination after second-level education
 - · housing tenure type
- We can use binary logistic by
 - · recoding into two categories
 - · dropping all but two categories
- But that would lose information

Multinomial logistic regression

- · Another idea:
- Pick one of the J categories as baseline
- For each of J-1 other categories, fit binary models contrasting that category with baseline
- Multinomial logistic effectively does that, fitting J-1 models simultaneously

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \beta_j X, \quad j=1,\ldots,c-1$$

 Which category is baseline is not critically important, but better for interpretation if it is reasonably large and coherent (i.e. "Other" is a poor choice)

J-1 contrasts

Compare each of J- categories against a baseline

Predicting p from formula

$$\log \frac{\pi_j}{\pi_J} = \alpha_j + \beta_j X$$

$$\frac{\pi_j}{\pi_J} = e^{\alpha_j + \beta_j X}$$

$$\pi_j = \pi_J e^{\alpha_j + \beta_j X}$$

$$\pi_J = 1 - \sum_{k=1}^{J-1} \pi_k = 1 - \pi_J \sum_{k=1}^{J-1} e^{\alpha_k + \beta_k X}$$

$$\pi_J = \frac{1}{1 + \sum_{k=1}^{J-1} e^{\alpha_k + \beta_k X}} = \frac{1}{\sum_{k=1}^{J} e^{\alpha_k + \beta_k X}}$$

$$\Rightarrow \pi_j = \frac{e^{\alpha_j + \beta_j X}}{\sum_{k=1}^{J} e^{\alpha_k + \beta_k X}}$$

Multinomial logistic regression

Interpreting example, inference

Example

- · Let's attempt to predict housing tenure
 - · Owner occupier
 - · Local authority renter
 - · Private renter
- · using age and employment status
 - Employed
 - Unemployed
 - · Not in labour force
- mlogit ten3 age i.eun

Stata output

```
Multinomial logistic regression
                                      Number of obs = 15490
                                      LR chi2(6) = 1256.51
                                      Prob > chi2 = 0.0000
Log likelihood = -10204.575
                                      Pseudo R2
                                                   = 0.0580
      ten3 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
          (base outcome)
      age | -.0103121 .0012577 -8.20 0.000 -.012777 -.0078471
       eun
           1.990774 .1026404 19.40 0.000 1.789603 2.191946
            1.25075 .0522691
                              23.93 0.000
                                          1.148304 1.353195
     cons | -1.813314 .0621613 -29.17 0.000 -1.935148 -1.69148
      age | -.0389969 .0018355 -21.25 0.000 -.0425945 -.0353994
       eun
       2 | .4677734 .1594678 2.93 0.003 .1552223 .7803245
             .4632419 .063764 7.26 0.000
                                          .3382668 .5882171
     cons | -.76724 .0758172 -10.12 0.000 -.915839 -.6186411
```

Interpretation

- Stata chooses category 1 (owner) as baseline
- Each panel is similar in interpretation to a binary regression on that category versus baseline
- Effects are on the log of the odds of being in category *j* versus the baseline

Inference

- · At one level inference is the same:
 - Wald test for H_0 : $\beta_k = 0$
 - · LR test between nested models
- However, each variable has J-1 parameters
- Better to consider the LR test for dropping the variable across all contrasts: $H_0: \forall j: \beta_j k = 0$
- Thus retain a variable even for contrasts where it is insignificant as long as it has an effect overall
- Which category is baseline affects the parameter estimates but not the fit (log-likelihood, predicted values, LR test on variables)

Predicting ordinal outcomes

- While mlogit is attractive for multi-category outcomes, it is imparsimonious
- For nominal variables this is necessary, but for ordinal variables there should be a better way
- · We consider three useful models
 - Stereotype logit
 - Proportional odds logit
 - · Continuation ratio or sequential logit
- · Each approaches the problem is a different way

Ordinal logit

Stereotype logit

Stereotype logit

• If outcome is ordinal we should see a pattern in the parameter estimates:

```
. mlogit educ c.age i.sex if age>30
[...]
Multinomial logistic regression
                                        Number of obs = 10905
                                        LR chi2(4) = 1171.90
                                        Prob > chi2 = 0.0000
Log likelihood = -9778.8701
                                        Pseudo R2
                                                     = 0.0565
      educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]
Ηi
     age | -.0453534 .0015199 -29.84 0.000
                                            - .0483323 - .0423744
     2.sex | -.4350524 .0429147 -10.14 0.000 -.5191636 -.3509411
     _cons | 2.503877 .086875 28.82 0.000
                                               2.333605 2.674149
Med
       age | -.0380206 .0023874 -15.93
                                      0.000
                                             -.0426999 -.0333413
     2.sex | -.1285718 .0674878 -1.91 0.057
                                             -.2608455 .0037019
     _cons | .5817336 .1335183 4.36 0.000
                                            .3200425 .8434246
      (base outcome)
I.o.
```


Ordered parameter estimates

- · Low education is the baseline
- · The effect of age:
 - -0.045 for high vs low
 - -0.038 for medium vs low
 - 0.000, implicitly for low vs low
- Sex: -0.435, -0.129 and 0.000
- Stereotype logit fits a scale factor ϕ to the parameter estimates to capture this pattern

Scale factor

• Compare mlogit:

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \beta_{1j} X_1 + \beta_{2j} X, \ j=1,\ldots,J-1$$

• with slogit

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \phi_j \beta_1 X_1 + \phi_j \beta_2 X_2, \quad j=1,\ldots,J-1$$

- ϕ is zero for the baseline category, and 1 for the maximum
- It won't necessarily rank your categories in the right order: sometimes the effects of other variables do not coincide with how you see the ordinality

Slogit example

Age and sex predicting education for those 30yrs-plus

```
. slogit educ age i.sex if age>30
Γ...1
Stereotype logistic regression
                                      Number of obs = 10905
                                       Wald chi2(2) = 970.21
Log likelihood = -9784.863
                                       Prob > chi2 =
                                                         0.0000
(1) [phi1_1]_cons = 1
      educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     age | .0457061 .0015099 30.27
                                      0.000 .0427468 .0486654
     2.sex | .4090173 .0427624 9.56 0.000 .3252045 .4928301
   /phi1_1 | 1 (constrained)
   /phi1_2 | .7857325 .0491519 15.99 0.000 .6893965 .8820684
   /phi1_3 | 0 (base outcome)
   /theta1 | 2.508265 .0869764 28.84 0.000 2.337795 2.678736
   /theta2 | .5809221 .133082 4.37
                                      0.000 .3200862 .841758
   /theta3 | 0 (base outcome)
(educ=Lo is the base outcome)
```


Interpreting ϕ

• With low education as the baseline, we find ϕ estimates thus:

- That is, averaging across the variables, the effect of medium vs low is 0.786 times that of high vs low
- The /theta terms are the α_i s

Surprises from slogit

- . slogit is not guaranteed to respect the order
- if we include younger people as well as those over 30, lifecourse and cohort effects mean age has a non-linear effect
- \Rightarrow changes the order of ϕ

```
. slogit educ age i.sex
[...]
Stereotype logistic regression
                                      Number of obs = 14321
                                       Wald chi2(2) = 489.72
Log likelihood = -13792.05
                                      Prob > chi2
                                                        0.0000
(1) [phi1 1] cons = 1
      educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      age .0219661 .0009933 22.11 0.000 .0200192 .0239129
     2.sex | .1450657 .0287461 5.05 0.000 .0887244 .2014071
   /phi1 1 | 1 (constrained)
   /phi1 2 | 1.813979 .0916542 19.79 0.000 1.634341
                                                       1.993618
   /phi1_3 | 0 (base outcome)
   /theta1 | .9920811 .0559998 17.72 0.000 .8823235 1.101839
   /theta2 | .7037589 .0735806 9.56 0.000 .5595436 .8479743
   /theta3 | 0 (base outcome)
```

(educ=Lo is the base outcome)

Recover by including non-linear age

```
Stereotype logistic regression
                                      Number of obs = 14321
                                       Wald chi2(3) = 984.66
Log likelihood = -13581.046
                                      Prob > chi2 =
                                                         0.0000
(1) [phi1 1] cons = 1
      educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      age | -.1275568 .0071248 -17.90 0.000 -.1415212 -.1135924
c.age#c.age | .0015888 .0000731 21.74 0.000 .0014456 .0017321
     2.sex | .3161976 .0380102 8.32 0.000 .2416989 .3906963
   /phi1 1 | 1 (constrained)
   /phi1_2 | .5539747 .0479035 11.56 0.000 .4600854 .6478639
   /phi1_3 | 0 (base outcome)
   /theta1 | -1.948551 .1581395 -12.32 0.000 -2.258499 -1.638604
   /theta2 | -2.154373 .078911 -27.30 0.000 -2.309036 -1.999711
   /theta3 | 0 (base outcome)
(educ=Lo is the base outcome)
```


Stereotype logit

- Stereotype logit treats ordinality as ordinality in terms of the explanatory variables
- There can be therefore disagreements between variables about the pattern of ordinality
- It can be extended to more dimensions, which makes sense for categorical variables whose categories can be thought of as arrayed across more than one dimension
- See Long and Freese, Ch 6.8

Ordinal logit

Proportional odds

The proportional odds model

- · The most commonly used ordinal logistic model has another logic
- It assumes the ordinal variable is based on an unobserved latent variable
- Unobserved cutpoints divide the latent variable into the groups indexed by the observed ordinal variable
- The model estimates the effects on the log of the odds of being higher rather than lower across the cutpoints

The model

• For j = 1 to J - 1,

$$\log \frac{P(Y > j)}{P(Y <= j)} = \alpha_j + \beta x$$

- Only one β per variable, whose interpretation is the effect on the odds of being higher rather than lower
- One α per contrast, taking account of the fact that there are different proportions in each one

J-1 contrasts again, but different

But rather than compare categories against a baseline it splits into high and low, with all the data involved each time

An example

- Using data from the BHPS, we predict the probability of each of 5 ordered responses to the assertion "homosexual relationships are wrong"
- Answers from 1: strongly agree, to 5: strongly disagree
- Sex and age as predictors descriptively women and younger people are more likely to disagree (i.e., have high values)

Ordered logistic: Stata output

```
Ordered logistic regression
                                        Number of obs = 12725
                                        LR chi2(2)
                                                     = 2244.14
                                        Prob > chi2 = 0.0000
Log likelihood = -17802.088
                                        Pseudo R2
                                                     = 0.0593
   ropfamr | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    2.rsex | .8339045 .033062 25.22 0.000 .7691041 .8987048
    rage | -.0371618 .0009172 -40.51 0.000 -.0389595 -.035364
     /cut1 | -3.833869 .0597563
                                              -3.950989 -3.716749
     /cut2 | -2.913506 .0547271
                                             -3.02077 -2.806243
     /cut3 | -1.132863 .0488522
                                              -1.228612 -1.037115
     /cut4 | .3371151 .0482232
                                           .2425994 .4316307
```


Interpretation

- The betas are straightforward:
 - The effect for women is .8339. The OR is $e^{.8339}$ or 2.302
 - Women's odds of being on the "approve" rather than the "disapprove" side of each contrast are 2.302 times as big as men's
 - Each year of age reduced the log-odds by .03716 (OR 0.964).
- The cutpoints are odd: Stata sets up the model in terms of cutpoints in the latent variable, so they are actually $-\alpha_j$

Linear predictor

• Thus the $\alpha + \beta X$ or linear predictor for the contrast between strongly agree (1) and the rest is (2-5 versus 1)

$$3.834 + 0.8339 \times \text{female} - 0.03716 \times \text{age}$$

• Between strongly disagree (5) and the rest (1-4 versus 5)

$$-0.3371 + 0.8339 \times \text{female} - 0.03716 \times \text{age}$$

and so on.

Predicted log odds

Predicted log odds per contrast

- The predicted log-odds lines are straight and parallel
- The highest relates to the 1-4 vs 5 contrast
- · Parallel lines means the effect of a variable is the same across all contrasts
- Exponentiating, this means that the multiplicative effect of a variable is the same on all contrasts: hence "proportional odds"
- This is a key assumption

Predicted probabilities relative to contrasts

Predicted probabilities relative to contrasts

- We predict the probabilities of being above a particular contrast in the standard way
- Since age has a negative effect, downward sloping sigmoid curves
- Sigmoid curves are also parallel (same shape, shifted left-right)
- We get probabilities for each of the five states by subtraction

Inference

- The key elements of inference are standard: Wald tests and LR tests
- Since there is only one parameter per variable it is more straightforward than MNL
- However, the key assumption of proportional odds (that there *is* only one parameter per variable) is often wrong.
- The effect of a variable on one contrast may differ from another
- Long and Freese's SPost Stata add-on contains a test for this

Testing proportional odds

- · It is possible to fit each contrast as a binary logit
- The brant command does this, and tests that the parameter estimates are the same across the contrast
- It needs to use Stata's old-fashioned xi: prefix to handle categorical variables:

```
xi: ologit ropfamr i.rsex rage
brant, detail
```


Brant test output

. brant, detail

Estimated coefficients from j-1 binary regressions

```
y>1 y>2 y>3 y>4
_Irsex_2 1.0198492 .91316651 .76176797 .8150246
rage -.02716537 -.03064454 -.03652048 -.04571137
_cons 3.2067856 2.5225826 1.1214759 -.00985108
```

Brant Test of Parallel Regression Assumption

Variable	chi2	p>chi2	df
+			
All	101.13	0.000	6
+			
_Irsex_2	15.88	0.001	3
rage	81.07	0.000	3

A significant test statistic provides evidence that the parallel regression assumption has been violated.

What to do?

- In this case the assumption is violated for both variables, but looking at the individual estimates, the differences are not big
- It's a big data set (14k cases) so it's easy to find departures from assumptions
- However, the departures can be meaningful. In this case it is worth fitting the "Generalised Ordinal Logit" model

Generalised Ordinal Logit

This extends the proportional odds model in this fashion

$$\log \frac{P(Y > j)}{P(Y <= j)} = \alpha_j + \beta_j x$$

- That is, each variable has a per-contrast parameter
- At the most imparsimonious this is like a reparameterisation of the MNL in ordinal terms
- However, can constrain β s to be constant for some variables
- Get something intermediate, with violations of PO accommodated, but the parsimony of a single parameter where that is acceptable
- Download Richard William's gologit2 to fit this model:

ssc install gologit2

Ordinal logit

Sequential logit

Sequential logit

- Different ways of looking at ordinality suit different ordinal regression formations
 - categories arrayed in one (or more) dimension(s): slogit
 - categories derived by dividing an unobserved continuum: ologit etc
 - categories that represent successive stages: the continuation-ratio model
- Where you get to higher stages by passing through lower ones, in which you could also stay
 - Educational qualification: you can only progress to the next stage if you have completed all the previous ones
 - Promotion: you can only get to a higher grade by passing through the lower grades

"Continuation ratio" model

• Here the question is, given you reached level *j*, what is your chance of going further:

$$\log \frac{P(Y > j)}{P(Y = j)} = \alpha + \beta X_j$$

- For each level, the sample is anyone in level j or higher, and the outcome is being in level j + 1 or higher
- That is, for each contrast except the lowest, you drop the cases that didn't make it that far

J-1 contrasts again, again different

But rather than splitting high and low, with all the data involved each time, it drops cases below the baseline

Fitting CR

- This model implies one equation for each contrast
- Can be fitted by hand by defining outcome variable and subsample for each contrast (ed has 4 values):

```
gen con1 = ed>1
gen con2 = ed>2
replace con2 = . if ed<=1
gen con3 = ed>3
replace con3 = . if ed<=2
logit con1 odoby i.osex
logit con2 odoby i.osex
logit con3 odoby i.osex</pre>
```


seqlogit

• Maarten Buis's seqlogit does it more or less automatically:

```
seqlogit ed odoby i.osex, tree(1 : 2 3 4 , 2 : 3 4 , 3 : 4 )
```

- you need to specify the contrasts
- You can impose constraints to make parameters equal across contrasts

