
UL Summer School: Categorical Data Analysis

Brendan Halpin, Sociology

2022 Summer School

Outline

Association in tables

Logistic regression

Multinomial logistic regression

Ordinal logit

1

Association in tables

Association in tables

Association in tables

• Tables display association between categorical variables

• Made evident by patterns of percentages

• Tested by χ2 test
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Association

How do we characterise association?

• Is there association?

• What form does it take?

• How strong is it?

3

Q1: Is there association?

• This is what the χ2 test determines – evidence of association

• Does not characterise nature or size!

• Depends on N

• Other tests exist, such as Fisher’s exact test
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Q2: What form does it take?

• Examine percentages

• Compare observed and expected: residuals

• Standardised residuals: behave like z, i.e., should lie in range −2 : +2 about
95% of time, if independence is true

z = O−E√
E(1−row proportion)(1−col proportion)

= O−E√
E(1−R

T )(1−C
T )
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Q3: How strong is it?

Many possible measures of association

• Difference in proportions

• Ratio of proportions or “relative rate”

• Ratio of odds or “odds ratio”

(see http://teaching.sociology.ul.ie:3838/apps/orrr/)
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Ordinal variables

• Ordinal variables may have more structured association

• Simpler pattern, analogous to correlation

• X high, Y high; X low, Y low
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Characterising ordinal association

• Focus on concordant/discordant pairs
• Pairs of cases which differ on both variables

• Concordant: case that is higher on one variable also higher on other
• Discordant: higher on one, lower on the other

• Gamma, γ̂ = C−D
C+D

• Values range −1 ≤ γ ≤ +1

• Like correlation in interpretation

• Has asymptotic standard error⇒ t-test possible

8

Higher order tables

• We can consider association in higher-order tables, e.g., 3-way

• Is the association between A and B the same for different values of C?

• Does the association between A and B disappear1 if we control for C?

9

Simpson’s paradox etc.

• Scouting example (ch 10): negative association between scouting and
delinquency

• Control for family characteristics (church attendance) and it disappears

• See also death penalty example: note pattern of odds ratios

• Cochran-Mantel-Haenszel test: 2× 2× k table

• H0 : within each of k 2× 2 panels, OR = 1
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Scouting 1/3

| delinq

scout | Yes No | Total

-----------+----------------------+----------

Yes | 36 364 | 400

No | 60 340 | 400

-----------+----------------------+----------

Total | 96 704 | 800
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Scouting 2/3

--------------------------------------------------

| church and delinq

| --- Low -- -- Med --- -- High --

scout | Yes No Yes No Yes No

----------+---------------------------------------

Yes | 10 40 18 132 8 192

No | 40 160 18 132 2 48

--------------------------------------------------
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Scouting 3/3

| church

scout | Low Med High | Total

-----------+---------------------------------+----------

Yes | 50 150 200 | 400

No | 200 150 50 | 400

-----------+---------------------------------+----------

Total | 250 300 250 | 800
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Loglinear modelling

• More complex questions and larger tables can be handled by loglinear
modelling

• Treats all variables as “dependent variables”

• Can test null hypothesis of independence, as well as specified patterns of
interaction
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Logistic regression

Logistic regression

Logistic regression

• OLS regression requires interval dependent variable

• Binary or “yes/no” dependent variables are not suitable

• Nor are rates, e.g., n successes out of m trials

• Errors are distinctly not normal

• While predicted value can be read as a probability, can depart from 0:1 range

• Particular difficulties with multiple explanatory variables.
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Linear Probability Model

• OLS gives the “linear probability model” in this case:

Pr(Y = 1) = a + bX

• data is 0/1, prediction is probability

• Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too
bad

• See credit card example: becomes unrealistic only at very low or high income
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Logistic transformation

• Probability is bounded [0 : 1]

• OLS predicted value is unbounded

• How to transform probability to −∞ :∞ range?

• Odds: p
1−p – range is 0 :∞

• Log of odds: log p
1−p has range −∞ :∞
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Logistic regression

• Logistic regression uses this as the dependent variable:

log

(
Pr(Y = 1)

1− Pr(Y = 1)

)
= a + bX

• Alternatively:

Pr(Y = 1)
1− Pr(Y = 1)

= ea+bX

• Or:

Pr(Y = 1) =
ea+bX

1 + ea+bX =
1

1 + e−a−bX
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Parameters

• The b parameter is the effect of a unit change in X on log
(

Pr(Y=1)
1−Pr(Y=1)

)

• This implies a multiplicative change of eb in Pr(Y=1)
1−Pr(Y=1) , in the Odds

• Thus an odds ratio

• But the effect of b on P depends on the level of b

• See credit card example

• Death penalty example allows us to see the link between odds ratios and
estimates
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Logistic regression

Inference

Inference

• In practice, inference is similar to OLS though based on a different logic

• For each explanatory variable, H0 : β = 0 is the interesting null

• z = β̂
SE is approximately normally distributed (large sample property)

• More usually, the Wald test is used:
(
β̂

SE

)2
has a χ2 distribution with one

degree of freedom
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Likelihood ratio tests

• The “likelihood ratio” test is thought more robust than the Wald test for smaller
samples

• Where l0 is the likelihood of the model without Xj , and l1 that with it, the
quantity

−2
(
log

l0
l1

)
= −2 (log l0 − log l1)

is χ2 distributed with one degree of freedom
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LR test in practice

. qui logit univ c.age##c.age i.sex

. est store base

. logit univ c.age##c.age i.sex i.gold

Iteration 0: log likelihood = -258.63227

Iteration 1: log likelihood = -235.46647

Iteration 2: log likelihood = -224.18885

Iteration 3: log likelihood = -223.79947

Iteration 4: log likelihood = -223.79762

Iteration 5: log likelihood = -223.79762

Logistic regression Number of obs = 998

LR chi2(7) = 69.67

Prob > chi2 = 0.0000

Log likelihood = -223.79762 Pseudo R2 = 0.1347

univ Coefficient Std. err. z P>|z| [95% conf. interval]

age .2135413 .0556893 3.83 0.000 .1043923 .3226903

c.age#c.age -.0025071 .0006445 -3.89 0.000 -.0037704 -.0012439

sex

female -.5470423 .2591863 -2.11 0.035 -1.055038 -.0390465

gold

RNM -1.241583 .5610744 -2.21 0.027 -2.341268 -.1418974

Prop -1.388413 .3982332 -3.49 0.000 -2.168936 -.6078902

Skilled -1.519483 .3206528 -4.74 0.000 -2.147951 -.8910149

Un/semi-skilled -2.334295 .4599521 -5.08 0.000 -3.235785 -1.432806

_cons -5.155577 1.135296 -4.54 0.000 -7.380716 -2.930438

. lrtest base

Likelihood-ratio test

Assumption: base nested within .

LR chi2(4) = 43.01

Prob > chi2 = 0.0000
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Nested models

• More generally, −2
(
log lo

l1

)
tests nested models: where model 1 contains all

the variables in model 0, plus m extra ones, it tests the null that all the extra
βs are zero (χ2 with m df)

• If we compare a model against the null model (no explanatory variables, it
tests

H0 : β1 = β2 = . . . = βk = 0

• Strong analogy with F test in OLS
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Logistic regression

Maximum likelihood



Maximum likelihood estimation

• What is this “likelihood”?

• Unlike OLS, logistic regression (and many, many other models) are extimated
by maximum likelihood estimation

• In general this works by choosing values for the parameter estimates which
maximise the probability (likelihood) of observing the actual data

• OLS can be ML estimated, and yields exactly the same results
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Iterative search

• Sometimes the values can be chosen analytically
• A likelihood function is written, defining the probability of observing the actual

data given parameter estimates
• Differential calculus derives the values of the parameters that maximise the

likelihood, for a given data set

• Often, such “closed form solutions” are not possible, and the values for the
parameters are chosen by a systematic computerised search (multiple
iterations)

• Extremely flexible, allows estimation of a vast range of complex models within
a single framework
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Likelihood as a quantity

• Either way, a given model yields a specific maximum likelihood for a give data
set

• This is a probability, henced bounded [0 : 1]

• Reported as log-likelihood, hence bounded [−∞ : 0]

• Thus is usually a large negative number

• Where an iterative solution is used, likelihood at each stage is usually
reported – normally getting nearer 0 at each step

26

Logistic regression

Tabular data



Tabular data

• If all the explanatory variables are categorical (or have few fixed values) your
data set can be represented as a table

• If we think of it as a table where each cell contains n yeses and m − n noes (n
successes out of m trials) we can fit grouped logistic regression

• n successes out of m trials implies a binomial distribution of degree m

log
n

m − n
= α+ βX

• The parameter estimates will be exactly the same as if the data were treated
individually

27

Tabular data and goodness of fit

• But unlike with individual data, we can calculate goodness of fit, by relating
observed successes to predicted in each cell

• If these are close we cannot reject the null hypothesis that the model is
incorrect (i.e., you want a high p-value)

• Where li is the likelihood of the current model, and ls is the likelihood of the
“saturated model” the test statistic is

−2
(
log

li
ls

)

• The saturated model predicts perfectly and has as many parameters as there
are “settings” (cells in the table)

• The test has df of number of settings less number of parameters estimated,
and is χ2 distributed
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Logistic regression

Goodness of fit and accuracy of
classification

Fit with individual data

• Where the number of “settings” (combinations of values of explanatory
variables) is large, this approach to fit is not feasible

• Cannot be used with continuous covariates
• Hosmer-Lemeshow statistic attempts to create an analogy

• Divide sample into deciles of predicted probability
• Calculate a fit measure based on observed and predicted numbers in the ten

groups
• Simulation shows this is χ2 distributed with 2 df
• Not a perfect solution, sensitive to how the cuts are made

• Pseudo-R2 measures exist, but none approaches the clean interpretation as
in OLS

• See http:

//www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
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Predicting outcomes

• Another way of assessing the adequacy of a logit model is its accuracy of
classification:

True yes True no

Predicted yes a c

Predicted no b d

• Proportion correctly classified: a+d
a+b+c+d

• Sensitivity: a
a+b ; Specificity: d

c+d

• False positive: c
a+c ; False negative: b

b+d

• Stata: estat class
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Some problems

• Zero cells in tables can cause problems: no yeses or no noes for particular
settings

• Not automatically a problem but can give rise to attempts to estimate a
parameter as −∞ or +∞

• If this happens, you will see a large parameter estimate and a huge standard
error

• In individual data, sometimes certain combinations of variables have only
successes or only failures

• In Stata, these cases are dropped from estimation – you need to be aware of
this as it changes the interpretation (you may wish to drop one of the
offending variables instead)
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Multinomial logistic regression

Baseline-category extension of binary
logistic

What if we have multiple possible outcomes, not just two?

• Logistic regression is binary: yes/no
• Many interesting dependent variables have multiple categories

• voting intention by party
• first destination after second-level education
• housing tenure type

• We can use binary logistic by
• recoding into two categories
• dropping all but two categories

• But that would lose information
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Multinomial logistic regression

• Another idea:

• Pick one of the J categories as baseline

• For each of J − 1 other categories, fit binary models contrasting that category
with baseline

• Multinomial logistic effectively does that, fitting J − 1 models simultaneously

log
P(Y = j)
P(Y = J)

= αj + βjX , j = 1, . . . , c − 1

• Which category is baseline is not critically important, but better for
interpretation if it is reasonably large and coherent (i.e. "Other" is a poor
choice)
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J − 1 contrasts

Compare each of
J− categories
against a baseline
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Predicting p from formula

log
πj

πJ
= αj + βjX

πj

πJ
= eαj+βj X

πj = πJeαj+βj X

πJ = 1−
J−1∑

k=1

πk = 1− πJ

J−1∑

k=1

eαk+βk X

πJ =
1

1 +
∑J−1

k=1 eαk+βk X
=

1
∑J

k=1 eαk+βk X

⇒ πj =
eαj+βj X

∑J
k=1 eαk+βk X

35

Multinomial logistic regression

Interpreting example, inference



Example

• Let’s attempt to predict housing tenure
• Owner occupier
• Local authority renter
• Private renter

• using age and employment status
• Employed
• Unemployed
• Not in labour force

• mlogit ten3 age i.eun
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Stata output

Multinomial logistic regression Number of obs = 15490

LR chi2(6) = 1256.51

Prob > chi2 = 0.0000

Log likelihood = -10204.575 Pseudo R2 = 0.0580

------------------------------------------------------------------------------

ten3 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1 | (base outcome)

-------------+----------------------------------------------------------------

2 age | -.0103121 .0012577 -8.20 0.000 -.012777 -.0078471

|

eun |

2 | 1.990774 .1026404 19.40 0.000 1.789603 2.191946

3 | 1.25075 .0522691 23.93 0.000 1.148304 1.353195

|

_cons | -1.813314 .0621613 -29.17 0.000 -1.935148 -1.69148

-------------+----------------------------------------------------------------

3 age | -.0389969 .0018355 -21.25 0.000 -.0425945 -.0353994

|

eun |

2 | .4677734 .1594678 2.93 0.003 .1552223 .7803245

3 | .4632419 .063764 7.26 0.000 .3382668 .5882171

|

_cons | -.76724 .0758172 -10.12 0.000 -.915839 -.6186411

------------------------------------------------------------------------------

37

Interpretation

• Stata chooses category 1 (owner) as baseline

• Each panel is similar in interpretation to a binary regression on that category
versus baseline

• Effects are on the log of the odds of being in category j versus the baseline
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Inference

• At one level inference is the same:
• Wald test for Ho : βk = 0
• LR test between nested models

• However, each variable has J − 1 parameters

• Better to consider the LR test for dropping the variable across all contrasts:
H0 : ∀ j : βjk = 0

• Thus retain a variable even for contrasts where it is insignificant as long as it
has an effect overall

• Which category is baseline affects the parameter estimates but not the fit
(log-likelihood, predicted values, LR test on variables)
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Predicting ordinal outcomes

• While mlogit is attractive for multi-category outcomes, it is imparsimonious

• For nominal variables this is necessary, but for ordinal variables there should
be a better way

• We consider three useful models
• Stereotype logit
• Proportional odds logit
• Continuation ratio or sequential logit

• Each approaches the problem is a different way
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Ordinal logit

Stereotype logit

Stereotype logit

• If outcome is ordinal we should see a pattern in the parameter estimates:

. mlogit educ c.age i.sex if age>30

[...]

Multinomial logistic regression Number of obs = 10905

LR chi2(4) = 1171.90

Prob > chi2 = 0.0000

Log likelihood = -9778.8701 Pseudo R2 = 0.0565

------------------------------------------------------------------------------

educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

Hi |

age | -.0453534 .0015199 -29.84 0.000 -.0483323 -.0423744

2.sex | -.4350524 .0429147 -10.14 0.000 -.5191636 -.3509411

_cons | 2.503877 .086875 28.82 0.000 2.333605 2.674149

-------------+----------------------------------------------------------------

Med |

age | -.0380206 .0023874 -15.93 0.000 -.0426999 -.0333413

2.sex | -.1285718 .0674878 -1.91 0.057 -.2608455 .0037019

_cons | .5817336 .1335183 4.36 0.000 .3200425 .8434246

-------------+----------------------------------------------------------------

Lo | (base outcome)

------------------------------------------------------------------------------
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Ordered parameter estimates

• Low education is the baseline
• The effect of age:

• -0.045 for high vs low
• -0.038 for medium vs low
• 0.000, implicitly for low vs low

• Sex: -0.435, -0.129 and 0.000

• Stereotype logit fits a scale factor φ to the parameter estimates to capture this
pattern
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Scale factor

• Compare mlogit:

log
P(Y = j)
P(Y = J)

= αj + β1jX1 + β2jX, j = 1, . . . , J − 1

• with slogit

log
P(Y = j)
P(Y = J)

= αj + φjβ1X1 + φjβ2X2, j = 1, . . . , J − 1

• φ is zero for the baseline category, and 1 for the maximum

• It won’t necessarily rank your categories in the right order: sometimes the
effects of other variables do not coincide with how you see the ordinality
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Slogit example

• Age and sex predicting education for those 30yrs-plus

. slogit educ age i.sex if age>30

[...]

Stereotype logistic regression Number of obs = 10905

Wald chi2(2) = 970.21

Log likelihood = -9784.863 Prob > chi2 = 0.0000

( 1) [phi1_1]_cons = 1

------------------------------------------------------------------------------

educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0457061 .0015099 30.27 0.000 .0427468 .0486654

2.sex | .4090173 .0427624 9.56 0.000 .3252045 .4928301

-------------+----------------------------------------------------------------

/phi1_1 | 1 (constrained)

/phi1_2 | .7857325 .0491519 15.99 0.000 .6893965 .8820684

/phi1_3 | 0 (base outcome)

-------------+----------------------------------------------------------------

/theta1 | 2.508265 .0869764 28.84 0.000 2.337795 2.678736

/theta2 | .5809221 .133082 4.37 0.000 .3200862 .841758

/theta3 | 0 (base outcome)

------------------------------------------------------------------------------

(educ=Lo is the base outcome)
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Interpreting φ

• With low education as the baseline, we find φ estimates thus:

High 1
Medium 0.786
Low 0

• That is, averaging across the variables, the effect of medium vs low is 0.786
times that of high vs low

• The /theta terms are the αjs
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Surprises from slogit

• slogit is not guaranteed to respect the order
• if we include younger people as well as those over 30, lifecourse and cohort effects mean age has a non-linear effect
• ⇒changes the order of φ

. slogit educ age i.sex

[...]

Stereotype logistic regression Number of obs = 14321

Wald chi2(2) = 489.72

Log likelihood = -13792.05 Prob > chi2 = 0.0000

( 1) [phi1_1]_cons = 1

------------------------------------------------------------------------------

educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0219661 .0009933 22.11 0.000 .0200192 .0239129

2.sex | .1450657 .0287461 5.05 0.000 .0887244 .2014071

-------------+----------------------------------------------------------------

/phi1_1 | 1 (constrained)

/phi1_2 | 1.813979 .0916542 19.79 0.000 1.634341 1.993618

/phi1_3 | 0 (base outcome)

-------------+----------------------------------------------------------------

/theta1 | .9920811 .0559998 17.72 0.000 .8823235 1.101839

/theta2 | .7037589 .0735806 9.56 0.000 .5595436 .8479743

/theta3 | 0 (base outcome)

------------------------------------------------------------------------------

(educ=Lo is the base outcome)
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Recover by including non-linear age

Stereotype logistic regression Number of obs = 14321

Wald chi2(3) = 984.66

Log likelihood = -13581.046 Prob > chi2 = 0.0000

( 1) [phi1_1]_cons = 1

------------------------------------------------------------------------------

educ | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | -.1275568 .0071248 -17.90 0.000 -.1415212 -.1135924

|

c.age#c.age | .0015888 .0000731 21.74 0.000 .0014456 .0017321

|

2.sex | .3161976 .0380102 8.32 0.000 .2416989 .3906963

-------------+----------------------------------------------------------------

/phi1_1 | 1 (constrained)

/phi1_2 | .5539747 .0479035 11.56 0.000 .4600854 .6478639

/phi1_3 | 0 (base outcome)

-------------+----------------------------------------------------------------

/theta1 | -1.948551 .1581395 -12.32 0.000 -2.258499 -1.638604

/theta2 | -2.154373 .078911 -27.30 0.000 -2.309036 -1.999711

/theta3 | 0 (base outcome)

------------------------------------------------------------------------------

(educ=Lo is the base outcome)
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Stereotype logit

• Stereotype logit treats ordinality as ordinality in terms of the explanatory
variables

• There can be therefore disagreements between variables about the pattern of
ordinality

• It can be extended to more dimensions, which makes sense for categorical
variables whose categories can be thought of as arrayed across more than
one dimension

• See Long and Freese, Ch 6.8
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Ordinal logit

Proportional odds

The proportional odds model

• The most commonly used ordinal logistic model has another logic

• It assumes the ordinal variable is based on an unobserved latent variable

• Unobserved cutpoints divide the latent variable into the groups indexed by the
observed ordinal variable

• The model estimates the effects on the log of the odds of being higher rather
than lower across the cutpoints

49



The model

• For j = 1 to J − 1,

log
P(Y > j)

P(Y <= j)
= αj + βx

• Only one β per variable, whose interpretation is the effect on the odds of
being higher rather than lower

• One α per contrast, taking account of the fact that there are different
proportions in each one
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J − 1 contrasts again, but different

But rather than
compare categories
against a baseline it
splits into high and
low, with all the data
involved each time
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An example

• Using data from the BHPS, we predict the probability of each of 5 ordered
responses to the assertion "homosexual relationships are wrong"

• Answers from 1: strongly agree, to 5: strongly disagree

• Sex and age as predictors – descriptively women and younger people are
more likely to disagree (i.e., have high values)
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Ordered logistic: Stata output

Ordered logistic regression Number of obs = 12725

LR chi2(2) = 2244.14

Prob > chi2 = 0.0000

Log likelihood = -17802.088 Pseudo R2 = 0.0593

------------------------------------------------------------------------------

ropfamr | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2.rsex | .8339045 .033062 25.22 0.000 .7691041 .8987048

rage | -.0371618 .0009172 -40.51 0.000 -.0389595 -.035364

-------------+----------------------------------------------------------------

/cut1 | -3.833869 .0597563 -3.950989 -3.716749

/cut2 | -2.913506 .0547271 -3.02077 -2.806243

/cut3 | -1.132863 .0488522 -1.228612 -1.037115

/cut4 | .3371151 .0482232 .2425994 .4316307

------------------------------------------------------------------------------
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Interpretation

• The betas are straightforward:
• The effect for women is .8339. The OR is e.8339 or 2.302
• Women’s odds of being on the "approve" rather than the "disapprove" side of

each contrast are 2.302 times as big as men’s
• Each year of age reduced the log-odds by .03716 (OR 0.964).

• The cutpoints are odd: Stata sets up the model in terms of cutpoints in the
latent variable, so they are actually −αj
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Linear predictor

• Thus the α+ βX or linear predictor for the contrast between strongly agree (1)
and the rest is (2-5 versus 1)

3.834 + 0.8339× female− 0.03716× age

• Between strongly disagree (5) and the rest (1-4 versus 5)

−0.3371 + 0.8339× female− 0.03716× age

and so on.
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Predicted log odds
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Predicted log odds per contrast

• The predicted log-odds lines are straight and parallel

• The highest relates to the 1-4 vs 5 contrast

• Parallel lines means the effect of a variable is the same across all contrasts

• Exponentiating, this means that the multiplicative effect of a variable is the
same on all contrasts: hence "proportional odds"

• This is a key assumption
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Predicted probabilities relative to contrasts
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Predicted probabilities relative to contrasts

• We predict the probabilities of being above a particular contrast in the
standard way

• Since age has a negative effect, downward sloping sigmoid curves

• Sigmoid curves are also parallel (same shape, shifted left-right)

• We get probabilities for each of the five states by subtraction
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Inference

• The key elements of inference are standard: Wald tests and LR tests

• Since there is only one parameter per variable it is more straightforward than
MNL

• However, the key assumption of proportional odds (that there is only one
parameter per variable) is often wrong.

• The effect of a variable on one contrast may differ from another

• Long and Freese’s SPost Stata add-on contains a test for this

60

Testing proportional odds

• It is possible to fit each contrast as a binary logit

• The brant command does this, and tests that the parameter estimates are
the same across the contrast

• It needs to use Stata’s old-fashioned xi: prefix to handle categorical
variables:

xi: ologit ropfamr i.rsex rage

brant, detail
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Brant test output

. brant, detail

Estimated coefficients from j-1 binary regressions

y>1 y>2 y>3 y>4

_Irsex_2 1.0198492 .91316651 .76176797 .8150246

rage -.02716537 -.03064454 -.03652048 -.04571137

_cons 3.2067856 2.5225826 1.1214759 -.00985108

Brant Test of Parallel Regression Assumption

Variable | chi2 p>chi2 df

-------------+--------------------------

All | 101.13 0.000 6

-------------+--------------------------

_Irsex_2 | 15.88 0.001 3

rage | 81.07 0.000 3

----------------------------------------

A significant test statistic provides evidence that the parallel

regression assumption has been violated.
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What to do?

• In this case the assumption is violated for both variables, but looking at the
individual estimates, the differences are not big

• It’s a big data set (14k cases) so it’s easy to find departures from assumptions

• However, the departures can be meaningful. In this case it is worth fitting the
"Generalised Ordinal Logit" model
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Generalised Ordinal Logit

• This extends the proportional odds model in this fashion

log
P(Y > j)

P(Y <= j)
= αj + βjx

• That is, each variable has a per-contrast parameter
• At the most imparsimonious this is like a reparameterisation of the MNL in

ordinal terms
• However, can constrain βs to be constant for some variables
• Get something intermediate, with violations of PO accommodated, but the

parsimony of a single parameter where that is acceptable
• Download Richard William’s gologit2 to fit this model:

ssc install gologit2
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Ordinal logit

Sequential logit



Sequential logit

• Different ways of looking at ordinality suit different ordinal regression
formations

• categories arrayed in one (or more) dimension(s): slogit
• categories derived by dividing an unobserved continuum: ologit etc
• categories that represent successive stages: the continuation-ratio model

• Where you get to higher stages by passing through lower ones, in which you
could also stay

• Educational qualification: you can only progress to the next stage if you have
completed all the previous ones

• Promotion: you can only get to a higher grade by passing through the lower
grades
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"Continuation ratio" model

• Here the question is, given you reached level j , what is your chance of going
further:

log
P(Y > j)
P(Y = j)

= α+ βXj

• For each level, the sample is anyone in level j or higher, and the outcome is
being in level j + 1 or higher

• That is, for each contrast except the lowest, you drop the cases that didn’t
make it that far
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J − 1 contrasts again, again different

But rather than
splitting high and
low, with all the data
involved each time,
it drops cases below
the baseline
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Fitting CR

• This model implies one equation for each contrast

• Can be fitted by hand by defining outcome variable and subsample for each
contrast (ed has 4 values):

gen con1 = ed>1

gen con2 = ed>2

replace con2 = . if ed<=1

gen con3 = ed>3

replace con3 = . if ed<=2

logit con1 odoby i.osex

logit con2 odoby i.osex

logit con3 odoby i.osex
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seqlogit

• Maarten Buis’s seqlogit does it more or less automatically:

seqlogit ed odoby i.osex, tree(1 : 2 3 4 , 2 : 3 4 , 3 : 4 )

• you need to specify the contrasts

• You can impose constraints to make parameters equal across contrasts
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