A at a	Outline
Sociology	Association in tables Logistic regression
Brendan Halpin, Sociology 2022 Summer School	Multinomial logistic regression
	Ordinal logit
	sociology
	Association in tables
Association in tables Association in tables	• Tables display association between categorical variables • Made evident by patterns of percentages • Tested by χ^2 test

Association	Q1: Is there association?
How do we characterise association? • Is there association? • What form does it take? • How strong is it?	 This is what the χ² test determines – <i>evidence of association</i> Does not characterise nature or size! Depends on N Other tests exist, such as Fisher's exact test
sociology 💥	sociology
Q2: What form does it take?	Q3: How strong is it?
• Examine percentages • Compare observed and expected: residuals • <i>Standardised</i> residuals: behave like <i>z</i> , i.e., should lie in range $-2:+2$ about 95% of time, if independence is true $z = \frac{O-E}{\sqrt{E(1-row \text{ proportion})(1-col \text{ proportion})}}$ $= \frac{O-E}{\sqrt{E(1-\frac{R}{T})(1-\frac{C}{T})}}$	 Many possible measures of association Difference in proportions Ratio of proportions or "relative rate" Ratio of odds or "odds ratio" (see http://teaching.sociology.ul.ie:3838/apps/orrr/)
sociology	sociology

Ordinal variables	Characterising ordinal association
 Ordinal variables may have more structured association Simpler pattern, analogous to correlation X high, Y high; X low, Y low 	 Focus on concordant/discordant pairs Pairs of cases which differ on both variables Concordant: case that is higher on one variable also higher on other Discordant: higher on one, lower on the other Gamma, γ̂ = C-D/C+D Values range -1 ≤ γ ≤ +1 Like correlation in interpretation Has asymptotic standard error ⇒ t-test possible
sociology X	sociology 💥
Higher order tables	Simpson's paradox etc.
 We can consider association in higher-order tables, e.g., 3-way Is the association between A and B the same for different values of C? Does the association between A and B disappear1 if we control for C? 	 Scouting example (ch 10): negative association between scouting and delinquency Control for family characteristics (church attendance) and it disappears See also death penalty example: note pattern of odds ratios Cochran-Mantel-Haenszel test: 2 × 2 × <i>k</i> table <i>H</i>₀: within each of k 2 × 2 panels, OR = 1

Scouting 1/3					Scouting 2/3
 + Yes No + Total	deling Yes 36 60 96	A No 364 340 704	Total 400 400 800		church and delinq Low Med High scout Yes No Yes No
sociology					11 sociology
 scout	Low	church Med	High ∣	Total	 More complex questions and larger tables can be handled by loglinear modelling
Yes	50	150	200	400	 Treats all variables as "dependent variables"
No	200	150	50	400	Can test null hypothesis of independence, as well as specified patterns of
+ Total	250	300	250	800	interaction
sociology					13 sociology X

Logistic regression Logistic regression	 Logistic regression OLS regression requires interval dependent variable Binary or "yes/no" dependent variables are not suitable Nor are rates, e.g., n successes out of m trials Errors are distinctly not normal While predicted value can be read as a probability, can depart from 0:1 range Particular difficulties with multiple explanatory variables.
Linger Brobability Model	Logistic transformation
• OLS gives the "linear probability model" in this case:	
Pr(Y = 1) = a + bX	Probability is bounded [0 : 1]
 e data is 0/1, prediction is probability Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too bad 	 Probability is bounded [0 : 1] OLS predicted value is unbounded How to transform probability to -∞ : ∞ range? Odds: ^p/_{1-p} - range is 0 : ∞ Log of odds: log ^p/_{1-p} has range -∞ : ∞

Logistic regression **Parameters** • Logistic regression uses this as the dependent variable: $\log\left(\frac{Pr(Y=1)}{1-Pr(Y=1)}\right) = a + bX$ • The b parameter is the effect of a unit change in X on $\log \left(\frac{Pr(Y=1)}{1-Pr(Y=1)}\right)$ • This implies a multiplicative change of e^{b} in $\frac{Pr(Y=1)}{1-Pr(Y=1)}$, in the Odds • Alternatively: · Thus an odds ratio $\frac{Pr(Y=1)}{1-Pr(Y=1)} = e^{a+bX}$ · But the effect of b on P depends on the level of b • See credit card example · Death penalty example allows us to see the link between odds ratios and • Or: estimates $Pr(Y = 1) = \frac{e^{a+bX}}{1+e^{a+bX}} = \frac{1}{1+e^{-a-bX}}$ sociology 💥 sociology X Inference • In practice, inference is similar to OLS though based on a different logic **Logistic regression** • For each explanatory variable, $H_0: \beta = 0$ is the interesting null • $z = \frac{\hat{\beta}}{SE}$ is approximately normally distributed (large sample property) Inference - More usually, the Wald test is used: $\left(rac{\hat{\beta}}{SE} ight)^2$ has a χ^2 distribution with one degree of freedom sociology X

Likelihood ratio tests

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where l_0 is the likelihood of the model without X_j , and l_1 that with it, the quantity

$$-2\left(\log\frac{l_0}{l_1}\right) = -2\left(\log l_0 - \log l_1\right)$$

is $\chi^{\rm 2}$ distributed with one degree of freedom

LR test in practice

. qui logit univ c.age##c.age i.sex	
. est store base	
. logit univ c.age##c.age i.sex i.gold	
Iteration 0: log likelihood = -258.63227	
Iteration 1: log likelihood = -235.46647	
Iteration 2: log likelihood = -224.18885	
Iteration 3: log likelihood = -223.79947	
Iteration 4: log likelihood = -223.79762	
Iteration 5: log likelihood = -223.79762	
Logistic regression Number of obs -	998
LR chi2(7) = 69	.67
Prob > chi2 = 0.0	0.00
Log likelihood = -223.79762 Pseudo R2 = 0.1	.347
univ Coefficient Std.err. z P> z [95% conf.in	terval]
age .2135413 .0556893 3.83 0.000 .1043923 .	3226903
c.age#c.age0025071 .0008445 -3.89 0.0000037704	00 12 43 9
sex	
female5470423 .2591863 -2.11 0.035 -1.055038	0390465
gold	
RNM -1.241583 .5610744 -2.21 0.027 -2.341268 -	. 14 18 97 4
Prop -1.388413 .3982332 -3.49 0.000 -2.168936	6078902
Skilled -1.519483 .3206528 -4.74 0.000 -2.147951	.89 10 149
Un/semi-skilled -2.334295 .4599521 -5.08 0.000 -3.235785 -1	432806
_coms -5.155577 1.135296 -4.54 0.000 -7.380716 -2	.930438
. 1rtest base	
Likelihood-ratio test	
Assumption: base nested within .	
LR chi2(4) = 43.01	
Prob > chi2 = 0.0000	

Nested models

sociology 💥

- More generally, $-2\left(\log \frac{l_o}{l_1}\right)$ tests nested models: where model 1 contains all the variables in model 0, plus *m* extra ones, it tests the null that all the extra β s are zero (χ^2 with *m* df)
- If we compare a model against the null model (no explanatory variables, it tests

$$H_0:\beta_1=\beta_2=\ldots=\beta_k=0$$

• Strong analogy with F test in OLS

Maximum likelihood

sociology 🗙

Maximum likelihood estimation	Iterative search	
 What is this "likelihood"? Unlike OLS, logistic regression (and many, many other models) are extimated by <i>maximum likelihood estimation</i> In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data OLS can be ML estimated, and yields exactly the same results 	 Sometimes the values can be chosen analytically A likelihood function is written, defining the probability of observing the actual data given parameter estimates Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations) Extremely flexible, allows estimation of a vast range of complex models within a single framework 	
sociology 💥	sociology 💥	
 Likelihood as a quantity Either way, a given model yields a specific maximum likelihood for a give data set This is a probability, henced bounded [0 : 1] Reported as log-likelihood, hence bounded [-∞ : 0] Thus is usually a large negative number Where an iterative solution is used, likelihood at each stage is usually reported – <i>normally</i> getting nearer 0 at each step 	Logistic regression Tabular data	

Tabular data	Tabular data and goodness of fit
 If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table If we think of it as a table where each cell contains <i>n</i> yeses and <i>m</i> – <i>n</i> noes (<i>n</i> successes out of <i>m</i> trials) we can fit grouped logistic regression <i>n</i> successes out of <i>m</i> trials implies a binomial distribution of degree <i>m</i> log <i>n</i> = α + βX The parameter estimates will be exactly the same as if the data were treated individually 	 But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value) Where <i>l_i</i> is the likelihood of the current model, and <i>l_s</i> is the likelihood of the "saturated model" the test statistic is -2 (log <i>l_i</i>) The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table) The test has <i>df</i> of number of settings less number of parameters estimated,
sociology X	and is χ^2 distributed sociology
	Fit with individual data
Logistic regression Goodness of fit and accuracy of classification	 Where the number of "settings" (combinations of values of explanatory variables) is large, this approach to fit is not feasible Cannot be used with continuous covariates Hosmer-Lemeshow statistic attempts to create an analogy Divide sample into deciles of predicted probability Calculate a fit measure based on observed and predicted numbers in the ten groups Simulation shows this is χ² distributed with 2 df Not a perfect solution, sensitive to how the cuts are made Pseudo-R² measures exist, but none approaches the clean interpretation as in OLS See http: //www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm

Predicting outcomes	Some problems
 Another way of assessing the adequacy of a logit model is its accuracy of classification: True yes True no Predicted yes a c Predicted no b d Proportion correctly classified: a+d a+b+c+d Sensitivity: a/a+b Specificity: d/c+d False positive: c/a+c False negative: b/b+d Stata: estat class 	 Zero cells in tables can cause problems: no yeses or no noes for particular settings Not automatically a problem but can give rise to attempts to estimate a parameter as -∞ or +∞ If this happens, you will see a large parameter estimate and a huge standard error In individual data, sometimes certain combinations of variables have only successes or only failures In Stata, these cases are dropped from estimation – you need to be aware of this as it changes the interpretation (you may wish to drop one of the offending variables instead)
sociology 🕅 30	sociology X
Multinomial logistic regression Baseline-category extension of binary logistic	 What if we have multiple possible outcomes, not just two? Logistic regression is binary: yes/no Many interesting dependent variables have multiple categories voting intention by party first destination after second-level education housing tenure type We can use binary logistic by recoding into two categories dropping all but two categories But that would lose information

Multinomial logistic regression	J – 1 contrasts
 Another idea: Pick one of the <i>J</i> categories as baseline For each of <i>J</i> − 1 other categories, fit binary models contrasting that category with baseline Multinomial logistic effectively does that, fitting <i>J</i> − 1 models simultaneously $\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \beta_j X, \ j = 1,, c - 1$ Which category is baseline is not critically important, but better for interpretation if it is reasonably large and coherent (i.e. "Other" is a poor choice) sociology X	Compare each of J- categories against a baseline
Predicting p from formula $\log \frac{\pi_j}{\pi_J} = \alpha_j + \beta_j X$ $\frac{\pi_j}{\pi_J} = e^{\alpha_j + \beta_j X}$ $\pi_j = \pi_J e^{\alpha_j + \beta_j X}$ $\pi_J = 1 - \sum_{k=1}^{J-1} \pi_k = 1 - \pi_J \sum_{k=1}^{J-1} e^{\alpha_k + \beta_k X}$ $\pi_J = \frac{1}{1 + \sum_{k=1}^{J-1} e^{\alpha_k + \beta_k X}} = \frac{1}{\sum_{k=1}^{J} e^{\alpha_k + \beta_k X}}$ $\Rightarrow \pi_j = \frac{e^{\alpha_j + \beta_j X}}{\sum_{k=1}^{J} e^{\alpha_k + \beta_k X}}$	Multinomial logistic regression Interpreting example, inference

Example	Stata output
 Let's attempt to predict housing tenure Owner occupier Local authority renter Private renter using age and employment status Employed Unemployed Not in labour force mlogit ten3 age i.eun 	Multinomial logistic regression Number of obs = 15490 LR chi2(6) = 1256.51 Prob > chi2 = 0.0000 Pseudo R2 = 0.0580 Iog likelihood = -10204.575 Pseudo R2 = 0.0580 Image: tens Coef. Std. Err. z P> z [95% Conf. Interval] 1 (base outcome) 2 age 0103121 .0012577 -8.20 0.0000127770078471 eun 2 2 1.25075 .0522691 23.93 0.000 1.789603 2.191946 3 age 0389969 .0018355 -21.25 0.00004259450353994 eun 2 2 .0389969 .0018355 -21.25 0.00004259450353994 2 .4677734 .1594678 2.93 0.003 .1552223 .7803245 3 .4632419 .063764 7.26 0.000 .3382688 .5882171
sociology X	cons /6/24 .0/581/2 -10.12 0.0009188396186411 sociology
Interpretation	Inference
 Stata chooses category 1 (owner) as baseline Each panel is similar in interpretation to a binary regression on that category versus baseline Effects are on the log of the odds of being in category <i>j</i> versus the baseline 	 At one level inference is the same: Wald test for <i>H_o</i> : <i>β_k</i> = 0 LR test between nested models However, each variable has <i>J</i> − 1 parameters Better to consider the LR test for dropping the variable across all contrasts: <i>H</i>₀ : ∀<i>j</i> : <i>β_jk</i> = 0 Thus retain a variable even for contrasts where it is insignificant as long as it has an effect overall Which category is baseline affects the parameter estimates but not the fit (log-likelihood, predicted values, LR test on variables)
sociology	sociology 💥

Predicting	ordinal outcomes	
------------	------------------	--

- While mlogit is attractive for multi-category outcomes, it is imparsimonious
- For nominal variables this is necessary, but for ordinal variables there should be a better way
- We consider three useful models
 - Stereotype logit

sociology 💥

sociology 💥

Stereotype logit

- Proportional odds logit
- Continuation ratio or sequential logit
- Each approaches the problem is a different way

Ordinal logit

Stereotype logit

Ordered parameter estimates

• If outcome is ordinal we should see a pattern in the parameter estimates:

Multinomial	1.00	istic roomo	ngion		Numbo	m of oh		1.
Multinomial	TOB	istic regre:	ssion		numbe	r or ob	s -	1
					LR ch	12(4)	=	117
					Prob	> chi2	=	0.
Log likelih	bod	= -9778.870:	1		Pseud	o R2	=	0.
edu .	 .	Coef.	Std. Err.	 z	P> z	 Г95%	Conf.	 Inter
	+-							
Hi	1							
ag	•	0453534	.0015199	-29.84	0.000	048	3323	042
2.se:	c	4350524	.0429147	-10.14	0.000	519	1636	350
_con:	s	2.503877	.086875	28.82	0.000	2.33	3605	2.67
Med								
ag	ə	0380206	.0023874	-15.93	0.000	042	6999	033
2.se:	c	1285718	.0674878	-1.91	0.057	260	8455	.003
_con:	s	.5817336	.1335183	4.36	0.000	.320	0425	.843
	- +-							
Lo		(base outco	ome)					

Low education is the baseline
The effect of age:
 -0.045 for high vs low
 -0.038 for medium vs low
 0.000, implicitly for low vs low
• Sex: -0.435, -0.129 and 0.000
• Stereotype logit fits a scale factor ϕ to the parameter estimates to capture this

pattern

sociology 💥

Scale factor

• Compare mlogit:

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \beta_{1j}X_1 + \beta_{2j}X_j \quad j = 1, \dots, J-1$$

• with slogit

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \phi_j \beta_1 X_1 + \phi_j \beta_2 X_2, \quad j = 1, \dots, J-1$$

- ϕ is zero for the baseline category, and 1 for the maximum
- It won't necessarily rank your categories in the right order: sometimes the effects of other variables do not coincide with how you see the ordinality

sociology 💥

sociology 💥

Interpreting ϕ

High	1
Medium	0.786
Low	0

- That is, averaging across the variables, the effect of medium vs low is 0.786 times that of high vs low
- The /theta terms are the α_i s

Slogit example

• Age and sex predicting education for those 30yrs-plus

torooturo logi	atic mogmon	aion		Number	of ohe	-	1 0 0 0
cereorype rogr	SCIC IGRIGS	5101		Number	01 005	-	10500
					Wald chi2(2)		970.21
og likelihood	= -9784.86	3		Prob >	chi2	-	0.0000
(1) [phi1_1]	_cons = 1						
educ	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval
age	.0457061	. 001 50 99	30.27	0.000	. 04 274	68	. 0486654
2.sex +-	.4090173	.0427624	9.56	0.000	. 32520	45	.492830
/phi1_1	1	(constraine	d)				
/phi1_2	.7857325	.0491519	15.99	0.000	. 68939	65	.8820684
/phi1_3	0	(base outco	me)				
/theta1	2.508265	.0869764	28.84	0.000	2.3377	95	2.67873
/theta2	.5809221	.133082	4.37	0.000	. 32008	62	.84175
/theta3	0	(base outco	me)				

sociology 💥

Surprises fi	r om sl	ogit					
 slogit is if we inclu ⇒change 	not guarante ide younger p es the order o	eed to respect to be ople as well a of ϕ	he order as those o	ver 30, lifeo	course and coh	ort effects me	an age has a non-
. slogit educ a []	ge i.sex						
Stereotype logi	stic regres	sion		Numb e	r of obs =	14321	
				Wald	chi2(2) =	489.72	
Log likelihood	= -13792.0	5		Prob	> chi2 =	0.0000	
(1) [phi1_1]	_cons = 1						
educ	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
age	.0219661	.0009933	22.11	0.000	.0200192	.0239129	
2.sex	.1450657	.0287461	5.05	0.000	.0887244	.2014071	
/phi1_1	1	(constraine	d)				
/phi1_2	1.813979	.0916542	19.79	0.000	1.634341	1.993618	
/phi1_3	0	(base outco	me)				
/theta1	.9920811	. 0559998	17.72	0.000	. 8823235	1.101839	
/theta2	.7037589	.0735806	9.56	0.000	.5595436	.8479743	
/theta3	0	(base outco	me)				
(educated is the	base outco	ome)					

-linear effect

Recover by including non-linear age	Stereotype logit
Stereotype logistic regression Number of obs = 14321 Wald ch12(3) = 984.66 Prob > ch12 = 0.0000 (1) [phi1_1]_cons = 1	 Stereotype logit treats ordinality as ordinality in terms of the explanatory variables There can be therefore disagreements between variables about the pattern of ordinality It can be extended to more dimensions, which makes sense for categorical variables whose categories can be thought of as arrayed across more than one dimension See Long and Freese, Ch 6.8
(educ=Lo is the base outcome)	
Ordinal logit Proportional odds	 The proportional odds model The most commonly used ordinal logistic model has another logic It assumes the ordinal variable is based on an unobserved latent variable Unobserved cutpoints divide the latent variable into the groups indexed by the observed ordinal variable The model estimates the effects on the log of the odds of being higher rather than lower across the cutpoints
	sociology

The model

$$J - 1$$
 contrasts again, but different

 • For $j = 1$ to $J - 1$,
 $\log \frac{P(Y > j)}{P(Y < = j)} = \alpha_j + \beta x$

 • Only one β per variable, whose interpretation is the effect on the odds of being higher rather than lower
 But rather than compare categories against a baseline it splits into high and low, with all the data involved each time

 • One α per contrast, taking account of the fact that there are different proportions in each one
 sociology X

 • An example
 Ordered logistic: Stata output

- Using data from the BHPS, we predict the probability of each of 5 ordered responses to the assertion "homosexual relationships are wrong"
- Answers from 1: strongly agree, to 5: strongly disagree

sociology 💥

 Sex and age as predictors – descriptively women and younger people are more likely to disagree (i.e., have high values)

Ordered logistic regression Number of obs = 12725 LR chi2(2) 2244.14 = Prob > chi2 = 0.0000 Log likelihood = -17802.088 Pseudo R2 0.0593 = _____ ropfamr | Coef. Std. Err. z P>|z| [95% Conf. Interval] 2.rsex | .8339045 .033062 25.22 0.000 .7691041 .8987048 rage -.0371618 .0009172 -40.51 0.000 -.0389595 -.035364 /cut1 | -3.833869 .0597563 -3.950989 -3.716749 /cut2 | -2.913506 .0547271 -3.02077 -2.806243 /cut3 | -1.132863 .0488522 -1.228612 -1.037115 /cut4 | .3371151 .0482232 .2425994 .4316307 _____

Predicted probabilities relative to contrasts	Predicted probabilities relative to contrasts			
Predicted b above contrast Bredicted b above con	 We predict the probabilities of being above a particular contrast in the standard way Since age has a negative effect, downward sloping sigmoid curves Sigmoid curves are also parallel (same shape, shifted left-right) We get probabilities for each of the five states by subtraction 			
Inference	Testing proportional odds			
 The key elements of inference are standard: Wald tests and LR tests Since there is only one parameter per variable it is more straightforward than MNL However, the key assumption of proportional odds (that there <i>is</i> only one parameter per variable) is often wrong. The effect of a variable on one contrast may differ from another Long and Freese's SPost Stata add-on contains a test for this 	 It is possible to fit each contrast as a binary logit The brant command does this, and tests that the parameter estimates are the same across the contrast It needs to use Stata's old-fashioned xi: prefix to handle categorical variables: xi: ologit ropfamr i.rsex rage brant, detail 			
sociology	sociology			

Brant test output	What to do?		
. brant, detail Estimated coefficients from j-1 binary regressions y>1 y>2 y>3 y>4 _Irsex_2 1.0198492 .91316551 .76176797 .8160246 rage .02716537 .0306454 .0362048 .04671137 _cons 3.2067856 2.5225826 1.1214759 .00985108 Brant Test of Parallel Regression Assumption Variable chi2 p>chi2 df	 In this case the assumption is violated for both variables, but looking at the individual estimates, the differences are not big It's a big data set (14k cases) so it's easy to find departures from assumptions However, the departures can be meaningful. In this case it is worth fitting the "Generalised Ordinal Logit" model 		
 Ceneralised Ordinal Logit This extends the proportional odds model in this fashion $\log \frac{P(Y > j)}{P(Y <= j)} = \alpha_j + \beta_j x$ That is, each variable has a per-contrast parameter At the most imparsimonious this is like a reparameterisation of the MNL in ordinal terms However, can constrain βs to be constant for some variables Get something intermediate, with violations of PO accommodated, but the parsimony of a single parameter where that is acceptable Download Richard William's gologit2 to fit this model: ssc install gologit2 	Ordinal logit Sequential logit		

Sequential logit

sociology

- Different ways of looking at ordinality suit different ordinal regression formations
 - categories arrayed in one (or more) dimension(s): slogit
 - categories derived by dividing an unobserved continuum: ologit etc
 - categories that represent successive stages: the continuation-ratio model
- Where you get to higher stages by passing through lower ones, in which you could also stay
 - Educational qualification: you can only progress to the next stage if you have completed all the previous ones
 - Promotion: you can only get to a higher grade by passing through the lower grades

"Continuation ratio" model

• Here the question is, given you reached level *j*, what is your chance of going further:

$$\log \frac{P(Y > j)}{P(Y = j)} = \alpha + \beta X$$

- For each level, the sample is anyone in level j or higher, and the outcome is being in level j + 1 or higher
- That is, for each contrast except the lowest, you drop the cases that didn't make it that far

J-1 contrasts again, again different		Fitting CR
But rather than splitting high and low, with all the data involved each time, it drops cases below the baseline		 This model implies one equation for each contrast Can be fitted by hand by defining outcome variable and subsample for each contrast (ed has 4 values): gen con1 = ed>1 gen con2 = ed>2 replace con2 = . if ed<=1 gen con3 = ed>3 replace con3 = . if ed<=2 logit con1 odoby i.osex logit con2 odoby i.osex logit con3 odoby i.osex
	67	

sociology 💥

seqlogit

• Maarten Buis's seqlogit does it more or less automatically:

seqlogit ed odoby i.osex, tree(1 : 2 3 4 , 2 : 3 4 , 3 : 4)

- you need to specify the contrasts
- You can impose constraints to make parameters equal across contrasts

sociology 💥