Sequence analysis for social scientists

Brendan Halpin, Dept of Sociology, University of Limerick

Academica Sinica, Taipei, August 30-31 2016

Outline

- What is sequence analysis?
- Why it can be worth doing, and how it complements existing approaches
- How to do it, and how to think about it
- Practical, hands-on focus, using (inter alia) my SADI add-on for Stata (Halpin, 2014a)

Slides available at http://teaching.sociology.ul.ie/taiwan

Sequence analysis for social scientists

Session 1: Background

Sequence Analysis in the social sciences

Section 1

Sequence analysis in the social sciences: some background

Sequence Analysis

- What is sequence analysis?
 - Large and active research area
 - From Andrew Abbott in mid-late 1980s, to 2015 special edition of Sociological Methodology
- Focuses on linear data (such as lifecourse trajectories) as sequences, as wholes
- Usually proceeds by defining distances between pairs of sequences, creating empirical typologies, etc

A brief history of SA in Sociology

- Andrew Abbott's long evangelism
 - Abbott (1984) earliest, argues for focusing on sequence as well as duration
 - Abbott and Forrest (1986) Morris dancing
 - Abbott and Hrycak (1990) careers of Baroque musicians
- Abbott's main point: focus on sequences as wholes as an alternative to "variable-based" sociology
- However, his main practical contribution was to introduce the OM algorithm to the social sciences

A brief history of SA in Sociology

- Andrew Abbott's long evangelism
 - Abbott (1984) earliest, argues for focusing on sequence as well as duration
 - Abbott and Forrest (1986) Morris dancing
 - Abbott and Hrycak (1990) careers of Baroque musicians
- Abbott's main point: focus on sequences as wholes as an alternative to "variable-based" sociology
- However, his main practical contribution was to introduce the OM algorithm to the social sciences

James Coleman: 'No one's gonna pay any attention . . . as long as you write about dead German musicians' (Abbott, 2001, p. 13)

Some 1st wave adopters 1/2

- Stovel et al. (1996): A sequence-oriented analysis of career data from a British bank, showing a transition between a status-based and an achievement-based system, from 1890 to 1970.
- Wuerker (1996): Treats sequences of services interactions of mental health patients in Los Angeles. A small data set, but of interest because it uses a relatively uncommon form of trajectory.
- Halpin and Chan (1998): Analyses class careers of British and Irish men to age 35 using retrospective data.

Some 1st wave adopters 2/2

- Blair-Loy (1999): Women's careers in the finance industry;
 identifies change across cohort in opportunity and perspective.
- Han and Moen (1999): How life and work trajectories of couples are coordinated. Dyadic, not analyis of all pairwise distances: uses OM to generate a measure of intra-couple similarity.
- Stovel (2001): Not life-course: looks at county-level histories of lynching in the Southern US, drawing strongly on arguments from Abbott and others about the necessity of taking a sequence perspective on historical explanations.

2000 debate in SMR

- Position: Abbott and Tsay (2000)
- Critiques: Levine (2000) and Wu (2000)
 - is it sociologically meaningful?
 - how do we parameterise it?
 - does it have any advantages over conventional approaches?
- Response: Abbott (2000)

Key developments since

- Widespread in many fields, especially lifecourse related:
 - transition school to work, labour market, retirement, health outcomes, time use
 - Some focus on multiple domains, dyadic approaches, cohort change in average diversity
 - Much still uses clustering to develop empirical typologies
- See Aisenbrey and Fasang (2010) and Halpin (2013) for a summary
- Rather more activity in Europe than in US
- Two important conferences:
 - LaCOSA1 2012 on Sequence Analysis: Blanchard et al. (2014) (includes historical demographers such as Michel Oris)
 - LaCOSA2 2016 on Sequence Analysis and related methods (Online proceedings:
 - https://lacosa.lives-nccr.ch/online-proceedings)

Software developments

- Abbott's optimize program
- Our own initial work used molecular biology software borrowed from the Oxford Dept of Pathology
- Götz Rohwer's TDA included an OM module later (mid-late 1990s)
- Stata: SQ and SADI (mid-late 2000s)
- R: Traminer (mid-late 2000s)

Why do Sequence Analysis?

- Why would we want to do it
 - Holistic vs analytic?
 - Exploratory vs hypothesis testing?
 - Descriptive, visualisation
- Complexity of longitudinal processes hard to capture
- Complementary alternative to stochastic techniques which model data generation process

Sequences are messy

- Lifecourse sequences are epiphenomena of more fundamental underlying processes
- The processes are potentially complex: difficult to predict distribution of sequences
- Other techniques (hazard rate models, models of late outcome using history, models of the pattern of transition rates) give a powerful but incomplete view
- SA clearly allows us visualise complex data; possibly allows us observe features that will otherwise be missed

Potentially complex processes

- The generating processes are complex:
 - individuals bring different characteristics from the beginning
 - history matters, including via duration dependence (individuals accumulate characteristics)
 - time matters:
 - calendar time (e.g. economic cycle), state distribution may change dramatically
 - developmental time (maturation)
 - processes in other lifecourse domains
- Too many parameters to model, hard to visualise distribution of life courses, also the possibility of emergent features
 - Clear exploratory advantages
 - possibility of detecting things that might not be detected otherwise

Timing, sequence, quantum

- Different things can be interesting
 - Timing: when things happen
 - Sequence: in what order do things happen
 - Quantum: how much time is spent in different states (Billari et al., 2006)
- Many applications in longitudinal social science: annotated bibliography in Halpin (2013)

Non-holistic approaches

- Numerous non-holistic approaches exist
- Typically they will discard some aspect of the information in the data, and focus powerfully on another
- For instance, focus on
 - cumulated duration in states (how much but not when)
 - transition patterns between states (period-to-period but not overall)
 - time-to-event of leaving spell (spells, perhaps pooled, but lose sight of individual career).

Cumulative duration

- For instance, summarise trajectories in terms of cumulative time in each state
- Typically use as a predictor (e.g., proportion of time unemployed predicting later ill-health)
- Or as an outcome: variables measured earlier (e.g., school performance) predicting proportion of time unemployed.

Transition rate models

- Model rates of period-to-period change: e.g., monthly movement between labour market statuses
- Model origin-destination patterns: e.g., transition between class at entry to labour market, and class at age 35
- Markov models
- Very useful, good overview, can be descriptive or stochastic: tables make categorical data digestible
- Disadvantage: the focus on the t-1/t or t_0/t_T pattern means a loss of individual continuity
- Some potential to model longer Markov chains (Gabadinho, 2014)

Hazard-rate modelling

- Hazard-rate modelling is one of the dominant statistical alternative
- Either in terms of survival tables and curves (essentially descriptive)
- Or full stochastic models of the determinants of the hazard rate (Cox and/or parametric)
- Example: what characteristics speed up (or slow down) exit from unemployment?
- Very nice conceptual model of the temporal process
- Can test hypotheses
- Disadvantage: spell orientation, lack of whole-trajectory overview

Latent class analysis

- Latent class growth curve models
 - Where theory allows a developmental model of a quantitative outcome
 - Account for the structure of repeated measurement of individuals
 - Not so suitable for categorical variables
- Latent class models can be applied to careers
 - However, difficult to properly incorporate the longitudinality
 - Examples: Lovaglio and Mezzanzanica (2013); Barban and Billari (2012)

Holistic approaches

- Holistic approaches by definition treat whole trajectories as units
- Classification of sequences is a typical goal
- Usually achieved by defining inter-sequence similarity and cluster analysis
- But other aspects of similarity may be interesting
 - Variation of similarity by grouping variable (cohort, social class)
 - Dyad similarity (couples' time use, mother-daughter fertility etc)
 - Distance to pre-defined ideal types (empirical or theoretical)

Defining similarity

- Defining similarity the key challenge: must be
 - efficient
 - coherent, and
 - sociologically meaningful
- We will consider a number of methods to do this
 - Hamming distance
 - Optimal Matching distance
 - Dynamic Hamming distance
 - Time-warping measures
 - Combinatorial subsequence measures

Hamming distance and Optimal Matching

- The simplest way to compare sequences is element-wise
- Given a rule for d(a, b), project it onto D(A, B) as $D(A, B) = \sum_i d(A_i, B_i)$
- Requires sequence of equal length
- Hamming distance: recognises match or similarity at same time
- Simple but important case of mapping d(a,b) o D(A,B)

Hamming distance example

Calculate Hamming distance

Hamming distance example

Calculate Hamming distance

Resulting distances

Optimal Matching

- Hamming recognises similarity at the same time
- If sequences have similarity that is out of alignment this will not be recognised
- OM defines similarity like Hamming, but uses insertion and deletion to allow sequences to align
 - I.e., it cuts bits out in order to slide other parts along to match
 - Insertion/deletion also enables comparison of sequences of different lengths
- Origins in computer science, pattern recognition, extensive use in molecular biology

OM example

OMA call

OM example

OMA call

. oma s1-s5, subs(scost) indel(1.5) /// pwd(oma) length(5)

Resulting distances

OM distances

```
symmetric oma[4,4]
     c1
         c2
              c3
                   c4
r1
r2
    . 6
r3
  .6 .6 0
                    0
```

Hamming distances

```
symmetric ham[4,4]
           с3
                 c4
r1
r2
  1.2
  .6 1.4 0
       1.2 1.8
```

OM vs Hamming

- For most pairs the OM and Hamming distance is the same
- For the pairs (1,2) and (2,3), OM distance is less because "alignment" allows a better match
- 1 vs 2

• 2 vs 3

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
		=
		=
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
		=
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
insert D	CDABCD	+1.5 = 3.0
		=
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
insert D	CDABCD	+1.5 = 3.0
$const\ \mathtt{A}=\mathtt{A}$	CDABCD	+0.0 = 3.0
		=
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
insert D	CDABCD	+1.5 = 3.0
$const\ \mathtt{A}=\mathtt{A}$	CDABCD	+0.0 = 3.0
subs B $ ightarrow$ A	CDA <mark>A</mark> CD	+1.0 = 4.0
		=
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
insert D	CDABCD	+1.5 = 3.0
${\sf const} \; {\tt A} = {\tt A}$	CDABCD	+0.0 = 3.0
subs B $ ightarrow$ A	CDAACD	+1.0 = 4.0
subs C ${ ightarrow}$ B	CDAABD	+1.0 = 5.0
		=
Sequence 1	CDAAB	=

Operation	Intermediate state	Cost
Sequence 2	ABCD	= 0
insert C	CABCD	+1.5 = 1.5
insert D	CDABCD	+1.5 = 3.0
const $\mathtt{A}=\mathtt{A}$	CDABCD	+0.0 = 3.0
subs B $ ightarrow$ A	CDAACD	+1.0 = 4.0
subs C ${ ightarrow}$ B	CDAABD	+1.0 = 5.0
delete D	CDAAB-	+1.5 = 6.5
Sequence 1	CDAAB	= 6.5

Programming OM

- OM distance is defined as the cheapest set of "elementary operations" that edit one sequence into another
- Determining the cheapest set of "elementary operations" is potentially complex – a large population of candidates
- However, it can be stated as a recursive problem and programmed very efficiently
- Understanding how it is programmed can help understand the principle of OM

OM: Recursive problem

$$egin{aligned} \Delta_{OM}(A^p,B^q) = \ & min \left\{ egin{array}{ll} \Delta_{OM}(A^{p-1},B^q) & + indel \ \Delta_{OM}(A^{p-1},B^{q-1}) + \delta(a_p,b_q) \ \Delta_{OM}(A^p,B^{q-1}) & + indel \ \end{array}
ight. \end{aligned}$$

(Δ represents distance between sequences, and δ differences within the state space)

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2				
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

= $min(0 + 2, 2 + 2, 2 + 2) = 2$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2				
4				
2 4 6 8				
8				
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

$$= min(2+1, 2+2, 4+2) = 3$$

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2			
4				
2 4 6 8				
8				
10				

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3		
4				
2 4 6 8				
8				
10				

Cell value:
$$min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$$

$$= min(4+0,3+2,6+2) = 4$$

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3		
4				
2 4 6 8				
8				
10				

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	
4				
6				
2 4 6 8				
10				

$$= min(6 + 1, 4 + 2, 8 + 2) = 6$$

$$s_{2}$$

$$A \quad B \quad C \quad D$$

$$c \quad 2 \quad 1 \quad 0 \quad 1$$

$$s_{1} \quad D \quad 3 \quad 2 \quad 1 \quad 0$$

$$A \quad 0 \quad 1 \quad 2 \quad 3$$

$$A \quad 0 \quad 1 \quad 2 \quad 3$$

$$B \quad 1 \quad 0 \quad 1 \quad 2$$

0	2	4	6	8
	2	3	4	
2 4 6 8				
6				
8				
10				

		<i>s</i> ₂				
		Α	В	C	D	
	C	2	1	0	1	
s_1	D	3	2	1	0	
	Α	0	1	2	3	
	Α	0	1	2	3	
	В	1	0	1	2	

0	2	4	6	8
2	2	3	4	6
2 4 6 8				
6				
8				
10				

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4 6	4	4	4	4
6				
8				
10				

		s ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8				
10				

			s ₂			
		Α	В	C	D	
	C	2	1	0	1	
s_1	D	3	2	1	0	
	Α	0	1	2	3	
	Α	0	1	2	3	
	В	1	0	1	2	

0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8	6	5	7	8
10				

		<i>s</i> ₂			
		Α	В	C	D
	C	2	1	0	1
s_1	D	3	2	1	0
	Α	0	1	2	3
	Α	0	1	2	3
	В	1	0	1	2

0	2	4	6	8
2	2	3	4	6
4	4	4	4	4
6	4	5	6	6
8	6	5	7	8
10	8	6	6	8

Section 2: Practical Sequence Analysis

How to carry out basic sequence analysis

Two example data sets

- We will be primarily using two data sets as examples
 - MVAD: McVicar/Anyadike-Danes data on the school-to-work transition in Northern Ireland (72 months, 6 states)
 - BSSEQ: 6 years of labour market history of women who have a birth at end of year 2 (72 months, 4 states)

Initial step: looking at life course data

- It's harder to get an overview of lifecourse that cross-sectional data
- However, a number of numeric and graphical techniques are available

Numeric summaries

We can summarise lifecourse data in terms of:

- Cumulative duration
- Number of spells
- Patterns of transition rates
 - month by month
 - start by finish
- Durations to event (time to first job, first marriage, first child)

Useful to break down these measures by covariates, and model them

Descriptives

Cumulative duration

```
use myad
cumuldur state*, cd(cd) nstates(6)
reshape long cd, i(id) j(durtype)
label values durtype state
table male durtype, c(mean cd) format(%5.2f)
table grammar durtype, c(mean cd) format(%5.2f)
   0 | 29.24 12.73 10.12 7.30 5.55 7.06
     1 | 34.96 10.75 6.81 5.00 9.12 5.36
     durtype
 0 | 34.25 12.42 6.07 4.44 8.09 6.74
     1 | 23.02 8.47 18.93 13.62 4.32 3.64
```

Number of spells

- . nspells state*, gen(nsp)
- . tab nsp grammar, col nofreq

	1	grammar			
nsp	1	0	1	1	Total
	-+-			-+-	
1	1	6.17	4.65	-	5.90
2	-	20.24	24.81	-	21.07
3	1	30.70	33.33	1	31.18
4	1	19.21	19.38	-	19.24
5	1	12.52	6.98	1	11.52
6	-	4.12	6.20		4.49
7	-	3.95	1.55		3.51
8	-	1.37	2.33		1.54
9	1	1.03	0.78	1	0.98
10	1	0.34	0.00	1	0.28
11	1	0.34	0.00	1	0.28
	-+-			-+-	
Total	1	100.00	100.00	1	100.00

Transition rates

```
use mvad
reshape long state, i(id) j(t)
by id: gen last = state[_n-1] if _n>1
label values last state
tab last state, row nofreq
```

Descriptives

Transition rates

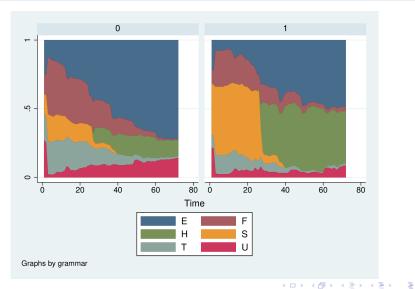
1			stat	е			
last	E	F	H	S	T	υl	Total
E	22,039	115	56	39	58	146	22,453
!	98.16	0.51	0.25	0.17	0.26	0.65	100.00
F	227	7,927	54	8	33	73	8,322
1	2.73	95.25	0.65	0.10	0.40	0.88	100.00
H	60	1	5,787	0	3	11	5,862
1	1.02	0.02	98.72	0.00	0.05	0.19	100.00
S	59	50	74	4,120	19	23	4,345
1	1.36	1.15	1.70	94.82	0.44	0.53	100.00
T	197	21	0	4	4,973	69	5,264
1	3.74	0.40	0.00	0.08	94.47	1.31	100.00
 U	182	120	9	39	64	3,892	4,306
1	4.23	2.79	0.21	0.91	1.49	90.39	100.00
Total	22,764	8,234	5,980	4,210	5,150	4,214	50,552
1	45.03	16.29	11.83	8.33	10.19	8.34	100.00

Graphs

Graphs give us an even better overview. Consider

- Chronograms
- Survival plots
- Index plots
- Transition rate time-series

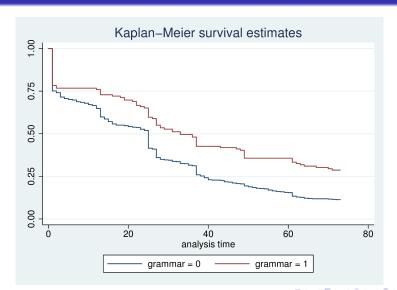
Chronograms



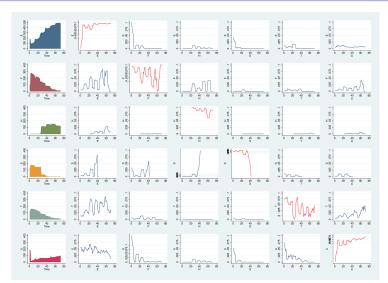
Index plots



Survival plots: time to first job



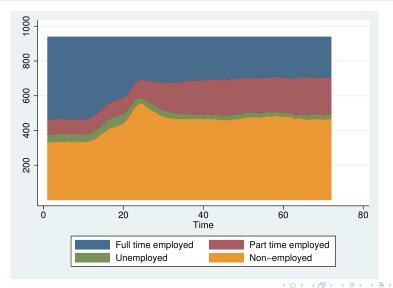
Transition rate time-series



Sequence analysis of real data

Now let's do some sequence analysis of real lifecourse data

Chronogram, mothers' labour market history (BS)



OM on BS data

OM output

```
. oma state*, subs(scost) indel(1.5) pwd(oma) len(72)
Normalising distances with respect to length
(0 observations deleted)
417 unique observations
nrefs: 0
```

. matlist oma[1..5,1..5]

 	 +_	c1	c2	c3	c4	c5
 r1	. – 	0				
r2		2.694444	0			
r3		.7777778	1.916667	0		
r4		1.861111	.8333333	1.083333	0	
r5		2.277778	.4583333	1.541667	.8333333	0

Hamming for comparison

- . hamming state*, subs(scost) pwd(ham)
- . corrsqm ham oma

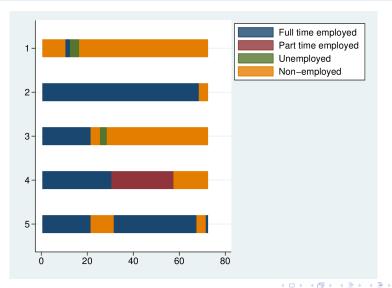
VECH correlation between ham and oma: 0.9946

. matlist ham[1..5,1..5]

	c1	c2	с3	c4	с5
r1					
r2	2.694444	0			
r3	.7777778	1.916667	0		
r4	1.861111	.8333333	1.083333	0	
r5	2.277778	. 5	1.583333	1.222222	0

Session 2: Doing SA
Sequence analysis of real data

First five sequences



What to do with distances?

- Pairwise distance matrices are an intermediate point
- One useful thing: create a data-driven classification
- Use cluster analysis, typically using Ward's linkage
- Number of clusters is a matter for thought, 8 is convenient for exposition (but see also Halpin (2016))

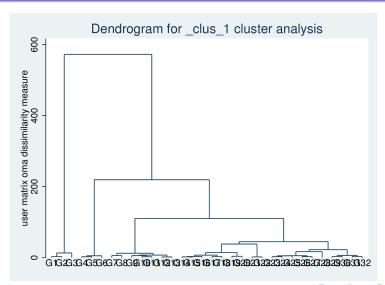
Clustering OM

```
clustermat wards oma, add
cluster generate g8=groups(8)
cluster dendrogram, cutnumber(32)
chronogram state*, by(g8)
chronogram state*, by(g8) proportional
```

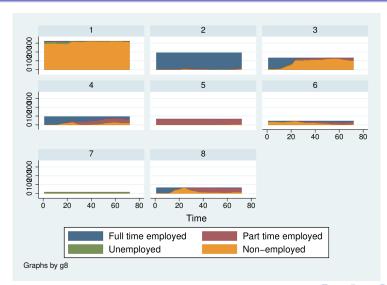
Session 2: Doing SA

Cluster analysis: empirical typologies from distances

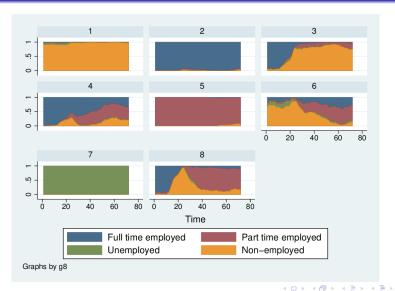
Dendrogram



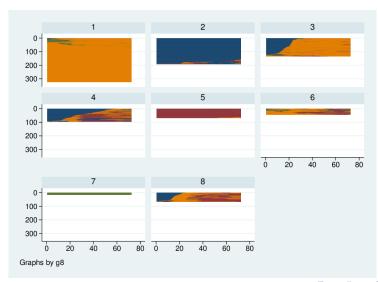
Chronogram by cluster



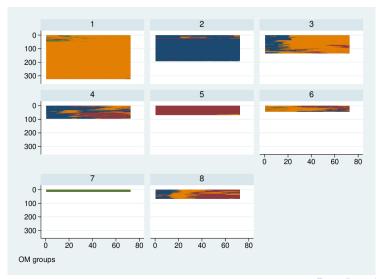
Chronogram, proportional



Indexplot



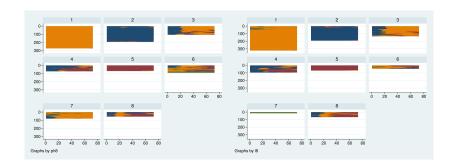
Indexplot in dendrogram order



Details: how it was done

```
clustermat wards oma, add
cluster generate g8 = groups(8)
cluster generate g999 = groups(800), ties(fewer)
chronogram state*, by(g8)
chronogram state*, by(g8) prop
reshape long state, i(pid) i(t)
sqset state pid t
sqindexplot, by(g8, legend(off))
sqindexplot, by(g8, legend(off)) order(g999)
```

Compare Hamming (L) and OM (R) solutions



ARI and permtab

	Hamming							
OM	1	2	3	4	5	6	7	8
1	273	0	1	0	0	1	48	0
2	0	192	0	0	0	0	0	0
3	0	0	85	0	1	16	32	0
4	0	0	10	69	0	0	0	16
5	0	0	0	0	68	0	0	0
6	0	1	0	0	0	44	0	0
7	0	0	0	0	0	16	0	0
8	0	0	10	4	0	14	0	39

• Kappa-max: 0.7791

• Adjusted Rand Index: 0.7818

Hamming and OM

- Often with lifecourse data, Hamming and OM generate quite similar results
- However, where they differ it is with more complex sequences

Complexity of sequences

- Complexity of sequences is relevant: more complex means less likely to be similar (and perhaps, similarity is more interesting)
- How to measure? Number of spells is part of it
- Also distribution of time
- A single long spell is the simplest sequence
- Many spells in many different states is very complex

Shannon Entropy

- Information theory relates complexity to "entropy"
- More complex objects are harder to describe, cannot be compressed
- Shannon Entropy: $\epsilon = -\sum p_i \log_2 p_i$ where p_i is the proportion of months in state i
- Takes account of diversity of state but ABABAB counts as no more complex than AAABBB

Example: entropy

```
entropy state*, gen(ent) cd(pcd) nstates(4)
nspells state*, gen(nsp)
gen ent2 = ent*nsp/72
table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)
```

g8	1	mean(ent)	mean(ent2)	mean(nsp)
1	- T -	0.150	0.008	1.536
2	1	0.100	0.004	1.359
3		1.143	0.061	3.560
4	1	1.053	0.057	3.684
5		0.074	0.003	1.235
6	1	1.252	0.091	4.844
7		0.000	0.000	1.000
8		1.489	0.097	4.597

Elzinga's turbulence

- In Elzinga (2010) a measure of complexity is proposed that is more appropriate for spell data
- It is based on duration weighted spells, and on subsequence counting
- It combines a measure based on the number of distince subsequences, with a measure of the variance of their durations
- It is (only) available in TraMineR
- However, in practice the simpler Shannon entropy correlates highly with it

Regular expressions

- If sequences are represented as text, text-processing tools such as "regular expressions" can be used to sort between them
- Refer to lab notes for more details

```
stripe state*, gen(seqst)
list seqst in 1/5,clean
count if regexm(seqst,"^A+$")
count if regexm(seqst,"^AAAAAA+.*DDDDDD.*AAAAAAA.*$")
count if regexm(seqst,"AB.*AB")
```

Multi-dimensional scaling (optional)

- The other "obvious" thing to do with pairwise distances is multi-dimensional scaling
- The network of distances implies a coherent space: can we re-construct it?
- Preferably with dimensions much less than number of sequences!
- Standard MDS uses principal component analysis

```
Sequence analysis for social scientists
Session 3
MDS and pairwise distances (optional)
```

Example

```
. mdsmat oma, dim(3)
(row names of (dis)similarity matrix differ from column names; row names used)

Classical metric multidimensional scaling dissimilarity matrix: oma

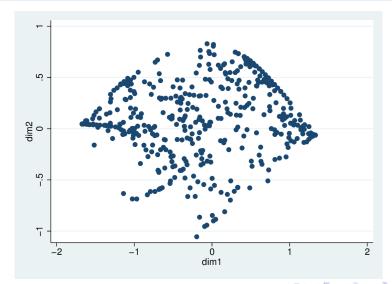
Number of obs = 940

Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556

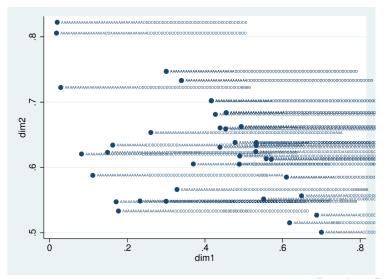
Retained dimensions = 3 Mardia fit measure 2 = 0.9932
```

	I	abs(eige	nvalue)	(eigenvalue)^2		
Dimension	Eigenvalue	Percent	Cumul.	Percent	Cumul.	
1	1205.3971	67.73	67.73	98.57	98.57	
2	95.282325	5.35	73.08	0.62	99.19	
3	44.082404	2.48	75.56	0.13	99.32	
	+					
4	28.932307	1.63	77.19	0.06	99.38	
5	23.350698	1.31	78.50	0.04	99.41	
6	12.040492	0.68	79.17	0.01	99.42	
7	10.398137	0.58	79.76	0.01	99.43	
8	8.8446418	0.50	80.26	0.01	99.44	
9	6.3672493	0.36	80.61	0.00	99.44	
10	6.1013343	0.34	80.96	0.00	99.44	

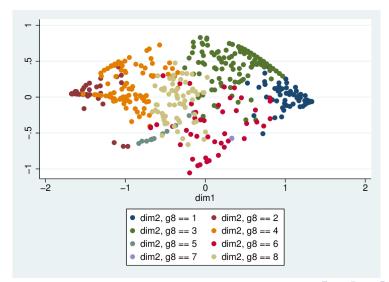
Scatterplot



Scatterplot



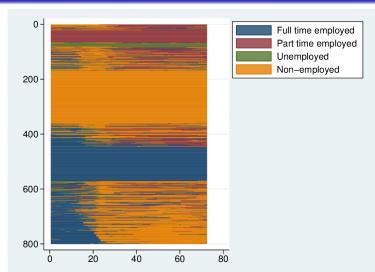
Scatterplot by cluster solution



Session 3

MDS and pairwise distances (optional)

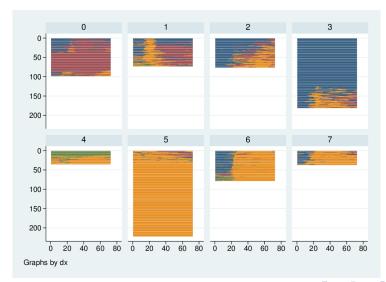
Avoid clustering: Indexplot ordered by 1st MDS dimension



Session 3

MDS and pairwise distances (optional)

Partitioning by MDS



Are substitution costs a problem?

- Repeated claims in the literature:
 - that sociologists don't know how to set substitution costs,
 - that we can't match the effectiveness of molecular biology
- Yes, our analytical goals are often much less well defined than those of the biologists
- No, substitution costs are not an intractable problem

Mapping states to sequences

- The essence of SA is mapping a view of a state space onto a view of a trajectory space: $d(s) \rightarrow D(S)$
- We start with knowledge or a view of how states relate to each other (what states are like each other, what states are dissimilar)
- With a suitable algorithm we map this perspective onto trajectories through the state space: what trajectories are more or less similar
- The nature of the algorithm determines
 - Whether the mapping makes sense
 - Exactly how the structure of the state space affects the structure of the trajectory space

• Can we expect OMA to provide a coherent $d(s) \rightarrow D(S)$ mapping?

- Elementary operations are intuitively appealing:

 - O(ABCD, ABD) = f(indel)
 - minimising concatenation of these two operations to link any pair of trajectories
- If 3 is reasonable, 1 and 2 determine how state space affects trajectory space

Thinking about state spaces and distances

- Costs can be thought of as distances between states
- If state space is \mathbb{R}^n , distance is intuitive
- If state space is categorical, how define distance?
 - State space as efficient summary of clustered distribution in \mathbb{R}^n : distances are between cluster centroids
 - State space can be mapped onto specific set of quantitative dimensions; each state located at the vector of its mean values; Euclidean or other distances between vectors
 - States can be located relative to each other on theoretical grounds

Transitions and substitutions

- Transition rates frequently proposed as basis for substitution costs
- Critics of OMA complain of substitution operations implying impossible transitions (e.g., Wu)
- Even proponents of OMA are sometimes concerned about "impossible" transitions (e.g., Pollock, 2007)
- But substitutions are not transitions, not even a little bit!
 - substitutions happen across sequences, D(ABC, ADC) = f(d(B, D)) (similarity of states)
 - transitions happen within sequences (movement between states)

Informative transition rates

- No logical connection between substitutions and transition rates
- but under certain circumstances transition rates can inform us about state distances
- If state space is a partitioning of an unknown \mathbb{R}^n , movement is random (unstructured), and the probability of a move is inversely related to its length, then
- Distance between states will vary inversely with the transition rates
- However, these conditions usually not met

Deceptive transiton rates

- Example: using voting intentions as a way of defining inter party distances
- UK: relatively high Con-LibDem two-way flows; ditto Lab-LibDem
- But Con-Lab transitions much lower: implies a potentially incoherent space (non-metric, more below)
 - d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab)
- Procedure confuses party state space and voter characteristics
- Voter polarisation/loyalty is trajectory information, not state information
- Another type of problem: irrelevant distinctions can cause similar states to have low transition rates

Take "space" seriously

- Very useful to think in spatial terms
 - **①** State space as efficient summary of clustered distribution in \mathbb{R}^n
 - State space mapped onto specific set of quantitative dimensions
 - State space defined on theoretical grounds
- For 1 and 2, explicitly multidimensional, in case 2 dimensions are explicit
- For 1 and 3, we can attempt to recover the implicit dimensions

Looking at state spaces

- Two very simple state spaces:
 - Single dimension, equally spaced:

0	1	2	3
1	0	1	2
2	1	0	1
3	2	1	0

• All states equidistant -n-1 dimensions

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

Structure passes through

- State space structure passes through to trajectory space structure
 - Distances between states clearly affect distances between trajectories containing high proportions of those states
 - If d("A","B") << d("A","C") then D("..AAAA..","..BBB..") will tend to be less than D("..AAAA..","..CCC..")
 - Differential distances promote alignment: AADDAAA and AAADDAA are more likely to be aligned to match the DD if d("A","D") is large
 - If the state distances are non-metric, the trajectory distances may also be non-metric (at least between trajectories consisting of near 100% one state)
 - Unidimensional states spaces will tend to be reflected strongly in 1st principle component of trajectory space

Designing state spaces

- Be explicit about state spaces and what distances mean
- Think spatially
 - Choose high or low dimensions, but have your reasons
- Simplify state space as far as possible
 - Drop irrelevant distinctions
 - Drop longitudinal information: let the sequence encode the temporal information, make state space cross-sectional

Legally married Not legally married

Dropping temporal information

e.g., Simplify marital status:

Living al	one	Living with partner		
Separated		Married		
Single,	never	Cohabiting		
married,	post-			
cohabitation	١,			
divorced				

- The sequence will distinguish adequately between the various "single" states
- Parity sequences: Women's annual fertility history
 - in parity terms: 000112333344444
 - in birth event terms: 000101100010000

Costing OM: a tractable problem

- Substitution costs make a big difference
 - but largely understandable in operation
 - and an asset more meaningful state space, more meaningful trajectory space
- Think spatially! Use data and geometric models
- Simplify
- Let the sequence do the temporal work

Alternatives to OM and Hamming

- OMA is the dominant but not the only approach
- It receives justified and unjustified criticism in terms of its fit to lifecourse data
- One axis of critique relates to costs: Dynamic Hamming sidesteps this
- Another relates to whether token strings are:
 - a good way to represent life-course processes (continuous time, discrete state space, infrequent transitions)
 - and whether operations on token-strings match sociological difference

Alternatives

- Hollister's LOM and my OMv attempt to fix OM by paying attention to the local context of operations (but fail: non-metric)
- TWED "warps time" and has more sensitivity to spell order
- Lesnard's Dynamic Hamming estimates substitution costs from the data and does no alignment
- Elzinga's duration-weighted combinatorial measures pay strict attention to spell order and duration
- See Halpin (2014b) for a discussion
- See Studer and Ritschard (2014) for a comprehensive review of distance measures

An aside: Metric spaces

- To treat a dissimilarity as a distance, it must be compatible with a "metric space"
- Everyday 3D Euclidean space is metric, but we can relax many of the characteristics of Euclidean space and still think in spatial terms, using e.g., cluster analysis and MDS
- Four conditions are required
 - d(x,x) = 0; identity
 - $d(x, y) \ge 0$; non-negativity
 - d(x, y) = d(y, x); symmetry
 - $d(x,y) \le d(x,z) + d(z,y)$; the "triangle inequality"
- LOM and OMv do not satisfy the triangle inequality

Dynamic Hamming

- Dynamic Hamming takes a completely different slant: no alignment
- Similarity at the same time only, where similarity is defined by time-dependent transition patterns
 - While changes are common differences matter less
 - While change is rare, differences are more marked
- Naturally appropriate for "clock" time, e.g., daily, weekly, annual patterns
- Less obviously appropriate for "developmental" time, where a common feature is people taking the same route at different speeds
- Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard (2010), implemented by him (seqcomp), in Traminer and SADI

Combinatorial approaches

- Combinatorial methods are a completely different approach to sequence comparison
- Proposed by Elzinga (2003, 2005)
- Compare sequences in terms of common "subsequences" rather than string-edits

Counting sequences

- The sequence ABC has as subsequences:
 - the null (empty) string
 - A, B and C
 - AB, AC and BC
 - and ABC itself
- A sequence of length / has 2 subsequences
- If elements are repeated not all subsequences are distinct

Combinatorial measures

- Elzinga has proposed a number of measures that count subsequences
 - Longest common subsequence
 - Number of common subsequences
 - Number of matching subsequences
- A completely different logic, combinatorial rather than string-editing: "the same states in the same order"
- One particularly attractive approach: number of matching spell-subsequences weighted by duration (I refer to it as "X/t")

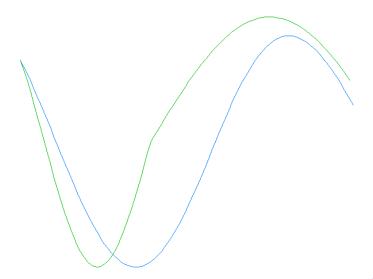
Warping time

- What of time-warping?
- Abbott and Hrycak (1990) use the term to suggest non-linear time scales
- OMv "warps time" by weighting it differently in different spells
- In turn informed by Sankoff and Kruskal (1983), Time Warps, String Edits and Macromolecules
- But time-warping refer to a specific set of algorithms

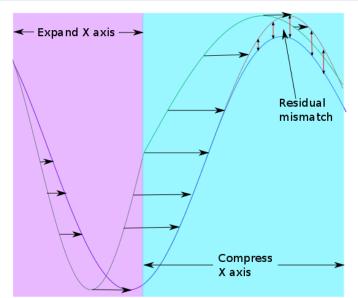
Time warping algorithms

- Formally, time warping is a family of algorithms that do "continuous time-series to time-series correction" while OM et al do "string to string correction" (Marteau, 2007)
- Focus on comparing pairs of continuous-time high-dimensional time-series in \mathbb{R}^n
- Operates by locally compressing or expanding the time scale of one trajectory to minimise the distance to the other
- ullet Distance is usually Euclidean in \mathbb{R}^n or other simple distance

TWED: Matching 1D series



TWED: Compress and expand



TW algorithms

- TW used widely: was used for speech recognition, signature verification, other machine learning tasks
- Typically used to match a high-dimensional time-series to a "dictionary" of standard elements
- Conceptually it is a continuous time approach but implementations must be discrete – sampling or periodic summaries:
 - e.g., sound sampled at 41 kHz
 - rainfall summarised daily
 - employment history reported monthly
- Kruskal and Liberman (1983) show that the continuous time logic can be faithfully implemented with discretised series

Alternatives

Discrete time-warping

TW with stiffness penalty: TWED

- Violation of the triangle inequality is due to TW usually having no cost to expansion or compression, only to the residual point-by-point distance
- Marteau (2007, 2008) proposes a TW algorithm that has a "stiffness" penalty
- Satisfies the triangle inequality
- Can be programmed very similarly to OM (recursive algorithm)
- Stiffness penalty like but not like indel cost squeezing/stretching, not inserting/deleting
- Point-to-point distance just like substitution

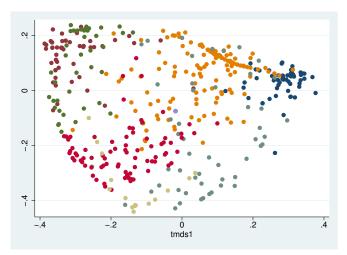
TWED: Recursive algorithm

TW distance, $\delta(A^p, B^q) =$

$$\min \left\{ \begin{array}{l} \delta(A^{p-1},B^q) & + d_{LP}(a_p,a_{p-1}) + \gamma d_{LP}(t_{a_p},t_{a_{p-1}}) + \lambda \\ \delta(A^{p-1},B^{q-1}) + d_{LP}(a_p,b_q) & + \gamma d_{LP}(t_{a_p},t_{b_q}) \\ \delta(A^p,B^{q-1}) & + d_{LP}(b_q,b_{q-1}) + \gamma d_{LP}(t_{b_q},t_{b_{q-1}}) + \lambda \end{array} \right.$$

(Marteau, 2007)

MDS/Cluster with TWED



(See OM version)

TWED attractive

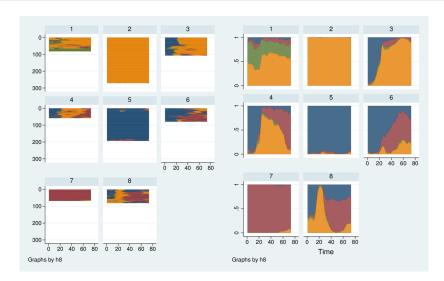
- TWED has a completely different "narrative" from OM: warping time rather than editing token strings
- Nonetheless, gives results that are not radically different
- More noticeable differences for more complex sequences
- ullet For high values of λ and γ , tends to yield Hamming distance
- For very low values of λ and γ , closer (but still not that close) to X/t
- Distribution in sequence space more like OM than X/t

Code to run all the measures

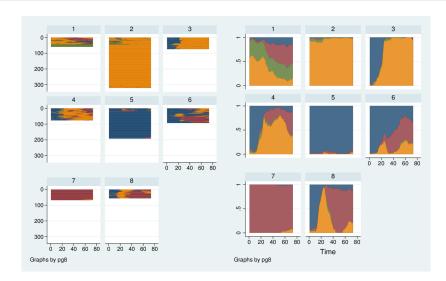
```
use bsseq
set matsize 1000
matrix sm = (0,1,2,3\backslash 1,0,1,2\backslash 2,1,0.1\backslash 3.2.1.0)
matrix fl = (0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,0)
hamming
           state1-state72, subs(sm) pwd(ham)
oma
           state1-state72, subs(sm) indel(1.5) pwd(om) len(72)
           state1-state72, subs(sm) nu(0.5) lambda(0.5) pwd(twd) len(72)
twed
hamming
           state1-state72, subs(fl) pwd(haf)
           state1-state72, subs(fl) indel(0.5) pwd(of) len(72)
oma
           state1-state72, subs(fl) nu(0.5) lambda(0.5) pwd(twf) len(72)
twed
dynhamming state1-state72, pwd(dyn)
preserve
combinprep, state(state) length(1) nspells(nsp) idvar(pid)
combinadd state1-1'r(maxspells)', pws(xtd) nsp(nsp) nstates('r(nels)') rtype(d)
restore
```

Comparing the measures, BSSEQ

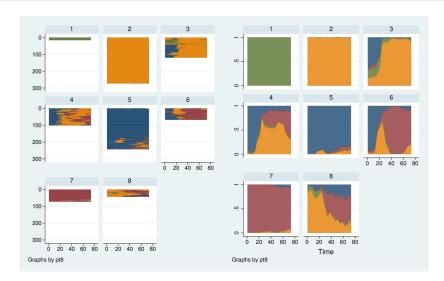
Hamming, linear matrix



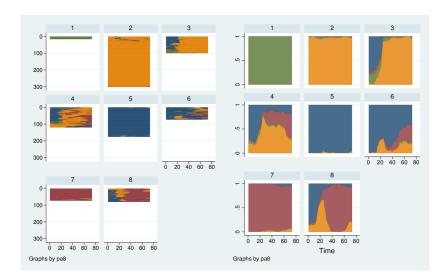
OM, linear matrix



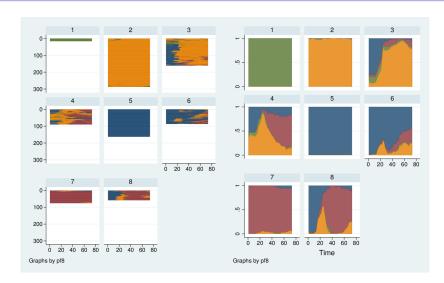
TWED, linear matrix



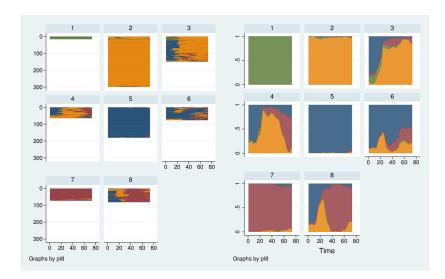
Hamming, flat matrix



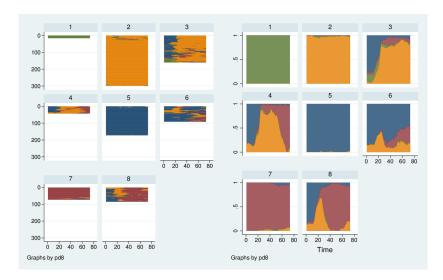
OM, flat matrix

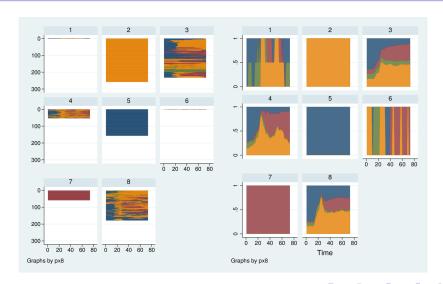


TWED, flat matrix



Dynamic Hamming





SA and further analysis

- With pairwise distances or a cluster solution we can move on to conventional analysis:
 - Explain the clusters: who goes where?
 - Predict from the clusters: do they have consequences for the future?
- Approaches: tabular, ANOVA, regression, logit
- Using clusters, MDS dimensions or other summaries of the distances

Explaining cluster membership, MVAD data

. tab g8 funemp, chi

	1	funemp			
g8	1	0	1	-	Total
	+-			+	
1	1	13.28	11.97	-	13.06
2	1	22.52	24.79	-	22.89
3	1	9.41	5.13	-	8.71
4	1	20.84	18.80	-	20.51
5	1	8.24	17.09	-	9.69
6	1	3.03	10.26	-	4.21
7	1	6.89	5.13	1	6.60
8	1	15.80	6.84	-	14.33
	+-			+	
Total	1	100.00	100.00	-	100.00

Pearson chi2(7) = 28.5978 Pr = 0.000

. tab g8 gcse5eq, chi

	1	gcse5eq			
g8	1	0	1	1	Total
	- +-			+-	
1	1	17.26	5.77	1	13.06
2	1	29.87	10.77	1	22.89
3	1	2.21	20.00	1	8.71
4	1	20.80	20.00	1	20.51
5	1	13.05	3.85	1	9.69
6	1	5.75	1.54	1	4.21
7	1	6.64	6.54	1	6.60
8	1	4.42	31.54	1	14.33
	+-			+	
Total	1	452	260	1	712

Pearson chi2(7) = 209.0925 Pr = 0.000

Association between covariates and clustering

- Where we have outcome variables, we may want to see how well they are predicted by the cluster solution
- Here one question is whether the cluster solution has additional explanatory power over and above simple summaries such as cumulated duration
- Example using Mothers' data
 - use sequence analysis/clustering of first 48 months to predict working in month 72
 - Nested model test: does cluster solution have predictive power after taking account of cumulated duration and state in month 48

Stata code

```
use bsseq
matrix subs = (0,1,2,3) ///
               1,0,1,2\ ///
               2,1,0,1\ ///
               3.2.1.0
oma state1-state48, subs(subs) indel(1.5) pwd(pwd) len(48)
clustermat wards pwd, add
cluster gen g8=groups(8)
cumuldur state1-state48, cdstub(cd) nstates(4)
gen working = inlist(state72,1,2)
logit working cd* i.state48
est store base
logit working cd* i.state48 i.g8
1rtest base
```

Beating cumulated duration

Logistic regression Log likelihood = -304.3196				Number LR chi2 Pseudo	(13) =	002.20
working	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
cd1	.0567982	.0303362	1.87	0.061	0026595	.116256
cd2	.0448847	.0257596	1.74	0.081	0056033	.0953726
cd3	0250336	.023572	-1.06	0.288	0712338	.0211667
cd4	0	(omitted)				
state48	 					
Part time	6516304	.4752393	-1.37	0.170	-1.583082	.2798214
Unemployed	-1.42019	.7612029	-1.87	0.062	-2.91212	.0717405
Non-emplo~d	-1.91716	.476274	-4.03	0.000	-2.85064	9836802
•	l					
g8	l					
2	1.383836	1.482716	0.93	0.351	-1.522235	4.289906
3	.9581697	.8137579	1.18	0.239	6367663	2.553106
4	1.408097	.5815145	2.42	0.015	. 268349	2.547844
5	1.633173	.746909	2.19	0.029	.1692583	3.097088
6	.6102612	1.210328	0.50	0.614	-1.761939	2.982461
7	1.660886	.8701866	1.91	0.056	0446485	3.36642
8	2.953757	1.329375	2.22	0.026	.3482298	5.559284
_cons	-1.357889	.5485839	-2.48	0.013	-2.433093	2826838
	· 					

Likelihood-ratio test (Assumption: base nested in .)

LR chi2(7) = 21.78 Prob > chi2 = 0.0028

MDS and modelling

• It may make sense to model with the MDS dimensions

```
set matsize 1000
mdsmat pwd, dim(3)
matrix dim=e(Y)
svmat dim
logit working cd* i.state48 dim*
lrtest base
```

SA and further analysis

MDS dimensions and model

Logistic regre	LR chi2	of obs	=				
Log likelihood		Prob >	chi2 R2	=	0.0000		
6							
working	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
cd1	2089523	.7153776	-0.29	0.770	-1.611	067	1.193162
cd2	066477	.4688012	-0.14	0.887	9853	105	.8523564
cd3	0511365	.2315928	-0.22	0.825	5050	501	.4027771
cd4	0	(omitted)					
state48							
Part time	-1.15598	.4838525	-2.39	0.017	-2.104	314	2076468
Unemployed	-1.808753	.7752256	-2.33	0.020	-3.328	167	2893387
Non-emplo~d	-2.050996	.5259212	-3.90	0.000	-3.081	782	-1.020209
dim1		11.43535		0.693	-26.93		17.89283
dim2	1.239288	.6851007	1.81	0.070	1034	849	2.58206
dim3	-1.502881	. 567547	-2.65	0.008	-2.615	252	390509
_cons	5.161245	15.96924	0.32	0.747	-26.13	789	36.46038

. lrtest base

Likelihood-ratio test (Assumption: base nested in .) LR chi2(3) = 9.94 Prob > chi2 = 0.0191

MDS correlated?

```
. corr cd* dim*
(obs=940)
```

```
cd1
                cd2
                        cd3
                                 cd4
                                         dim1
                                                dim2
                                                        dim3
cd1
      1.0000
cd2
      -0.2586 1.0000
cd3
      -0.1879 -0.0914
                      1.0000
cd4
      -0.7082 -0.4017 -0.1321
                             1.0000
dim1 | -0.8801 -0.2130 0.1039 0.9471
                                      1.0000
dim2 | 0.3202 -0.5932 -0.2478 0.1919 -0.0000 1.0000
dim3 | -0.1299  0.1803  0.3282  -0.1219  0.0000  -0.0000
                                                      1.0000
```

Studer et al's discrepancy

- Studer et al. (2011) propose a method for treating distances matrices analogously to SS in regression and ANOVA
- The average distance to the centre of the whole matrix is the analogue of total sum of squares
- With a grouping variable, the distance to the centre for each groups is the residual sum of squares
- This allows a pseudo-R² and a pseudo-F test
- Permutation is used to approximate the sampling distribution of pseudo-F

use mvad

Discrepancy and MVAD

```
matrix md = (0, 1, 1, 2, 1, 3)
             1, 0, 1, 2, 1, 3\ ///
             1, 1, 0, 2, 1, 2 \setminus ///
             2, 2, 2, 0, 1, 1 ///
             1, 1, 1, 1, 0, 2\ ///
             3, 3, 2, 1, 2, 0)
matrix rownames md = E F H S T U
matrix colnames md = E F H S T U
set matsize 1000
oma state*, subs(md) indel(1.5) pwd(oma) length(72)
discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)
```

Discrepancy results

```
. discrepancy funemp, dist(oma) idvar(id) niter(100) dcg(d2c)
Discrepancy based R2 and F, 100 permutations for p-value
           | pseudo R2 pseudo F p-value
    funemp | .007956 5.694094 .17
  funemp | N(d2c) min(d2c) mean(d2c) max(d2c)
      0 | 595 .2215114 .463736 1.919831
      1 | 117 .2757618 .5502117 1.518995
```

Multiple domains

- Lifecourse analysis recognises the interrelatedness of domains
- Somewhat hard to handle in many approaches: a potential strength of SA?
- In practice, not very well developed; most research on single domains
- Some work (Dijkstra and Taris (1995), Pollock (2007), Gauthier et al. (2010))

Combined distance versus combining distances

- How to proceed?
- Conduct parallel analyses and combine results?
- Combine domains into a single variable?
- The former is easy but will be less sensitive to the synchronisation of domains
- The latter involves a large state space and problem in defining distances
- However, better sensitivity to cross-domain features makes it attractive

Combine by cross-tabulation

- The simplest approach is to create a new state space that is the cross-tabulation of the two (or more) domains
- This yields a large number of states, one for each combination
- How then to determine costs?

Determining costs

- Simplest strategy is to sum across the domains
- In short, $d_{ik,jl}^{AB} = d_{i,j}^A + d_{k,l}^B$
- There may be justification for imposing other patterns, for instance,
 - imposing a ceiling
 - ullet changing d^A for certain values in domain B
 - weighting the domains differentially
- Note that with two different substitution matrices it can be difficult to weight equally
 - equalise by max substitution cost?
 - equalise by average substitution cost?
 - equalise by average substitution cost weighted by occurrence in the data?

Implementation

- We take a simple case (four parity levels and five employment statuses)
- First step is to create the interaction or crosstabulation of the states

```
// Reshape long to work on all months simultaneously
reshape long parx emp, i(pid) j(month)
// Create a variable that is the interaction of the two
gen cross = emp+(parx-1)*5
// Verify the state interaction variable
tab cross
table parx emp, c(mean cross)
// Back to wide, fix the variable order
reshape wide parx emp cross, i(pid) j(month)
order pid parx* emp* cross*

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○
```

Create the substitution cost matrix

We have two substitution cost matrices, 4x4 and 5x5:

```
matrix spar = (0,1,2,3 \ /// 1,0,1,2 \ /// 2,1,0,1 \ /// 3,2,1,0) matrix semp = (0,1,2,3,3 \ /// 1,0,1,2,2 \ /// 2,1,0,1,1 \ /// 3,2,1,0)
```

• Both have a max of 3, otherwise perhaps divide each by its max

Combine into 20x20

```
// Use Mata to combine the two matrices
mata:
spar = st_matrix("spar")
semp = st_matrix("semp")
// each element becomes a 5x5 block
sparx = spar # J(1,5,1) # J(5,1,1)
// replicate the 5x5 matrix 4x4 times
sempx = semp
for (i=2; i<=4; i++) {
  sempx = sempx,semp
sempxy = sempx
for (i=2; i<=4; i++) {
  sempxy = sempxy\sempx
// The combined matrix is the element-wise sum: return it from Mata to Stata
st_matrix("mcsa", sempxy :+ sparx)
end
```

The combined matrix

```
symmetric mcsa[20,20]
    c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12c13c14c15c16c17c18c19c20
 r1
     0
 r2
 r3
     2
            0
 r4
     3
               0
 r5
 r6
                      0
            2
 r7
     2
               3
                          0
 r8
 r9
                                 0
               2
r10
                                    0
r11
               5
                   5
r12
     3
            3
                       2
                                    3
                                           0
r13
            2
                                               0
                                    2
r14
r15
               3
                          3
r16
                          3
                                 5
                                    5
                                               3
                                                         0
r17
                          2
                                    4
                                               2
                                                     3
                                                            0
                                               1
r18
               4
                          3
r19
r20
                                     2
```

Dyadic SA

- SA typically uses all-pair-wise distances, or distance to special cases
- Dyadic SA is also useful: distance between a specific pair
 - Couple time-diaries
 - Couple labour market histories
 - Mother-daughter fertility histories, etc.

Research questions

- Allows testing hypotheses about dyadic similarity
 - Are couples' time-use patterns or life-course histories aligned
 - Are fertility patterns inherited?
 - Under what conditions are dyadic distances smaller or larger?
 - How do couples arrange joint lifecourses?

Similarity and difference

- Couples may coordinate their lives under very different gender constraints
- Fertility patterns may be similar within the constraints of different cohort patterns of fertility
- The relationship between sequences may not be one of replication
 - some daughters may completely reject their mother's fertility pattern

Literature

- Off-scheduling (Lesnard, 2008) Dyadic in concept but actually creates combined sequences
- Robette et al. (2015): Mother-daughter labour market careers
- Fasang and Raab (2014): Intergenerational fertility; notes that focus on similarity ignores heterogeneity
- Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads, fertility

Practical issues

- We can calculate dyadic distances with standard software
- For efficiency it might better to just calculate dyads' distances
- But the cost of calculating all pairs is relatively small, and offers an advantage:
 - Compare dyadic distances with distances to all others

Dyadic sequence analysis

Strategy: Begin with dyad-ordered data

	Dyad	1	1	2	2	3	3	4	4
Туре		М	D	М	D	М	D	М	D
М	1	11	12	13	14	15	16	17	18
D	1	21	22	23	24	25	26	27	28
М	2	31	32	33	34	35	36	37	38
D	2	41	42	43	44	45	46	47	48
М	3	51	52	53	54	55	56	57	58
D	3	61	62	63	64	65	66	67	68
M	4	71	72	73	74	75	76	77	78
D	4	81	82	83	84	85	86	87	88

Sort by types

	Dyad	1	2	3	4	1	2	3	4
Туре		D	D	D	D	М	М	М	М
D	1	22	24	26	28	21	23	25	27
D	2	42	44	46	48	41	43	45	47
D	3	62	64	66	68	61	63	65	67
D	4	82	84	86	88	81	83	85	87
M	1	12	14	16	18	11	13	15	17
М	2	32	34	36	38	31	33	35	37
М	3	52	54	56	58	51	53	55	57
М	4	72	74	76	78	71	73	75	77

Submatrices

- Two submatrices, with distances from each mother to each daughter (and transpose)
- Distance from mother to her own daughter on diagonal (and transpose)
- Use distance from mother to all daughters to assess whether distance to own daughter is unusual

Submatrices

	Pair	1	2	3	4
Туре		М	М	М	М
D	1	21	23	25	27
D	2	41	43	25 45 65	47
D	3	61	63	65	67
D	4	81	83	85	87

	Pair	1	2	3	4
Туре		D	D	D	D
М	1	12	14	16	18
М	2	32	34	36	38
М	3	52	54	16 36 <mark>56</mark> 76	58
М	4	72	74	76	78

Extract diagonals and other information

- The main info is on the diagonals: the dyad distances (repeated across the two submatrices since distance is symmetric)
- Other summaries are also interesting
 - mean distance of each daughter to all mothers (and vice versa)
 - variance, standard deviation of this distance
 - z-score of dyad distance relative to all distances
 - rank of dyad distance compared with all distances

- Abbott, A. (1984). Event sequence and event duration: Colligation and measurement. Historical Methods, 17(4):192-204.
- Abbott, A. (2000). Reply to Levine and Wu. Sociological Methods and Research, 29(1):65-76.
- Abbott, A. (2001). Time Matters: On Theory and Method. University of Chicago Press, Chicago.
- Abbott, A. and Forrest, J. (1986). Optimal matching methods for historical sequences. Journal of Interdisciplinary History, XVI(3):471-494.
- Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144-85.
- Abbott, A. and Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology. Sociological Methods and Research, 29(1):3-33.
- Aisenbrey, S. and Fasang, A. E. (2010). New life for old ideas: The 'second wave' of sequence analysis bringing the 'course' back into the life course. Sociological Methods and Research, 38(3):420-462.
- Barban, N. and Billari, F. (2012). Classifying life course trajectories: A comparison of latent class and sequence analysis. Journal of the Royal Statistical Society Series C. 61(5):765-784.
- Billari, F. C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing and quantum of life course events: A machine learning approach. *European Journal of Population*, 22:37-65.
- Blair-Loy, M. (1999). Career patterns of executive women in finance: An optimal matching analysis. American Journal of Sociology, 104(5):1346-1397.
- Blanchard, P., Bühlmann, F., and Gauthier, J.-A., editors (2014). Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin.
- Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods and Research, 24(2):214-231.
- Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. Sociological Methods and Research, 32(1):3-29.
- Elzinga, C. H. (2005). Combinatorial representations of token sequences. Journal of Classification, 22(1):87-118.
- Elzinga, C. H. (2010). Complexity of categorical time series. Sociological Methods and Research, 38(3):463–481.

- Fasang, A. and Raab, M. (2014). Beyond transmission: Intergenerational patterns of family formation among middle-class american families. *Demography*, 51(5):1703–1728.
- Gabadinho, A. (2014). Package 'pst'. probabilistic suffix trees and variable length Markov chains. Technical report, CRAN.
- Gauthier, J.-A., Widmer, E. D., Bucher, P., and Notredame, C. (2010). Multichannel sequence analysis applied to social science data. *Sociological Methodology*, 40(1):1–38.
- Halpin, B. (2013). Sequence analysis. In Baxter, J., editor, Oxford Bibliographies in Sociology. Oxford University Press, New York.
- Halpin, B. (2014a). SADI: Sequence analysis tools for Stata. Working Paper WP2014-03, Dept of Sociology, University of Limerick, Ireland.
- Halpin, B. (2014b). Three narratives of sequence analysis. In Blanchard, P., Bühlmann, F., and Gauthier, J.-A., editors, Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin.
- Halpin, B. (2016). Cluster analysis stopping rules in stata. Working Paper WP2016-01, Department of Sociology, University of Limerick.
- Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. European Sociological Review, 14(2).
- Han, S.-K. and Moen, P. (1999). Work and family over time: A life course approach. Annals of the American Academy of Political and Social Science, 562:98-110.
- Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal (1983), pages 125–161.
- Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques, Paris.
- Lesnard, L. (2008). Off-scheduling within dual-earner couples: An unequal and negative externality for family time. American Journal of Sociology, 114(2):447-90.
- Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns. Sociological Methods and Research, 38(3):389-419.
- Lesnard, L. and de Saint Pol, T. (2009). Patterns of workweek schedules in France. Social Indicators Research, 93:171-176.

- Levine, J. H. (2000). But what have you done for us lately? Commentary on Abbott and Tsay. Sociological Methods and Research, 29(1):34-40.
- Lovaglio, P. G. and Mezzanzanica, M. (2013). Classification of longitudinal career paths. *Quality and Quantity*, 47(2):989–1008.
- Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching.

 ArXiv Computer Science e-prints.
- Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints.
- Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. Journal of the Royal Statistical Society: Series A, 170(1):167-183.
- Raab, M., Fasang, A. E., Karhula, A., and Erola, J. (2014). Sibling similarity in family formation. Demography, 51(6):2127-2154.
- Robette, N., Bry, X., and Éva Lelièvre (2015). A "global interdependence" approach to multidimensional sequence analysis. Sociological Methodology, Online advance copy.
- Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String Edits and Macromolecules. Addison-Wesley, Reading, MA.
- Stovel, K. (2001). Local sequential patterns: The structure of lynching in the Deep South, 1882–1930. Social Forces, 79(3):843–880.
- Stovel, K., Savage, M., and Bearman, P. (1996). Ascription into achievement. American Journal of Sociology, 102(2):358-99.
- Studer, M. and Ritschard, G. (2014). A comparative review of sequence dissimilarity measures. Working Paper 2014-33, LIVES, Geneva.
- Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of state sequences. Sociological Methods and Research, 40(3):471-510.
- Wu, L. L. (2000). Some comments on "Sequence analysis and optimal matching methods in sociology: Review and prospect". Sociological Methods and Research, 29(1):41-64.
- Wuerker, A. (1996). The changing careers of patients with chronic mental illness: A study of sequential patterns in mental health service utilization. The Journal of Behavioral Health Services and Research, 23(4):458-470.