quence analysis for social scientists	Sequence analysis for social scientists Session 1: Background
	Outline
Sequence analysis for social scientists Brendan Halpin, Dept of Sociology, University of Limerick Academica Sinica, Taipei, August 30-31 2016	 What is sequence analysis? Why it can be worth doing, and how it complements existing approaches How to do it, and how to think about it Practical, hands-on focus, using (<i>inter alia</i>) my SADI add-on for Stata (Halpin, 2014a)
	Slides available at http://teaching.sociology.ul.ie/taiwan
《 ㅁ > 《 쿱 > 《 클 > · · 클 · · · 클 juence analysis for social scientists ession 1: Background	< ㅁ > < @ > < 클 > 《 클 > _ 클 Sequence analysis for social scientists Session 1: Background
Sequence Analysis in the social sciences $\operatorname{Section} 1$	Sequence Analysis in the social sciences Sequence Analysis
Sequence analysis in the social sciences: some background	 What is sequence analysis? Large and active research area From Andrew Abbott in mid-late 1980s, to 2015 special edition of <i>Sociological Methodology</i> Focuses on linear data (such as lifecourse trajectories) as <i>sequences</i>, as wholes Usually proceeds by defining distances between pairs of sequences, creating empirical typologies, etc
< ロト < 母 > < ミト < 王 > ミ の < で 3	(ロ) (間) (言) (言) [

A brief history of SA in Sociology

- Andrew Abbott's long evangelism
 - Abbott (1984) earliest, argues for focusing on sequence as well as duration
 - Abbott and Forrest (1986) Morris dancing
 - Abbott and Hrycak (1990) careers of Baroque musicians
- Abbott's main point: focus on sequences as wholes as an alternative to "variable-based" sociology
- However, his main practical contribution was to introduce the OM algorithm to the social sciences

Sequence analysis for social scientists Session 1: Background Sequence Analysis in the social sciences

A brief history of SA in Sociology

- Andrew Abbott's long evangelism
 - Abbott (1984) earliest, argues for focusing on sequence as well as duration
 - Abbott and Forrest (1986) Morris dancing
 - Abbott and Hrycak (1990) careers of Baroque musicians
- Abbott's main point: focus on sequences as wholes as an alternative to "variable-based" sociology
- However, his main practical contribution was to introduce the OM algorithm to the social sciences

James Coleman: 'No one's gonna pay any attention ... as long as you write about dead German musicians' (Abbott, 2001, p. 13)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで (ロト (周) (ヨト (ヨト) ヨー ののの Sequence analysis for social <u>scientists</u> Sequence analysis for social scientists Session 1: Background Session 1: Background Sequence Analysis in the social sciences Sequence Analysis in the social sciences Some 1st wave adopters 1/2Some 1st wave adopters 2/2• Blair-Loy (1999): Women's careers in the finance industry; • Stovel et al. (1996): A sequence-oriented analysis of career data from a British bank, showing a transition between a identifies change across cohort in opportunity and perspective. status-based and an achievement-based system, from 1890 to • Han and Moen (1999): How life and work trajectories of 1970. couples are coordinated. Dyadic, not analyis of all pairwise • Wuerker (1996): Treats sequences of services interactions of distances: uses OM to generate a measure of intra-couple mental health patients in Los Angeles. A small data set, but of similarity. interest because it uses a relatively uncommon form of • Stovel (2001): Not life-course: looks at county-level histories trajectory. of lynching in the Southern US, drawing strongly on arguments • Halpin and Chan (1998): Analyses class careers of British and from Abbott and others about the necessity of taking a Irish men to age 35 using retrospective data. sequence perspective on historical explanations.

ision 1: Background iequence Analysis in the social sciences	Session 1: Background Sequence Analysis in the social sciences
2000 debate in SMR	Key developments since
 Position: Abbott and Tsay (2000) Critiques: Levine (2000) and Wu (2000) is it sociologically meaningful? 	 Widespread in many fields, especially lifecourse related: transition school to work, labour market, retirement, health outcomes, time use Some focus on multiple domains, dyadic approaches, cohort change in average diversity Much still uses clustering to develop empirical typologies
 how do we parameterise it? 	 See Aisenbrey and Fasang (2010) and Halpin (2013) for a summary
 does it have any advantages over conventional approaches? 	 Rather more activity in Europe than in US
• Response: Abbott (2000)	Two important conferences:
	 LaCOSA1 2012 on Sequence Analysis: Blanchard et al. (2014) (includes historical demographers such as Michel Oris) LaCOSA2 2016 on Sequence Analysis and related methods (Online proceedings:
(미) (종) (종) (종) (종) (종) (종) (종) (종) (종) (종	https://lacosa.lives-nccr.ch/online-proceedings)
ence analysis for social scientists ssion 1: Background Sequence Analysis in the social sciences	Sequence analysis for social scientists Session 1: Background Why do Sequence Analysis?
Software developments	Why do Sequence Analysis?
 Abbott's optimize program 	Why would we want to do it
 Our own initial work used molecular biology software borrowed from the Oxford Dept of Pathology 	 Holistic vs analytic? Exploratory vs hypothesis testing? Description viewalization
 Götz Rohwer's TDA included an OM module later (mid-late 1990s) 	 Descriptive, visualisation Complexity of longitudinal processes hard to capture
 Stata: SQ and SADI (mid-late 2000s) 	 Complementary alternative to stochastic techniques which
• R: Traminer (mid-late 2000s)	model data generation process

Sequence analysis for social scientists Session 1: Background

Why do Sequence Analysis?

Sequences are messy

- Lifecourse sequences are epiphenomena of more fundamental underlying processes
- The processes are potentially complex: difficult to predict distribution of sequences
- Other techniques (hazard rate models, models of late outcome using history, models of the pattern of transition rates) give a powerful but incomplete view
- SA clearly allows us visualise complex data; possibly allows us observe features that will otherwise be missed

Sequence analysis for social scientists Session 1: Background

Why do Sequence Analysis?

Potentially complex processes

- The generating processes are complex:
 - individuals bring different characteristics from the beginning
 - history matters, including via duration dependence (individuals accumulate characteristics)
 - time matters:
 - calendar time (e.g. economic cycle), state distribution may change dramatically
 - developmental time (maturation)
 - processes in other lifecourse domains
- Too many parameters to model, hard to visualise distribution of life courses, also the possibility of *emergent* features
 - Clear exploratory advantages
 - possibility of detecting things that might not be detected otherwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで (ロト (周) (ヨト (ヨト) ヨー ののの Sequence analysis for social <u>scientists</u> Sequence analysis for social scientists Session 1: Background Session 1: Background Why do Sequence Analysis? Non-holistic approaches Non-holistic approaches Timing, sequence, quantum • Numerous non-holistic approaches exist • Different things can be interesting • Typically they will discard some aspect of the information in • Timing: when things happen the data, and focus powerfully on another • Sequence: in what order do things happen • For instance, focus on • Quantum: how much time is spent in different states (Billari • cumulated duration in states (how much but not when) et al., 2006) • transition patterns between states (period-to-period but not • Many applications in longitudinal social science: annotated overall) bibliography in Halpin (2013) • time-to-event of leaving spell (spells, perhaps pooled, but lose sight of individual career).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへの

Sequence analysis for social scientists Session 1: Background

Non-holistic approaches

Cumulative duration

- For instance, summarise trajectories in terms of cumulative time in each state
- Typically use as a predictor (e.g., proportion of time unemployed predicting later ill-health)
- Or as an outcome: variables measured earlier (e.g., school performance) predicting proportion of time unemployed.

Sequence analysis for social scientists Session 1: Background Non-holistic approaches

Transition rate models

- Model rates of period-to-period change: e.g., monthly movement between labour market statuses
- Model origin-destination patterns: e.g., transition between class at entry to labour market, and class at age 35
- Markov models
- Very useful, good overview, can be descriptive or stochastic: tables make categorical data digestible
- \bullet Disadvantage: the focus on the t-1/t or t_0/t_T pattern means a loss of individual continuity
- Some potential to model longer Markov chains (Gabadinho, 2014)

equence analysis for social scientists Session 1: Background	Sequence analysis for social scientists Session 1: Background
Non-holistic approaches	Non-holistic approaches
Hazard-rate modelling	Latent class analysis
 Hazard-rate modelling is one of the dominant statistical alternative Either in terms of survival tables and curves (essentially descriptive) Or full stochastic models of the determinants of the hazard rate (Cox and/or parametric) Example: what characteristics speed up (or slow down) exit from unemployment? Very nice conceptual model of the temporal process Can test hypotheses Disadvantage: spell orientation, lack of whole-trajectory overview 	 Latent class growth curve models Where theory allows a developmental model of a quantitative outcome Account for the structure of repeated measurement of individuals Not so suitable for categorical variables Latent class models can be applied to careers However, difficult to properly incorporate the longitudinality Examples: Lovaglio and Mezzanzanica (2013); Barban and Billari (2012)

Sequence analysis for social scientists Session 1: Background What we do with holistic approaches

Sequence analysis for social scientists

Session 1: Background

Holistic approaches

- Holistic approaches by definition treat whole trajectories as units
- Classification of sequences is a typical goal
- Usually achieved by defining inter-sequence similarity and cluster analysis
- But other aspects of similarity may be interesting
 - Variation of similarity by grouping variable (cohort, social class)
 - Dyad similarity (couples' time use, mother-daughter fertility etc)
 - Distance to pre-defined ideal types (empirical or theoretical)

Sequence analysis for social scientists Session 1: Background What we do with holistic approaches

Defining similarity

- Defining similarity the key challenge: must be
 - efficient
 - coherent, and
 - sociologically meaningful
- We will consider a number of methods to do this
 - Hamming distance
 - Optimal Matching distance
 - Dynamic Hamming distance
 - Time-warping measures
 - Combinatorial subsequence measures

< □ > < ⑦ > < 분 > < 분 > 達 のQ () 20

OM and Hamming

Hamming distance and Optimal Matching

- The simplest way to compare sequences is element-wise
- Given a rule for d(a, b), project it onto D(A, B) as $D(A, B) = \sum_{i} d(A_{i}, B_{i})$
- Requires sequence of equal length
- Hamming distance: recognises match or similarity at same time
- Simple but important case of mapping $d(a,b) \rightarrow D(A,B)$

```
Session 1: Background
OM and Hamming
```

Sequence analysis for social scientists

```
Hamming distance example
```

Calculate Hamming distance
input s1 s2 s3 s4 s5 1 2 3 2 3 2 3 2 3 1 4 2 3 2 3 1 1 1 1 1 end
<pre>// Define the state differences matrix scost = (0,1,2,3 \ ///</pre>
hamming s1-s5, subs(scost) pwd(ham)

quence analysis for social scientists iession 1: Background OM and Hamming	Sequence analysis for social scientists Session 1: Background OM and Hamming
Hamming distance example	Optimal Matching
4 2 3 2 3 . ma 1 1 1 1 1 . ma end symm // Define the state differences r1 matrix scost = (0,1,2,3 \ /// r2 1,0,1,2 \ /// r3	 Hamming recognises similarity at the same time If sequences have similarity that is out of alignment this will not be recognised OM defines similarity like Hamming, but uses insertion and deletion to allow sequences to align I.e., it cuts bits out in order to slide other parts along to match Insertion/deletion also enables comparison of sequences of different lengths Origins in computer science, pattern recognition, extensive use in molecular biology
uence analysis for social scientists ession 1: Background	(문)
OM and Hamming OM example	OM and Hamming OM example
OMA call . oma s1-s5, subs(scost) indel(1.5) /// pwd(oma) length(5)	OMA call • OM distances • oma s1-s5, subs(scost) indel(1.5) /// pwd(oma) length(5) • oma s1-s5, subs(scost) indel(1.5) /// • Hamming distances symmetric ham[4,4] c1 c2 c3 c4 c1 c2 c3 c4 r1 0 r2 .6 0 r3 .6 .6 0 r4 1.2 1.2 1.8 0 • Hamming distances symmetric ham[4,4] c1 c2 c3 c4 r1 0 r2 1.2 0 r3 .6 1.4 0 r4 1.2 1.2 1.8 0

PM and Hamming	OM and Hamming
OM vs Hamming	A more general example
 For most pairs the OM and Hamming distance is the same 	
 For the pairs (1,2) and (2,3), OM distance is less because "alignment" allows a better match 	To convert ABCD into CDAAB the following set of operations gives the cheapest path:
• 1 vs 2	Operation Intermediate state Cost
Seq 1 1 2 3 2 3 -	Sequence 2 ABCD $= 0$
Seg 2 - 2 3 2 3 1	
Cost i 0 0 0 i	=
• 2 vs 3	
	=
Seq 2 - 2 3 2 3 1 Seq 3 4 2 3 2 3 -	Sequence 1 CDAAB =
Seq 5 1 2 5 2 5 Cost i 0 0 0 i	
<ロ> <週> <更> <更> 、更 、	이 이 아 · · · · · · · · · · · · · · · · ·
nce analysis for social scientists sion 1: Background	Sequence analysis for social scientists Session 1: Background
M and Hamming	OM and Hamming
A more general example	A more general example
A more general example	A more general example
To convert ABCD into CDAAB the following set of operations gives	To convert ABCD into CDAAB the following set of operations gives
To convert ABCD into CDAAB the following set of operations gives the cheapest path:	To convert ABCD into CDAAB the following set of operations gives the cheapest path:
To convert ABCD into CDAAB the following set of operations gives	To convert ABCD into CDAAB the following set of operations gives
To convert ABCD into CDAAB the following set of operations gives the cheapest path: Operation Intermediate state Cost	To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost <u>Sequence 2</u> <u>ABCD</u> = 0 insert C <u>CABCD</u> +1.5 = 1.5
To convert ABCD into CDAAB the following set of operations gives the cheapest path: $\frac{\text{Operation}}{\text{Sequence 2}} \xrightarrow{\text{ABCD}} = 0$ insert C $\frac{\text{ABCD}}{\text{CABCD}} + 1.5 = 1.5$ $=$	To convert ABCD into CDAAB the following set of operations gives the cheapest path:Operation Intermediate state CostSequence 2ABCDinsert CCABCD+1.5insert CCABCD+1.5insert DCDABCD+1.5insert DCDABCD+1.5insert DCDABCD+1.5insert DCDABCD+1.5
To convert ABCD into CDAAB the following set of operations gives the cheapest path: Operation Intermediate state Cost Sequence 2 ABCD = 0 insert C CABCD +1.5 = 1.5	To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost <u>Sequence 2</u> <u>ABCD</u> = 0 insert C <u>CABCD</u> +1.5 = 1.5
To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost <u>Sequence 2</u> <u>ABCD</u> = 0 insert C <u>CABCD</u> +1.5 = 1.5 = =	To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost <u>Sequence 2</u> ABCD = 0 insert C CABCD +1.5 = 1.5 insert D CDABCD +1.5 = 3.0 =
To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost Sequence 2 <u>ABCD</u> = 0 insert C <u>CABCD</u> +1.5 = 1.5 = = = = =	To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost Sequence 2 ABCD = 0 insert C CABCD +11.5 = 1.5 insert D CDABCD +1.5 = 3.0 = = =
the cheapest path: <u>Operation</u> Intermediate state Cost Sequence 2 <u>ABCD</u> = 0 insert C CABCD +1.5 = 1.5 = = = =	To convert ABCD into CDAAB the following set of operations gives the cheapest path: <u>Operation</u> Intermediate state Cost <u>Sequence 2 ABCD = 0</u> insert C CABCD +1.5 = 1.5 insert D CDABCD +1.5 = 3.0 = =

A more den	eral example			A more gen	eral example		
A more gen							
To convert ABC	CD into CDAAB the	e following set of o	nerations gives		CD into CDAAB the fol	llowing set of opera	ations gives
the cheapest p		, ronowing set of o		the cheapest p		nowing set of opera	
Operation	Intermediate sta	te Cost		Operation	Intermediate state	Cost	
Sequence 2	ABCD	= 0		Sequence 2	ABCD	= 0	
insert C	CABCD	+1.5 = 1.5		insert C	CABCD	+1.5 = 1.5	
insert D	CDABCD	+1.5 = 3.0		insert D	CDABCD	+1.5 = 3.0	
const A = A	CDABCD	+0.0 = 3.0		const A = A	CDABCD	+0.0 = 3.0	
		=		subs B→A	CDA <mark>A</mark> CD	+1.0 = 4.0	
		=				=	
		=				=	
Sequence 1	CDAAB	=		Sequence 1	CDAAB	=	
		< • > <	(日) (王) (王) 王 のへで 27			< • > < #>	< 돌 → < 돌 →
ce analysis for social s	cientists	< □ ≻ <	< 큔 > < 글 > < 글 > 글 → 의 < 은 27	Sequence analysis for social s	cientists	< □ > < @ >	<
on 1: Background	cientists	< □ > <	(월) (분) (분) 분 위역은 27	Session 1: Background	cientists	< □ > < Ø >	(콩) (콩)
on 1: Background 1 and Hamming		<	< ⑦ > < ≧ > < ≧ > ≥ - ⊃ Q (> 27	Session 1: Background OM and Hamming		< □ > < @ >	< <u>₹</u> } < ₹ }
on 1: Background 1 and Hamming	^{cientists} eral example		(日) ・ (言) (言) (こ) (つ) (つ) (つ) (つ) (つ) (つ) (つ	Session 1: Background OM and Hamming	cientists eral example	< • • • • • • • •	(B)
on 1: Background 1 and Hamming		<	(日) (王) (王) 王) (Q (A) 27	Session 1: Background OM and Hamming		< = > < 5 >	< <u>₹</u> > < <u>₹</u> >
on 1: Background 1 and Hamming A more gene	eral example		27	Session 1: Background OM and Hamming A more gen	eral example		
on 1: Background A and Hamming A more gene To convert ABC	eral example CD into CDAAB the	e following set of o	27	Session 1: Background OM and Hamming A more gen To convert AB	eral example CD into CDAAB the fol		
on 1: Background A and Hamming A more gene To convert ABC the cheapest p	eral example CD into CDAAB the ath:	e following set of o	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p	eral example CD into CDAAB the fol ath:	llowing set of opera	
on 1: Background A and Hamming A more gene To convert ABC the cheapest p Operation	eral example CD into CDAAB the ath: Intermediate sta	e following set of o	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation	eral example CD into CDAAB the fol ath: Intermediate state	llowing set of opera	
on 1: Background A and Hamming To convert ABC the cheapest p Operation Sequence 2	eral example CD into CDAAB the ath: Intermediate sta ABCD	e following set of o te Cost = 0	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2	eral example CD into CDAAB the fol ath: Intermediate state ABCD	llowing set of opera	
on 1: Background A and Hamming To convert ABC the cheapest p Operation Sequence 2 insert C	eral example CD into CDAAB the ath: Intermediate sta ABCD CABCD	e following set of o te Cost = 0 +1.5 = 1.5	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2 insert C	eral example CD into CDAAB the fol ath: Intermediate state ABCD CABCD	llowing set of opera	
on 1: Background A and Hamming To convert ABC the cheapest p Operation Sequence 2 insert C insert D	eral example CD into CDAAB the ath: Intermediate sta ABCD CABCD CDABCD	e following set of o te Cost = 0 $+1.5 = 1.5$ $+1.5 = 3.0$	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2 insert C insert D	eral example CD into CDAAB the fol ath: Intermediate state ABCD CABCD CDABCD	llowing set of opera	
on 1: Background A and Hamming To convert ABC the cheapest p Operation Sequence 2 insert C insert D const A = A	eral example CD into CDAAB the ath: Intermediate sta ABCD CABCD CDABCD CDABCD	e following set of o te Cost = 0 $+1.5 = 1.5$ $+1.5 = 3.0$ $+0.0 = 3.0$	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2 insert C insert D const A = A	eral example CD into CDAAB the fol ath: Intermediate state ABCD CABCD CDABCD CDABCD CDABCD	llowing set of opera	
on 1: Background A and Hamming A more gene To convert ABC the cheapest p Operation Sequence 2 insert C insert D const $A = A$ subs $B \rightarrow A$	eral example CD into CDAAB the ath: Intermediate sta ABCD CABCD CDABCD CDABCD CDABCD CDAACD	e following set of o te Cost = 0 +1.5 = 1.5 +1.5 = 3.0 +0.0 = 3.0 +1.0 = 4.0	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2 insert C insert D const A = A subs B \rightarrow A	CD into CDAAB the fol ath: Intermediate state ABCD CABCD CDABCD CDABCD CDABCD CDAACD	llowing set of opera	
on 1: Background A and Hamming To convert ABC the cheapest p Operation Sequence 2 insert C insert D const A = A	eral example CD into CDAAB the ath: Intermediate sta ABCD CABCD CDABCD CDABCD	e following set of o te Cost = 0 $+1.5 = 1.5$ $+1.5 = 3.0$ $+0.0 = 3.0$	27	Session 1: Background OM and Hamming A more gen To convert AB the cheapest p Operation Sequence 2 insert C insert D const A = A	eral example CD into CDAAB the fol ath: Intermediate state ABCD CABCD CDABCD CDABCD CDABCD	llowing set of opera	

<□><舂><≧><≧><≧><≧><≧>

Sequence analysis for social scientists	
Session 1: Background	
Programming OM (Optional)	

Programming OM

Sequence analysis for social scientists

Programming OM (Optional)

Session 1: Background

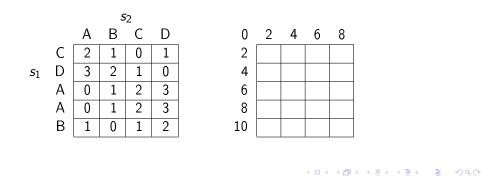
- OM distance is defined as the cheapest set of "elementary operations" that edit one sequence into another
- Determining the cheapest set of "elementary operations" is potentially complex a large population of candidates
- However, it can be stated as a recursive problem and programmed very efficiently
- Understanding how it is programmed can help understand the principle of OM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Sequence analysis for social scientists Session 1: Background Programming OM (Optional)

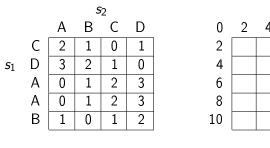
OM: Recursive problem

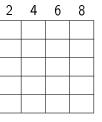
 $\Delta_{OM}(A^p, B^q) =$

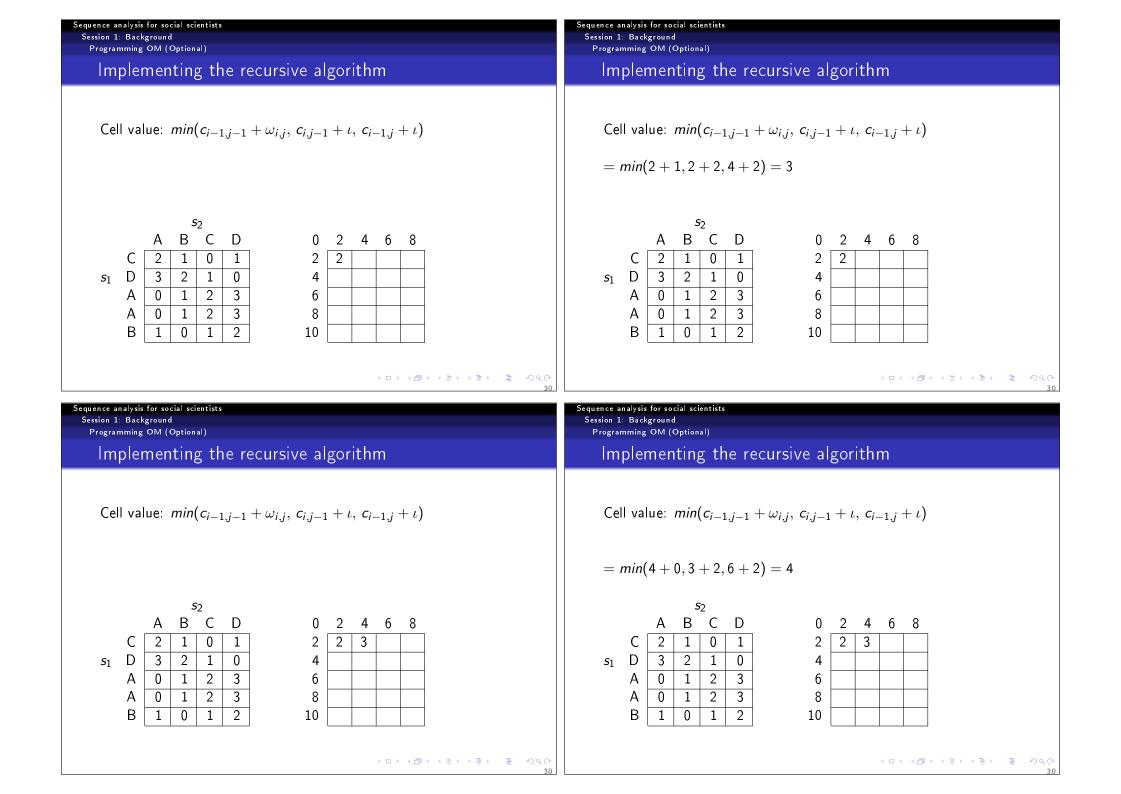

$$\min \left\{ \begin{array}{l} \Delta_{OM}(A^{p-1}, B^q) + indel \\ \Delta_{OM}(A^{p-1}, B^{q-1}) + \delta(a_p, b_q) \\ \Delta_{OM}(A^p, B^{q-1}) + indel \end{array} \right.$$

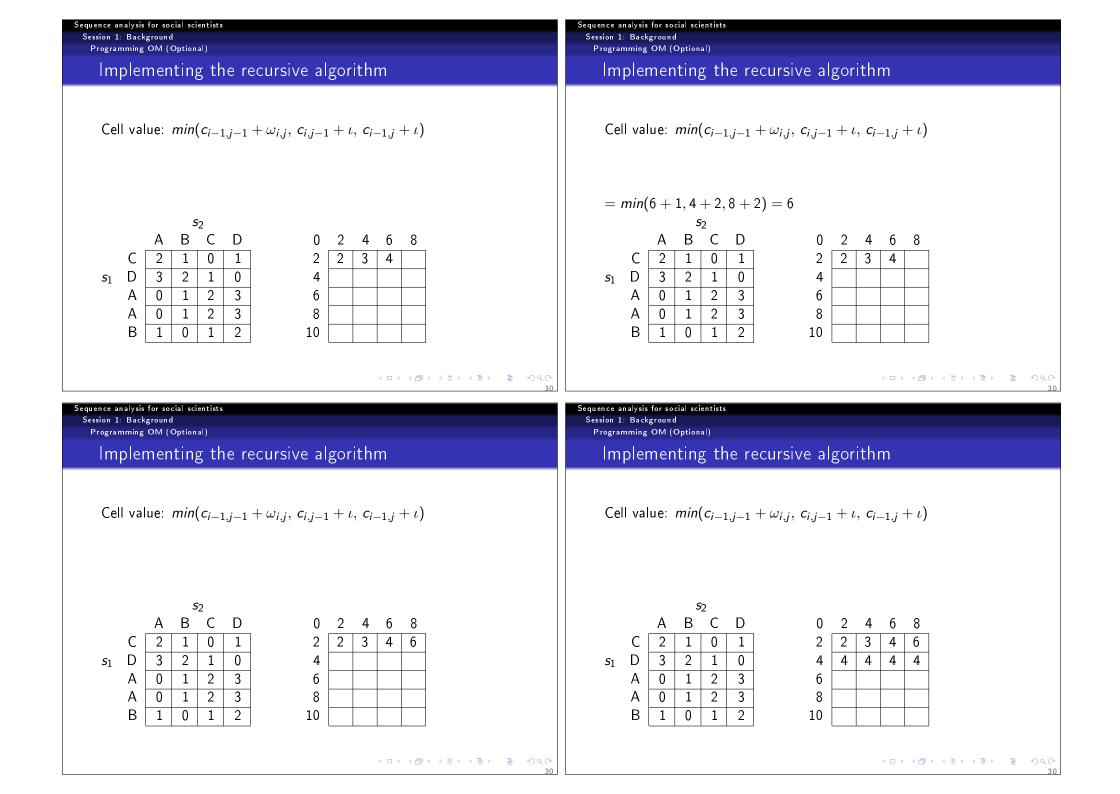
(Δ represents distance between sequences, and δ differences within the state space)

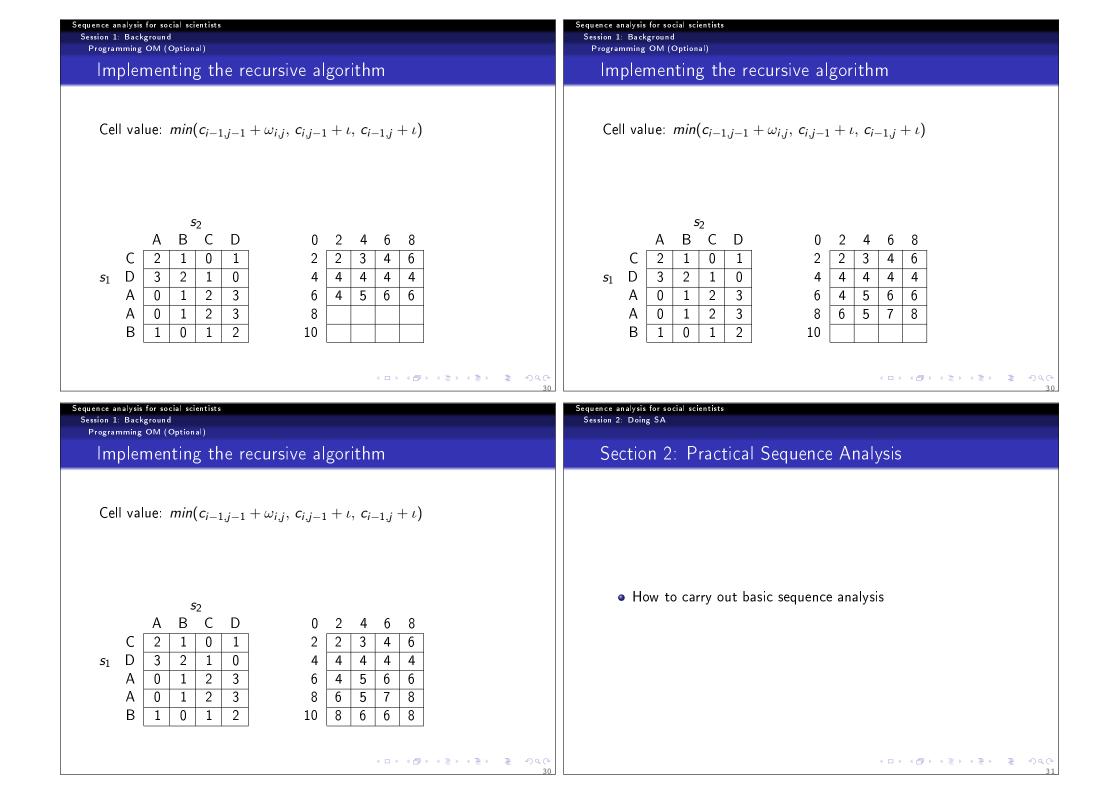
Sequence analysis for social scientists Session 1: Background Programming OM (Optional)


Implementing the recursive algorithm

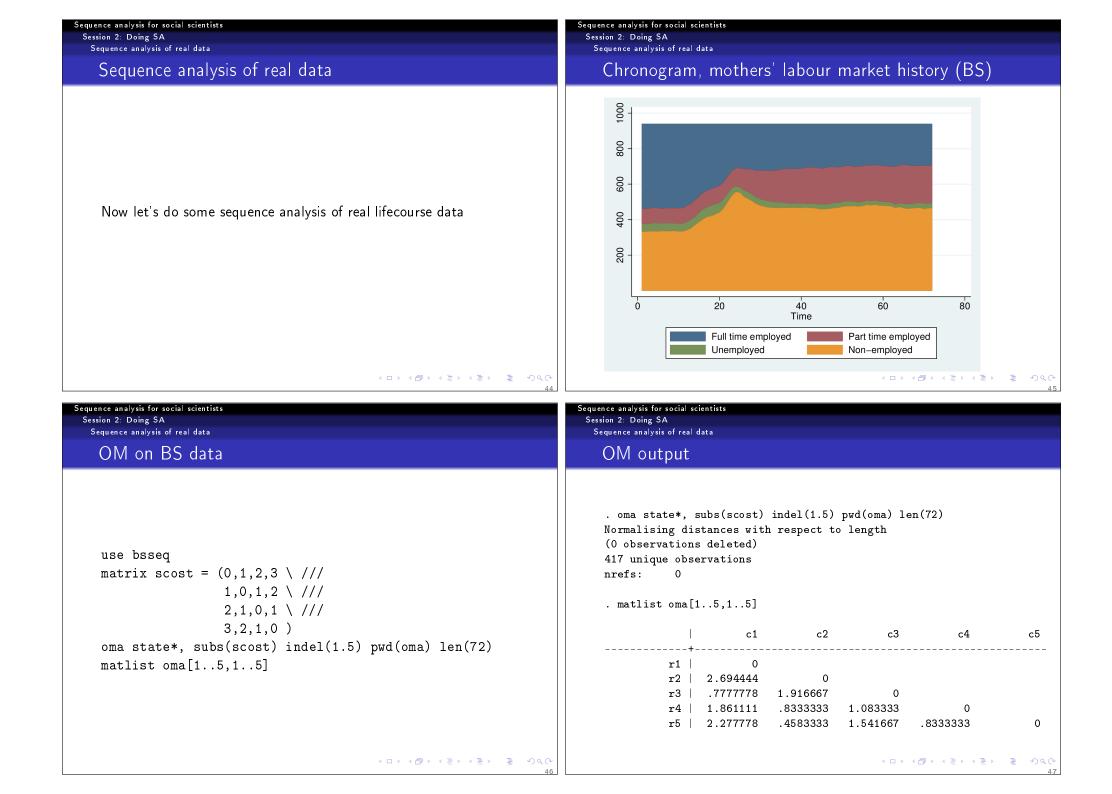

Cell value: $min(c_{i-1,j-1} + \omega_{i,j}, c_{i,j-1} + \iota, c_{i-1,j} + \iota)$ = min(0 + 2, 2 + 2, 2 + 2) = 2

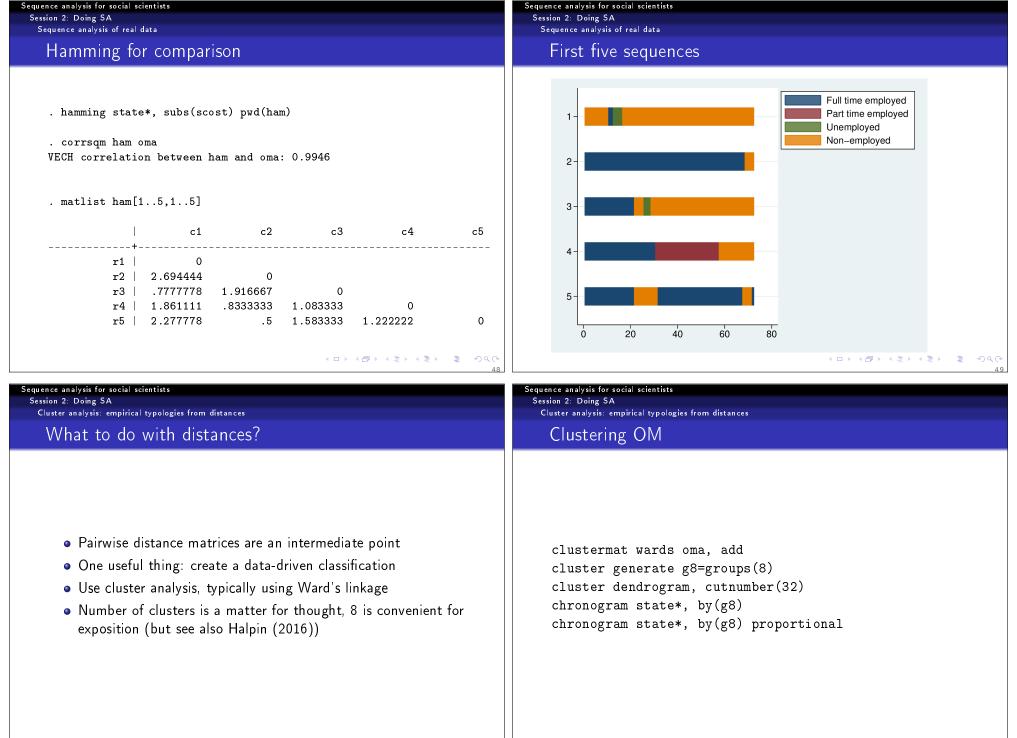

Implementing the recursive algorithm


Cell value: $min(c_{i-1,i-1} + \omega_{i,i}, c_{i,i-1} + \iota, c_{i-1,i} + \iota)$



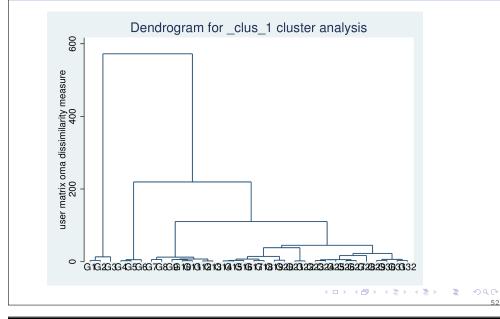
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの





equence analysis for social scientists Session 2: Doing SA Example data sets	Sequence analysis for social scientists Session 2: Doing SA Descriptives
Two example data sets	Initial step: looking at life course data
 We will be primarily using two data sets as examples MVAD: McVicar/Anyadike-Danes data on the school-to-work transition in Northern Ireland (72 months, 6 states) BSSEQ: 6 years of labour market history of women who have a birth at end of year 2 (72 months, 4 states) 	 It's harder to get an overview of lifecourse that cross-sectional data However, a number of numeric and graphical techniques are available
・ロト イクト イミト イミト ミー つへで 32 equence analysis for social scientists Session 2: Doing SA Descriptives	イロト イクト イミト くき き つ Sequence analysis for social scientists Session 2: Doing SA Descriptives
Numeric summaries	Cumulative duration
We can summarise lifecourse data in terms of: • Cumulative duration • Number of spells • Patterns of transition rates • month by month • start by finish • Durations to event (time to first job, first marriage, first child)	use mvad cumuldur state*, cd(cd) nstates(6) reshape long cd, i(id) j(durtype) label values durtype state table male durtype, c(mean cd) format(%5.2f) table grammar durtype, c(mean cd) format(%5.2f)
Useful to break down these measures by covariates, and model them	 durtype grammar E F H S T U
- ロ > - 4 回 > - 4 豆 > - 豆 - 少々で	0 34.25 12.42 6.07 4.44 8.09 6.74 1 23.02 8.47 18.93 13.62 4.32 3.64

Description							Sequence analysis for social scientists Session 2: Doing SA Descriptions
Descriptives							Descriptives
Number	of spell	S					Transition rates
. nspells s . tab nsp g							
		rammar					use mvad
nsp		0	1	Total			
1	+ 6.1		+ .65	5.90			reshape long state, i(id) j(t)
2			.81	21.07			
3			.33	31.18			
4			.38	19.24			by id: gen last = state[_n-1] if _n>1
5			.98	11.52			
6	-		.20	4.49			label values last state
7			.55	3.51			Taper values last state
8	1.3		.33	1.54			
9	1.0	3 0	.78	0.98			tab last state, row nofreq
10	0.3	4 0	.00	0.28			
11	0.3	4 0	.00	0.28			
 Total	+		.00 :	100.00			
					→ < (2) > <	물에 귀절에	> 注 の (ペ) (ロ > (目 >
							36
uence analysis for s							Sequence analysis for social scientists
uence analysis for s ession 2: Doing SA Descriptives							
ession 2: Doing SA Descriptives							Sequence analysis for social scientists Session 2: Doing SA Descriptives
ession 2: Doing SA							Sequence analysis for social scientists Session 2: Doing SA
ession 2: Doing SA Descriptives			state				Sequence analysis for social scientists Session 2: Doing SA Descriptives
ession 2: Doing SA Descriptives Transitic	on rates	F	Н	S T	U	Total	Sequence analysis for social scientists Session 2: Doing SA Descriptives
ession 2: Doing SA Descriptives Transitic	e 22,039	F 115	H 56	S T	υI	Total 22,453	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16	F 115 0.51	H 56 0.25 0	S T 39 58 .17 0.26	U + 146 0.65	Total 22,453 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16 227	F 115 0.51 7,927	H 56 0.25 0 54	S T 39 58 17 0.26	U 146 0.65	Total 22,453 100.00 8,322	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16 227 2.73	F 115 0.51 7,927 95.25	H 56 0.25 0 54 0.65 0	S T 39 58 17 0.26 8 33 .10 0.40	U + 	Total 22,453 100.00 8,322 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16 227 2.73	F 115 0.51 7,927 95.25 1 5	H 56 0.25 0 54 0.65 0 ,787	S T 39 58 .17 0.26 8 33 .10 0.40	U 146 0.65 73 0.88	Total 22,453 100.00 	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16 227 2.73 60 1.02	F 115 0.51 7,927 95.25 1 5 0.02 9;	H 56 0.25 0 54 0.65 0 ,787 8.72 0	S T 39 58 17 0.26 8 33 10 0.40 	U 146 0.65 73 0.88 + 11 0.19	Total 22,453 100.00 8,322 100.00 5,862 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots
ession 2: Doing SA Descriptives Transitic last 	E 22,039 98.16 227 2.73 60 1.02	F 115 0.51 7,927 95.25 1 5 0.02 91 50	H 56 0.25 0 54 0.65 0 ,787 8.72 0 74 4,:	S T 39 58 17 0.26 8 33 10 0.40 0 3 .00 0.05 120 19	U 146 0.65 73 0.88 11 0.19 23	Total 22,453 100.00 8,322 100.00 5,862 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms
ession 2: Doing SA Descriptives Transitic last 1 	E 22,039 98.16 227 2.73 60 1.02 59 1.36	F 115 0.51 7,927 95.25 0.02 95 50 1.15	H 56 0.25 0 54 0.65 0 ,787 8.72 0 74 4,1 1.70 94	S T 39 58 .17 0.26 8 33 .10 0.40 0 3 .00 0.05 .20 19 .82 0.44	U 146 0.65 73 0.88 11 0.19 + 23 0.53	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots
ession 2: Doing SA Descriptives Transitic	E 22,039 98.16 227 2.73 60 1.02 59 1.36 197	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21	H 56 0.25 0 54 0.65 0 787 8.72 0 74 4,; 1.70 94 0	S T 39 58 17 0.26 8 33 10 0.40 0 3 .00 0.05 120 19 .82 0.44 4 4,973	U 146 0.65 73 0.88 11 0.19 23 0.53 69	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00 5,264	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots
ession 2: Doing SA Descriptives Transitic 1ast 	E 22,039 98.16 227 2.73 60 1.02 59 1.36 197 3.74	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40	H 56 0.25 0 54 0.65 0 787 8.72 0 74 4, 1.70 94 0 0.00 0	S T 39 58 .17 0.26 8 33 .10 0.40 0 3 .00 0.05 .120 19 .82 0.44 4 4,973 .08 94.47	U 146 0.65 73 0.88 11 0.19 + 23 0.53	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots
ession 2: Doing SA Descriptives Transitic last 	E 22,039 98.16 227 2.73 60 1.02 59 1.36 197 3.74 182	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40 120	H 56 0.25 0 54 0.65 0 787 8.72 0 74 4, 1.70 94 0 0.00 0 9	S T 39 58 17 0.26 8 33 10 0.40 0 3 .00 0.05 120 19 .82 0.44 4 4,973 .08 94.47 39 64	U 146 0.65 73 0.88 11 0.19 23 0.53 4 69 1.31 3,892	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00 5,264 100.00 5,264	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots
ession 2: Doing SA Descriptives Transitic 1ast 	E 22,039 98.16 227 2.73 60 1.02 59 1.36 197 3.74 182 4.23	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40 120	H 56 0.25 0 54 0.65 0 787 8.72 0 74 4,: 1.70 94 0 0.00 0 9	S T 39 58 .17 0.26 8 33 .10 0.40 0 3 .00 0.05 .120 19 .82 0.44 4 4,973 .08 94.47	U 146 0.65 73 0.88 11 0.19 	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00 5,264 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots
ession 2: Doing SA Descriptives Transitic 	E 22, 039 98.16 227 2.73 60 1.02 59 1.36 197 3.74 182 4.23 22,764	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40 120 2.79 8,234 5	H 56 0.25 0 54 0.65 0 74 4,: 1.70 94 0 0.00 0 9 0.21 0 ,980 4,:	S T 39 58 17 0.26 8 33 10 0.40 0 3 .00 0.05 120 19 .82 0.44 4 4,973 .08 94.47 39 64 .91 1.49 210 5,150	U 146 0.65 73 0.88 0.19 1.0.53 0.53 0.53 1.31 3,892 90.39 90.39 4,214	Total 22,453 100.00 8,322 100.00 	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots • Transition rate time-series
ession 2: Doing SA Descriptives Transitic ast 	E 22, 039 98.16 227 2.73 60 1.02 59 1.36 197 3.74 182 4.23 22,764	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40 120 2.79 8,234 5	H 56 0.25 0 54 0.65 0 74 4,: 1.70 94 0 0.00 0 9 0.21 0 ,980 4,:	S T 39 58 17 0.26 8 33 .10 0.40 0 3 .00 0.05 120 19 .82 0.44 4 4,973 .08 94.47 39 64 .91 1.49	U + 146 0.65 	Total 22,453 100.00 5,862 100.00 4,345 100.00 5,264 100.00 5,264 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots • Transition rate time-series
ession 2: Doing SA Descriptives Transitic 	E 22, 039 98.16 227 2.73 60 1.02 59 1.36 197 3.74 182 4.23 22,764	F 115 0.51 7,927 95.25 1 5 0.02 91 50 1.15 21 0.40 120 2.79 8,234 5	H 56 0.25 0 54 0.65 0 74 4,: 1.70 94 0 0.00 0 9 0.21 0 ,980 4,:	S T 39 58 17 0.26 8 33 10 0.40 0 3 .00 0.05 120 19 .82 0.44 4 4,973 .08 94.47 39 64 .91 1.49 210 5,150 .33 10.19	U 146 0.65 73 0.88 11 0.98 1.11 0.19 1.31 3.892 90.39 4.214 8.34	Total 22,453 100.00 8,322 100.00 5,862 100.00 4,345 100.00 5,264 100.00 4,306 100.00 50,552 100.00	Sequence analysis for social scientists Session 2: Doing SA Descriptives Graphs Graphs give us an even better overview. Consider • Chronograms • Survival plots • Index plots • Transition rate time-series



Session 2: Doing SA

Cluster analysis: empirical typologies from distances

Dendrogram

Sequence analysis for social scientists Session 2: Doing SA

Cluster analysis: empirical typologies from distances

Chronogram, proportional

Sequence analysis for social scientists

Session 2: Doing SA

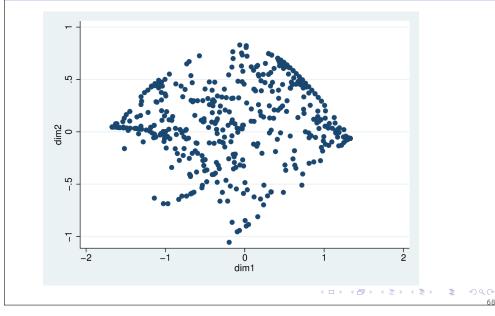
Cluster analysis: empirical typologies from distances

Chronogram by cluster

Sequence analysis for social scientists Session 2: Doing SA Cluster analysis: empirical typologies from distances

Indexplot

52

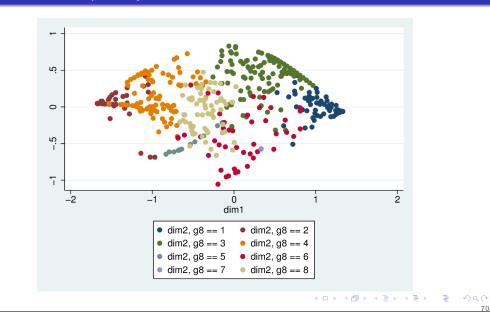

Sequence analysis for social scientists Sequence analysis for social scientists Session 2: Doing SA Session 2: Doing SA Cluster analysis: empirical typologies from distances Cluster analysis: empirical typologies from distances Indexplot in dendrogram order Details: how it was done 0 clustermat wards oma, add cluster generate g8 = groups(8) cluster generate g999 = groups(800), ties(fewer) chronogram state*, by(g8) chronogram state*, by(g8) prop reshape long state, i(pid) j(t) 0. sqset state pid t sqindexplot, by(g8, legend(off)) sqindexplot, by(g8, legend(off)) order(g999) ó ò OM groups ▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣∢⊙ Sequence analysis for social scientists Sequence analysis for social scientists Session 2: Doing SA Session 2: Doing SA Cluster analysis: empirical typologies from distances Cluster analysis: empirical typologies from distances Compare Hamming (L) and OM (R) solutions ARI and permtab Hamming ΟМ 100-300 -0 20 40 60 80 0 20 40 60 80 100-200 -200-300 -60 80 0 20 40 60 80 0 20 80 0 20 40 60 80 0 10 0 14 Graphs by ph8 Graphs by I8 • Kappa-max: 0.7791 • Adjusted Rand Index: 0.7818 ▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで ▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Cluster analysis: empirical typologies from distances	Summarising sequences: Duration, number of spells, entropy
Hamming and OM	Complexity of sequences
 Often with lifecourse data, Hamming and OM generate quite similar results However, where they differ it is with more complex sequences 	 Complexity of sequences is relevant: more complex means less likely to be similar (and perhaps, similarity is more interesting) How to measure? Number of spells is part of it Also distribution of time A single long spell is the simplest sequence Many spells in many different states is very complex
《 □ ▷ 《 @ ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ 《 큰 ▷ ④ 은 60 60 ession 3 Summarising sequences: Duration, number of spells, entropy	イロト イロト イラト イミト モ Sequence analysis for social scientists Session 3 Summarising sequences: Duration, number of spells, entropy
Shannon Entropy	Example: entropy
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be 	entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed 	entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = − ∑ p_i log₂ p_i where p_i is the 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i Takes account of diversity of state but ABABAB counts as no 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i Takes account of diversity of state but ABABAB counts as no 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i Takes account of diversity of state but ABABAB counts as no 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>
 Information theory relates complexity to "entropy" More complex objects are harder to describe, cannot be compressed Shannon Entropy: ε = -∑p_i log₂ p_i where p_i is the proportion of months in state i Takes account of diversity of state but ABABAB counts as no 	<pre>entropy state*, gen(ent) cd(pcd) nstates(4) nspells state*, gen(nsp) gen ent2 = ent*nsp/72 table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)</pre>

quence analysis for social scientists session 3	Sequence analysis for social scientists Session 3
Summarising sequences: Duration, number of spells, entropy	Summarising sequences: Duration, number of spells, entropy
Elzinga's turbulence	Regular expressions
 In Elzinga (2010) a measure of complexity is proposed that is more appropriate for spell data It is based on duration weighted spells, and on subsequence counting It combines a measure based on the number of distince subsequences, with a measure of the variance of their durations It is (only) available in TraMineR However, in practice the simpler Shannon entropy correlates highly with it 	 If sequences are represented as text, text-processing tools such as "regular expressions" can be used to sort between them Refer to lab notes for more details stripe state*, gen(seqst) list seqst in 1/5, clean count if regexm(seqst, "^A+\$") count if regexm(seqst, "^AAAAAA+.*DDDDDDD.*AAAAAAA.*\$") count if regexm(seqst, "AB.*AB")
< 미 > 《 전 > 《 큰 > 《 큰 > 《 큰 > 《 큰 > 《 큰 > 존 큰 / 우(~ 64 Guence analysis for social scientists Session 3 MDS and pairwise distances (optional)	<□> < @> < 클> < 클> · ミ Sequence analysis for social scientists Session 3 MDS and pairwise distances (optional)
Multi-dimensional scaling (optional)	Example
	. mdsmat oma, dim(3) (row names of (dis)similarity matrix differ from column names; row names used) Classical metric multidimensional scaling dissimilarity matrix: oma
 The other "obvious" thing to do with pairwise distances is multi-dimensional scaling The network of distances implies a coherent space: can we 	Number of obs = 940 Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556 Retained dimensions = 3 Mardia fit measure 2 = 0.9932
 multi-dimensional scaling The network of distances implies a coherent space: can we re-construct it? 	Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556
multi-dimensional scalingThe network of distances implies a coherent space: can we	Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556 Retained dimensions = 3 Mardia fit measure 2 = 0.9932

MDS and pairwise distances (optional)

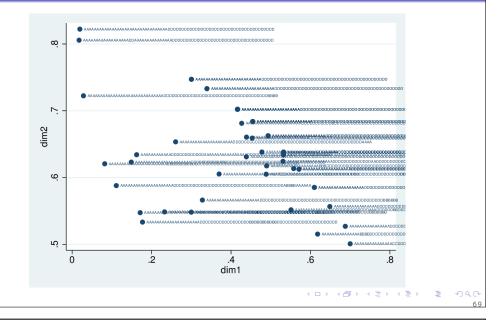
Scatterplot



Sequence analysis for social scientists

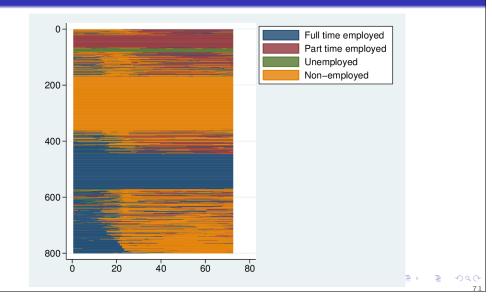
Session 3

MDS and pairwise distances (optional)


Scatterplot by cluster solution

Sequence analysis for social scientists Session 3

MDS and pairwise distances (optional)


Scatterplot

Sequence analysis for social scientists Session 3

MDS and pairwise distances (optional)

Avoid clustering: Indexplot ordered by 1st MDS dimension

equence analysis for social scientists Session 3	Sequence analysis for social scientists Session 3
MDS and pairwise distances (optional)	Substitution costs
Partitioning by MDS	Are substitution costs a problem?
012350000010000 <t< td=""><td> Repeated claims in the literature: that sociologists don't know how to set substitution costs, that we can't match the effectiveness of molecular biology Yes, our analytical goals are often much less well defined than those of the biologists No, substitution costs are not an intractable problem </td></t<>	 Repeated claims in the literature: that sociologists don't know how to set substitution costs, that we can't match the effectiveness of molecular biology Yes, our analytical goals are often much less well defined than those of the biologists No, substitution costs are not an intractable problem
<ロ>(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)((ロ)(母)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)
Sequence analysis for social scientists Session 3 Substitution costs	Sequence analysis for social scientists Session 3 Substitution costs
Mapping states to sequences	OMA coherent?
 The essence of SA is mapping a view of a state space onto a view of a trajectory space: d(s) → D(S) We start with knowledge or a view of how states relate to each other (what states are like each other, what states are dissimilar) With a suitable algorithm we map this perspective onto trajectories through the state space: what trajectories are more or less similar The nature of the algorithm determines Whether the mapping makes sense Exactly how the structure of the state space affects the 	 Can we expect OMA to provide a coherent d(s) → D(S) mapping? Elementary operations are intuitively appealing: D(ABC, ADC) = f(d(B, D)) D(ABCD, ABD) = f(indel) minimising concatenation of these two operations to link any pair of trajectories If 3 is reasonable, 1 and 2 determine how state space affects trajectory space
structure of the trajectory space	(日) (문) (문) (문) (문) (문) (문) (문) (문) (문) (문

equence analysis for social scientists Session 3 Substitution costs	Sequence analysis for social scientists Session 3 Substitution costs
Thinking about state spaces and distances	Transitions and substitutions
 Costs can be thought of as distances between states If state space is ℝⁿ, distance is intuitive If state space is categorical, how define distance? State space as efficient summary of clustered distribution in ℝⁿ: distances are between cluster centroids State space can be mapped onto specific set of quantitative dimensions; each state located at the vector of its mean values; Euclidean or other distances between vectors States can be located relative to each other on theoretical grounds 	 Transition rates frequently proposed as basis for substitution costs Critics of OMA complain of substitution operations implying impossible transitions (e.g., Wu) Even proponents of OMA are sometimes concerned about "impossible" transitions (e.g., Pollock, 2007) But substitutions are not transitions, not even a little bit! substitutions happen across sequences, D(ABC, ADC) = f(d(B, D)) (similarity of states) transitions happen within sequences (movement between states)
<ロト < 合ト < 座ト を 座 うへ() 76	<ロ> <酉> <甘> (甘> (甘> (
equence analysis for social scientists Session 3 Substitution costs	Sequence analysis for social scientists Session 3 Substitution costs
Informative transition rates	Deceptive transiton rates
 No logical connection between substitutions and transition rates but under certain circumstances transition rates can inform us about state distances If state space is a partitioning of an unknown ℝⁿ, movement is random (unstructured), and the probability of a move is inversely related to its length, then Distance between states will vary inversely with the transition rates However, these conditions usually not met 	 Example: using voting intentions as a way of defining inter party distances UK: relatively high Con-LibDem two-way flows; ditto Lab-LibDem But Con-Lab transitions much lower: implies a potentially incoherent space (non-metric, more below) d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab) Procedure confuses party state space and voter characteristics Voter polarisation/loyalty is trajectory information, not state information Another type of problem: irrelevant distinctions can cause similar states to have low transition rates
	similar states to have low transition rates

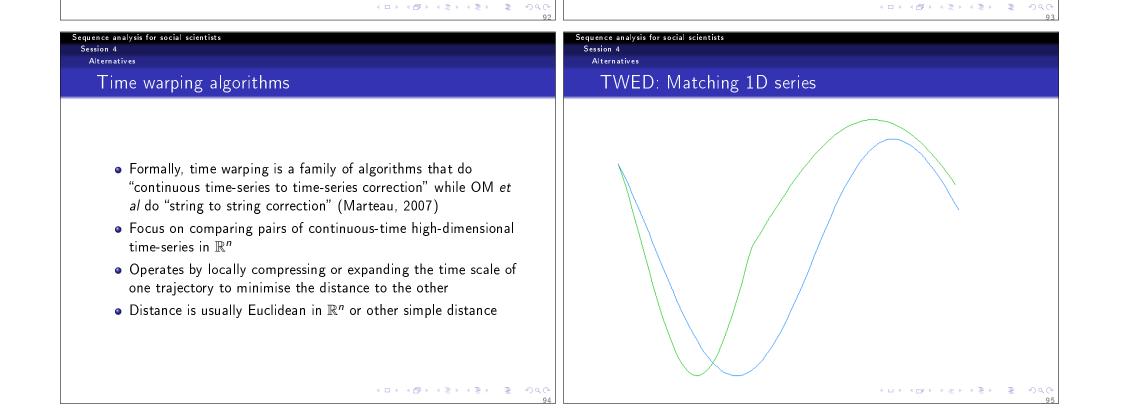
sence analysis for social scientists	Sequence analysis for social scientists
ssion 3	Session 3
Substitution costs	Substitution costs
Take ''space'' seriously	Looking at state spaces
 Very useful to think in spatial terms State space as efficient summary of clustered distribution in Rⁿ State space mapped onto specific set of quantitative dimensions State space defined on theoretical grounds For 1 and 2, explicitly multidimensional, in case 2 dimensions are explicit For 1 and 3, we can attempt to recover the implicit dimensions 	• Two very simple state spaces: • Single dimension, equally spaced: $ \begin{array}{r} 0 & 1 & 2 & 3\\ 1 & 0 & 1 & 2\\ 2 & 1 & 0 & 1\\ 3 & 2 & 1 & 0 \end{array} $ • All states equidistant - n - 1 dimensions $ \begin{array}{r} 0 & 1 & 1 & 1\\ 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1\\ 1 & 1 & 0 & 1\\ 1 & 1 & 1 & 0 \end{array} $
80.	・ロト (日本 (ヨト (ヨト) 注))
Jence analysis for social scientists	Sequence analysis for social scientists
ssion 3	Session 3
Substitution costs	Substitution costs
Structure passes through	Designing state spaces
 State space structure passes through to trajectory space structure Distances between states clearly affect distances between trajectories containing high proportions of those states If d("A", "B") << d("A", "C") then D("AAAA", "BBB") will tend to be less than D("AAAA", "CCC") Differential distances promote alignment: AADDAAA and AAADDAA are more likely to be aligned to match the DD if d("A", "D") is large If the state distances are non-metric, the trajectory distances may also be non-metric (at least between trajectories 	 Be explicit about state spaces and what distances mean Think spatially Choose high or low dimensions, but have your reasons Simplify state space as far as possible Drop irrelevant distinctions Drop longitudinal information: let the sequence encode the temporal information, make state space cross-sectional

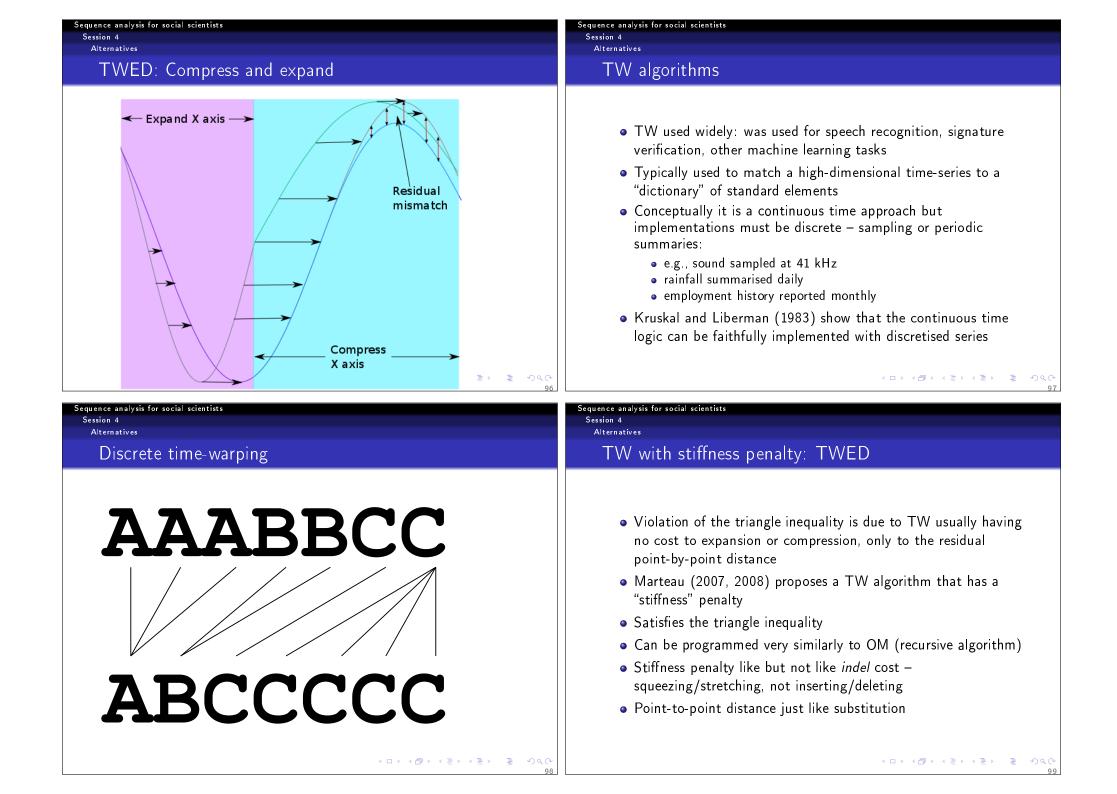
Costing OM: a tractable problem
 Substitution costs make a big difference but largely understandable in operation and an asset – more meaningful state space, more meaningful trajectory space Think spatially! Use data and geometric models Simplify Let the sequence do the temporal work
 < () · · · · · · · · · · · · · · · · · ·
ence analysis for social scientists sion 4 Vlternatives
Alternatives
 Hollister's LOM and my OMv attempt to fix OM by paying attention to the local context of operations (but fail: non-metric) TWED "warps time" and has more sensitivity to spell order Lesnard's Dynamic Hamming estimates substitution costs from the data and does no alignment Elzinga's duration-weighted combinatorial measures pay strict attention to spell order and duration See Halpin (2014b) for a discussion See Studer and Ritschard (2014) for a comprehensive review of distance measures
1

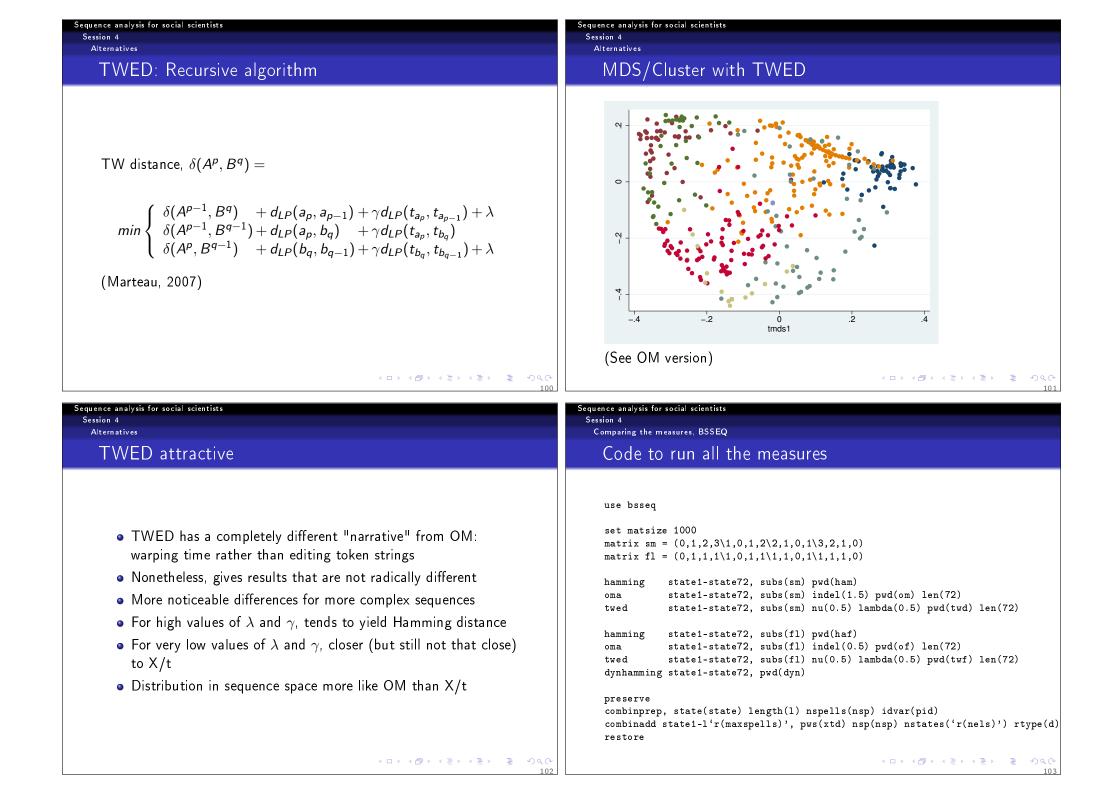
quence analysis for social scientists Session 4 	Sequence analysis for social scientists Session 4
Alternatives An aside: Metric spaces	Alternatives Dynamic Hamming
 To treat a dissimilarity as a distance, it must be compatible with a "metric space" Everyday 3D Euclidean space is metric, but we can relax many of the characteristics of Euclidean space and still think in spatial terms, using e.g., cluster analysis and MDS Four conditions are required d(x, y) = 0; identity d(x, y) ≥ 0; non-negativity d(x, y) = d(y, x); symmetry d(x, y) ≤ d(x, z) + d(z, y); the "triangle inequality" LOM and OMv do not satisfy the triangle inequality 	 Dynamic Hamming takes a completely different slant: no alignment Similarity at the same time only, where similarity is defined by time-dependent transition patterns While changes are common differences matter less While change is rare, differences are more marked Naturally appropriate for "clock" time, e.g., daily, weekly, annual patterns Less obviously appropriate for "developmental" time, where a common feature is people taking the same route at different speeds Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard (2010), implemented by him (seqcomp), in Traminer and SADI
今の兄 토 《王》《西》《日》 88	〈□〉〈母〉〈臣〉〈臣〉〉臣 〈
quence analysis for social scientists Session 4 Alternatives	Sequence analysis for social scientists Session 4 Alternatives
Combinatorial approaches	Counting sequences
 Combinatorial methods are a completely different approach to sequence comparison Proposed by Elzinga (2003, 2005) Compare sequences in terms of common "subsequences" rather than string-edits 	 The sequence ABC has as subsequences: the null (empty) string A, B and C AB, AC and BC and ABC itself A sequence of length / has 2¹ subsequences If elements are repeated not all subsequences are distinct
《미》《립》《토》《토》 토 외익() 00	(日)(四)(四)(四)(四)(1)

Alternatives

Combinatorial measures

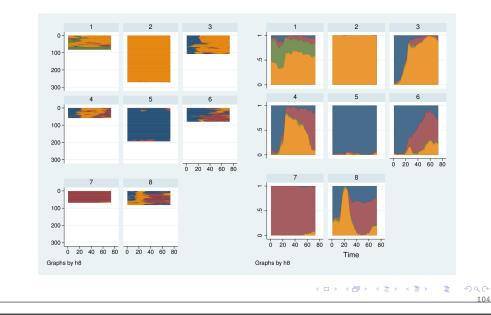

- Elzinga has proposed a number of measures that count subsequences
 - Longest common subsequence
 - Number of common subsequences
 - Number of matching subsequences
- A completely different logic, combinatorial rather than string-editing: "the same states in the same order"
- One particularly attractive approach: number of matching spell-subsequences weighted by duration (I refer to it as "X/t")


Sequence analysis for social scientists Session 4


Alternatives

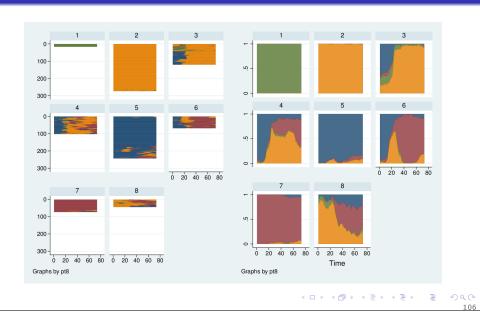
Warping time

- What of time-warping?
- Abbott and Hrycak (1990) use the term to suggest non-linear time scales
- OMv "warps time" by weighting it differently in different spells
- In turn informed by Sankoff and Kruskal (1983), *Time Warps, String Edits and Macromolecules*
- But time-warping refer to a specific set of algorithms



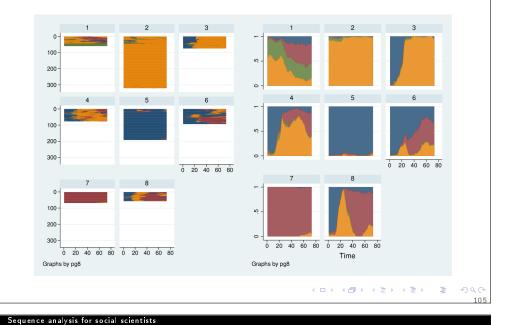
Session 4

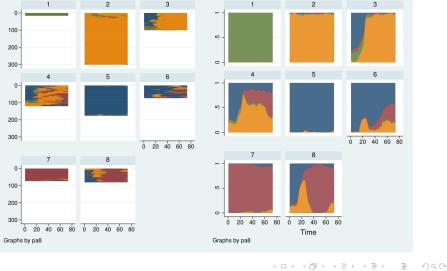
Comparing the measures, BSSEQ

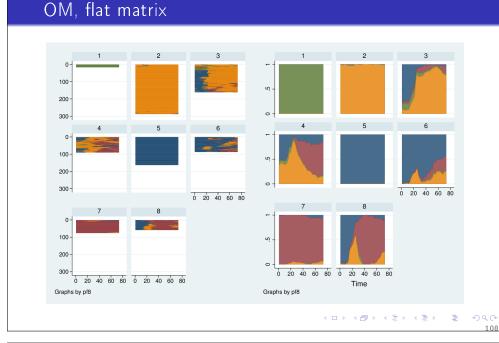

Hamming, linear matrix

Sequence analysis for social scientists Session 4

Comparing the measures, BSSEQ

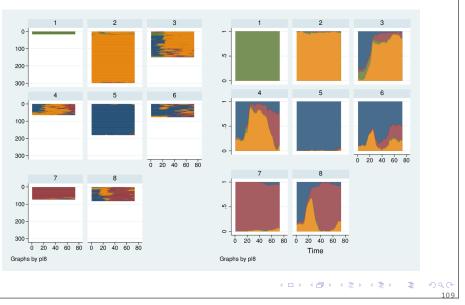

TWED, linear matrix


Sequence analysis for social scientists Session 4


Comparing the measures, BSSEQ

OM, linear matrix

Session 4 Comparing the measures, BSSEQ Hamming, flat matrix 1 2 3 -1



Session 4

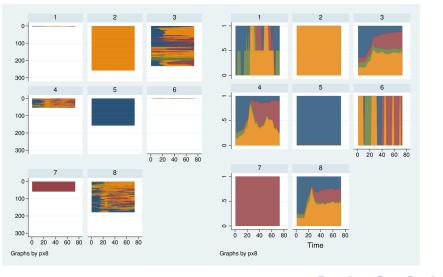
Comparing the measures, BSSEQ

TWED, flat matrix

Sequence analysis for social scientists Session 4

Sequence analysis for social scientists

Comparing the measures, BSSEQ


Session 4

Comparing the measures, <u>BSSEQ</u>

Dynamic Hamming

Sequence analysis for social scientists Session 4 Comparing the measures, BSSEQ X/t

・ロト・西ト・ヨト・ヨト ヨーのへで 111

SA and further analysis

SA and further analysis

Sequence analysis for social scientists

. tab g8 funemp, chi

Session 4

SA and further analysis

Explaining cluster membership, MVAD data

٩	With pairwise	distances of	or a	cluster	solution	we	can	move	on
	to conventiona	al analysis:							

- Explain the clusters: who goes where?
- Predict from the clusters: do they have consequences for the future?
- Approaches: tabular, ANOVA, regression, logit
- Using clusters, MDS dimensions or other summaries of the distances

1	fune	mp		1	g cs e 5	eq	
g8	0	1	Total	g8	0	1	Total
1	13.28	11.97	13.06	1	17.26	5.77	13.06
2	22.52	24.79	22.89	2	29.87	10.77	22.89
3	9.41	5.13	8.71	3	2.21	20.00	8.71
4	20.84	18.80	20.51	4	20.80	20.00	20.51
5	8.24	17.09	9.69	5	13.05	3.85	9.69
6	3.03	10.26	4.21	6	5.75	1.54	4.21
7	6.89	5.13	6.60	7	6.64	6.54	6.60
8	15.80	6.84	14.33	8	4.42	31.54	14.33
lotal	100.00	100.00	100.00	Total	452	260	712

. tab g8 gcse5eq, chi

・ ロ ト ・ 信 ト ・ 言 ト ・ 言 ・ の へ や

113

・ロト・(型ト・(ヨト・(ヨ)・)のQ()

	SA and further analysis
 Association between covariates and clustering Where we have outcome variables, we may want to see how well they are predicted by the cluster solution Here one question is whether the cluster solution has additional explanatory power over and above simple summaries such as cumulated duration Example using Mothers' data use sequence analysis/clustering of first 48 months to predict working in month 72 Nested model test: does cluster solution have predictive power after taking account of cumulated duration and state in month 48 	<pre>Stata code use bsseq matrix subs = (0,1,2,3\ ///</pre>

A and turnsham							Session 4 SA and further	an alvair								
A and further an																
Beating	cumulated	durati	on				MDS a	nd mo	dellin	g						
Logistic regre	ssion		Number o	of obs =	940											
Log likelihood	= -304 3196		LR chi2 Pseudo H		692.23 0.5321											
working +	Coef. Std. E			[95% Conf.										I.		
cd1 cd2	.0567982 .03033 .0448847 .02575			0026595 0056033	.116256 .0953726		l It n	nay make	e sense	to mo	del wit	th the	MDS	dimen	sions	
cd3	0250336 .0235	2 -1.06		0712338	.0211667											
cd4	0 (omitte)					set mat	size 10	000							
state48							mdsmat	pwd, di	im(3)							
Part time Unemployed	6516304 .47523 -1.42019 .76120		0.170 0.062	-1.583082 -2.91212	.2798214 .0717405		matrix	-								
Non-emplo~d	-1.91716 .4762	4 -4.03	0.000	-2.85064	9836802				1)							
g8							svmat o									
2	1.383836 1.4827 .9581697 .81375			-1.522235 6367663	4.289906 2.553106		logit v	orking	cd* i	i.stat	e48 d	im*				
4	1.408097 .58151	5 2.42	0.015	.268349	2.547844		lrtest	base								
5	1.633173 .7469 .6102612 1.2103			.1692583 -1.761939	3.097088 2.982461											
7	1.660886 .87018	6 1.91	0.056	0446485	3.36642											
8 _cons	2.953757 1.3293 -1.357889 .54858			.3482298 -2.433093	5.559284 2826838											
(Assumption: b			P1	rob > chi2 =	0.0028	E▶ 《불▶ 별 ')Q() 116	Sequence analysis f	or social scien	ntists							
	social scientists		F		0.0028				ntists							
ence analysis for sion 4 A and further an	social scientists	d mo			0.0028		Sequence analysis f Session 4	analysis								
ence analysis for sion 4 A and further an MDS dif Logistic regre	social scientists alysis mensions ar ssion	d moo	del Number of LR chi2 Prob >	of obs = (9) = chi2 =	940 680.39 0.0000		Sequence analysis f Session 4 SA and further	analysis								
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood	social scientists alysis mensions ar ssion = -310.23558		Del Number of LR chi2 Prob > P Pseudo P	pf obs = (9) = chi2 = 12 =	940 680.39 0.0000 0.5230		Sequence analysis f Session 4 SA and further	analysis								
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood working	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E	r. z	Number of LR chi2 Prob > Pseudo H P> z	of obs = (9) = chi2 = 32 = [95% Conf.	940 680.39 0.0000 0.5230 Interval]		Sequence analysis f Session 4 SA and further MDS c	analysis Orrelat								
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood working	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E 2089523 .71537	r. z 6 -0.29	Del Number of LR chi2 Prob > P Pseudo P P>Izl 0.770	of obs = (9) = chi2 = 12 = [95% Conf. -1.611067	940 680.39 0.0000 0.5230 Interval 1.193162		Sequence analysis f Session 4 SA and further MDS C	analysis Orrelat	ed?							
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood working 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46380 0511365 .23159	r. z 	Del Number of LR chi2 Prob > P Pseudo P P>Izl 0.770	of obs = (9) = chi2 = 32 = [95% Conf.	940 680.39 0.0000 0.5230 Interval]		Sequence analysis f Session 4 SA and further MDS c	analysis Orrelat		cd3	cd4	dim1	dim2	dim3		
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood working 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880	r. z 	Number of LR chi2 Prob > Pseudo H P> z 0.770 0.887	bf obs = (9) = chi2 = 12 = [95% Conf. -1.611067 9853105	940 680.39 0.0000 0.5230 Interval] 1.193162 .8523564		Sequence analysis f Session 4 SA and further MDS (. corr cd* ((obs=940) cd1	analysis Correlat	ed?	cd3	cd4	dim1	dim2			
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E 2089523 .71537 066477 .46880 0511365 .23159 0 (omitte	r. z 6 -0.29 2 -0.14 8 -0.22)	Number of LR chi2 Prob > Pseudo F P>IzI 0.770 0.887 0.825	of obs = (9) = ch12 = 22 = [95% Conf. -1.611067 965107 5050501	940 680.39 0.0000 0.5230 Interval] 1.193162 .8523664 .4027771		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940)	analysis Orrelat 1im* cd1 -+ 1.0000 2 -0.2586	ed?	cd3	cd4	dim1	dim2			
ence analysis for sion 4 A and further an MDS diff Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880 0511365 .23159 0 (omitte -1.15598 .48385 -1.808753 .77522	r. z 6 -0.29 2 -0.14 8 -0.22) 5 -2.39 6 -2.33	Del Number of LR chi2 Prob > 2 Pseudo F P>Izl 0.770 0.887 0.825 0.017 0.020	<pre>bf obs = (9) = chi2 = 12 = [95% Conf1.61106798531055050501 -2.104314 -3.328167</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .852364 .4027771 2076468 2893387		Sequence analysis f Session 4 SA and further MDS (. corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082	ed? 	1.0000	1.0000		dim2			
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood working cd1 cd2 cd3 cd4 state48 Part time	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880 0511365 .23159 0 (omitte -1.15598 .48385 -1.808753 .77522	r. z 6 -0.29 2 -0.14 8 -0.22) 5 -2.39 6 -2.33	Del Number of LR chi2 Prob > 2 Pseudo F P>Izl 0.770 0.887 0.825 0.017 0.020	<pre>bf obs = (9) = chi2 = 2 = [95% Conf1.61106798531055050501 -2.104314</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .852364 .4027771 2076468		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000	1.0000	dim3		
ence analysis for sion 4 A and further an MDS diff Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880 0 (omitte -1.15598 .48385 -1.808753 .77522 -2.050996 .52592 -4.520051 11.435	r. z 6 -0.29 2 -0.14 8 -0.22) 5 -2.39 6 -2.33 2 -3.90 5 -0.40	Dumber of LR chi2 Prob > P Pseudo F P>IzI 0.770 0.887 0.825 0.017 0.020 0.000 0.693	<pre>bf obs = (9) = chi2 = 12 = [95% Conf1.61106798531055050501 -2.104314 -3.328167 -3.081782 -26.93293</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .8523564 .4027771 2076468 289387 -1.020209 17.89283		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000		dim3		
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880 0 (omitte -1.15598 .48385 -1.808753 .77522 -2.050996 .52592 -4.520051 11.435	r. z 6 -0.29 2 -0.14 8 -0.22) 5 -2.39 6 -2.33 2 -3.90 5 -0.40 7 1.81	Number of LR chi2 Prob > P Pseudo P P>1z1 0.770 0.887 0.825 0.017 0.020 0.000 0.693 0.070	<pre>bf obs = (9) = chi2 = 2 = [95% Conf1.61106798531055050501 -2.104314 -3.328167 -3.081782</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .852364 .4027771 2076468 2893387 -1.020209		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000	1.0000	dim3		
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46880 0 (omitte -1.15598 .48385 -1.808753 .77522 -2.050906 .51592 -4.520051 11.435 1.239288 .68510 0 (5675 5.161245 15.969	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dumber of LR chi2 Prob > 0 Pseudo F P> z 0.770 0.887 0.825 0.017 0.220 0.000 0.000 0.693 0.0747	<pre>bf obs = (9) = chi2 = 32 = [95% Conf1.61106798831055050501 -2.104314 -3.328167 -3.081782 -26.932931034649 -2.615252 -26.13789</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .822364 .4027771 2076468 2893387 -1.020209 17.89283 2.58206 390509 36.46038		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000	1.0000	dim3		
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E: 2089523 .71537 066477 .46800 0511365 .23159 0 (omitte -1.15598 .48385 -1.808753 .77522 -2.050996 .52592 -4.520051 11.435 1.239288 .68510 -1.502881 .5675	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dumber of LR chi2 Prob > 0 Pseudo F P> z 0.770 0.887 0.825 0.017 0.220 0.000 0.000 0.693 0.0747	<pre>bf obs = (9) = chi2 = 32 = [95% Conf1.61106798831055050501 -2.104314 -3.328167 -3.081782 -26.932931034649 -2.615252 -26.13789</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .822364 .4027771 2076468 2893387 -1.020209 17.89283 2.58206 390509 36.46038		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000	1.0000	dim3		
ence analysis for sion 4 A and further an MDS dif Logistic regre Log likelihood 	social scientists alysis mensions ar ssion = -310.23558 Coef. Std. E 2089523 .71537 066477 .46880 0511365 .23159 0 (omitte -1.15598 .48385 -1.808753 .77522 -2.050996 .52592 -4.520051 11.435 1.239288 .68510 -1.502881 .5675 5.161245 15.969	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Del Number of LR chi2 Prob > P Pseudo H P> z 0.770 0.887 0.825 0.017 0.020 0.000 0.693 0.070 0.008 0.747	<pre>bf obs = (9) = chi2 = 32 = [95% Conf1.61106798831055050501 -2.104314 -3.328167 -3.081782 -26.932931034649 -2.615252 -26.13789</pre>	940 680.39 0.0000 0.5230 Interval] 1.193162 .822364 .4027771 2076468 2893387 -1.020209 17.89283 2.58206 390509 36.46038		Sequence analysis f Session 4 SA and further MDS c . corr cd* c (obs=940) 	analysis Orrelat im* cd1 -+ 1.0000 : -0.2586 : -0.1879 : -0.7082 -0.8001 : 0.8202	ed? 	1.0000 -0.1321 0.1039 -0.2478	1.0000 0.9471 0.1919	1.0000	1.0000	dim3		

Discrepancy

Studer et al's discrepancy

tuder et al's discrepancy	Discrepancy and MVAD
 Studer et al. (2011) propose a method for treating distances 	use mvad

matrix md = (0, 1, 1, 2, 1, 3 / //

matrix rownames md = E F H S T U

matrix colnames md = E F H S T U

1, 0, 1, 2, 1, 3\ ///

1, 1, 0, 2, 1, $2 \setminus ///$

2, 2, 2, 0, 1, 1\ /// 1, 1, 1, 1, 0, 2\ ///

3, 3, 2, 1, 2, 0)

Sequence analysis for social scientists

Session 4

Discrepancy

• The average distance to the centre of the whole matrix is the analogue of total sum of squares

matrices analogously to SS in regression and ANOVA

- With a grouping variable, the distance to the centre for each groups is the residual sum of squares
- This allows a pseudo- R^2 and a pseudo-F test
- Permutation is used to approximate the sampling distribution of pseudo-F

set matsize 1000 oma state*, subs(md) indel(1.5) pwd(oma) length(72) discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)

・ロト ・回ト ・ヨト ・ヨト ・ ヨー・ つへの

Discrepancy	y results				Multiple domains
. discrepancy Discrepancy b	-			100) dcg(d2c)	 Lifecourse analysis recognises the interrelatedness of domains
		pseudo F		p varue	 Somewhat hard to handle in many approaches: a potential strength of SA?
funemp	.007956	5.694094	.17		 In practice, not very well developed; most research on single domains
funemp	N(d2c)	min(d2c)	mean(d2c)	max(d2c)	 Some work (Dijkstra and Taris (1995), Pollock (2007), Gauthier et al. (2010))
0	595	.2215114	.463736	1.919831	
1	117	.2757618	.5502117	1.518995	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

quence analysis for social scientists Session 4 Multichannel SA	Sequence analysis for social scientists Session 4 Multichannel SA
Combined distance versus combining distances	Combine by cross-tabulation
 How to proceed? Conduct parallel analyses and combine results? Combine domains into a single variable? The former is easy but will be less sensitive to the synchronisation of domains The latter involves a large state space and problem in defining distances However, better sensitivity to cross-domain features makes it attractive 	 The simplest approach is to create a new state space that is the cross-tabulation of the two (or more) domains This yields a large number of states, one for each combination How then to determine costs?
▲□▶ ▲쿱▶ ▲콜▶ 볼 이익(~ 124 Session 4 Multichannel SA	< ロ > < 금 > < 클 > · ミ · · · · · · · · · · · · · · · · ·
Determining costs	Implementation
 Simplest strategy is to sum across the domains In short, d^{AB}_{ik,jl} = d^A_{i,j} + d^B_{k,l} There may be justification for imposing other patterns, for instance, imposing a ceiling 	 We take a simple case (four parity levels and five employment statuses) First step is to create the interaction or crosstabulation of the states // Reshape long to work on all months simultaneously reshape long parx emp, i(pid) j(month)

uence analysis for social scientists ession 4	Sequence analysis for social scientists Session 4
ession 4 Multichannel SA	Session 4 Multichannel SA
Create the substitution cost matrix	Combine into 20x20
 We have two substitution cost matrices, 4x4 and 5x5: matrix spar = (0,1,2,3\ /// matrix semp = (0,1,2,3,3\ /// 1,0,1,2\ /// 2,1,0,1,2\ /// 2,1,0,1\ /// 3,2,1,0,1\ /// 3,2,1,0,1\ /// 3,2,1,0,1\ /// 3,2,1,1,0) Both have a max of 3, otherwise perhaps divide each by its max 	<pre>// Use Mata to combine the two matrices mata: spar = st_matrix("spar") semp = st_matrix("semp") // each element becomes a 5x5 block sparx = spar # J(1,5,1) # J(5,1,1) // replicate the 5x5 matrix 4x4 times sempx = semp for (i=2; i<=4; i++) { sempx = sempx, semp } sempxy = sempx for (i=2; i<=4; i++) { sempxy = sempxy\sempx } // The combined matrix is the element-wise sum; return it from Mata to Stat st_matrix("mcsa", sempxy :+ sparx)</pre>
< □ > < 图 > < 분 > 差 · 今へ⊙ 128	end
uence analysis for social scientists	Sequence analysis for social scientists
ession 4 Multichannel SA	Session 5 Dyadic sequence analysis
The combined matrix	Dyadic SA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 SA typically uses all-pair-wise distances, or distance to special cases Dyadic SA is also useful: distance between a specific pair Couple time-diaries Couple labour market histories Mother-daughter fertility histories, etc.

Sequence analysis for social scientists Session 5 Dyadic sequence analysis	Sequence analysis for social scientists Session 5 Dyadic sequence analysis
Research questions	Similarity and difference
 Allows testing hypotheses about dyadic similarity Are couples' time-use patterns or life-course histories aligned Are fertility patterns inherited? Under what conditions are dyadic distances smaller or larger? How do couples arrange joint lifecourses? 	 Couples may coordinate their lives under very different gender constraints Fertility patterns may be similar within the constraints of different cohort patterns of fertility The relationship between sequences may not be one of replication some daughters may completely reject their mother's fertility pattern
イロト イラト イミト イミト ミークへで 132 Sequence analysis for social scientists Session 5	<ロト・ロト・モート・モート・モート・モート・モート・モート・モート・モート・モート・モー
Dyadic sequence analysis Literature	Dyadic sequence analysis Practical issues
 Off-scheduling (Lesnard, 2008) Dyadic in concept but actually creates combined sequences Robette et al. (2015): Mother-daughter labour market careers Fasang and Raab (2014): Intergenerational fertility; notes that focus on similarity ignores heterogeneity Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads, fertility 	 We can calculate dyadic distances with standard software For efficiency it might better to just calculate dyads' distances But the cost of calculating all pairs is relatively small, and offers an advantage: Compare dyadic distances with distances to all others

Sequence	analysis	for	social	scientists

Session 5

Dyadic sequence analysis

Strategy: Begin with dyad-ordered data

	Dyad	1	1	2	2	3	3	4	4
Туре		М	D	М	D	М	D	Μ	D
М	1	11	12	13	14	15	16	17	18
D	1	21	22	23	24	25	26	27	28
М	2	31	32	33	34	35	36	37	38
D	2	41	42	43	44	45	46	47	48
Μ	3	51	52	53	54	55	56	57	58
D	3	61	62	63	64	65	66	67	68
Μ	4	71	72	73	74	75	76	77	78
D	4	81	82	83	84	85	86	87	88

Sequence analysis for social scientists

Session 5 Dyadic sequence analysis

Sort by types

	Dyad	1	2	3	4	1	2	3	4
Туре		D	D	D	D	М	М	М	М
D	1	22	24	26	28	21	23	25	27
D	2	42	44	46	48	41	43	45	47
D	3	62	64	66	68	61	63	65	67
D	4	82	84	86	88	81	83	85	87
М	1	12	14	16	18	11	13	15	17
М	2	32	34	36	38	31	33	35	37
М	3	52	54	56	58	51	53	55	57
М	4	72	74	76	78	71	73	75	77

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Sequence analysis for social scientists Session 5

Dyadic sequence analysis

Submatrices

• Two submatrices, with distances from each mother to each
daughter (and transpose)

- Distance from mother to her own daughter on diagonal (and transpose)
- Use distance from mother to all daughters to assess whether distance to own daughter is unusual

Sequence analysis for social scientists

Dyadic sequence analysis

Session 5

Submatrices

	Pair	1	2	3	4
Туре		M	М	М	М
D	1	21	23	25	27
D	2	41	43	45	47
D	3	61	63	25 45 <mark>65</mark> 85	67
D	4	81	83	85	87

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Session 5

Dyadic sequence analysis

Sequence analysis for social <u>scientists</u>

References

Extract diagonals and other information

- The main info is on the diagonals: the dyad distances (repeated across the two submatrices since distance is symmetric)
- Other summaries are also interesting
 - mean distance of each daughter to all mothers (and vice versa)
 - variance, standard deviation of this distance
 - z-score of dyad distance relative to all distances
 - rank of dyad distance compared with all distances

・ロト ・日 ・ モー・ モー・ ちょう

Fasang, A. and Raab, M. (2014). Beyond transmission: Intergenerational patterns of family formation among middle-class american families. Demography, 51(5):1703-1728. Gabadinho, A. (2014). Package 'pst'. probabilistic suffix trees and variable length Markov chains. Technical report, CRAN. Gauthier, J.-A., Widmer, E. D., Bucher, P., and Notredame, C. (2010), Multichannel sequence analysis applied to social science data. Sociological Methodology, 40(1):1-38. Halpin, B. (2013). Sequence analysis. In Baxter, J., editor, Oxford Bibliographies in Sociology. Oxford University Press New York Halpin, B. (2014a), SADI: Sequence analysis tools for Stata, Working Paper WP2014-03, Dept of Sociology, University of Limerick, Ireland. Halpin, B. (2014b). Three narratives of sequence analysis. In Blanchard, P., Bühlmann, F., and Gauthier, J. A., editors, Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin. Halpin, B. (2016). Cluster analysis stopping rules in stata. Working Paper WP2016-01, Department of Sociology, University of Limerick Halpin, B. and Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. European Sociological Review, 14(2). Han, S.-K. and Moen, P. (1999). Work and family over time: A life course approach. Annals of the American Academy of Political and Social Science, 562:98-110. Kruskal, J. B. and Liberman, M. (1983). The symmetric time-warping problem. In Sankoff and Kruskal (1983), pages 125-161. Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche

- Lesnard, L. (2006). Optimal matching and social sciences. Document du travail du Centre de Recherche en Économie et Statistique 2006-01, Institut Nationale de la Statistique et des Études Économiques, Paris.
- Lesnard, L. (2008). Off-scheduling within dual-earner couples: An unequal and negative externality for family time. American Journal of Sociology, 114(2):447-90.
- Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns. Sociological Methods and Research, 38(3):389-419.
- Lesnard, L. and de Saint Pol, T. (2009). Patterns of workweek schedules in France. Social Indicators Research, 93:171-176.

Sequence analysis for social scientists

References

- Abbott, A. (1984). Event sequence and event duration: Colligation and measurement. *Historical Methods*, 17(4):192–204.
- Abbott, A. (2000). Reply to Levine and Wu. Sociological Methods and Research, 29(1):65-76.
- Abbott, A. (2001). Time Matters: On Theory and Method. University of Chicago Press, Chicago.
- Abbott, A. and Forrest, J. (1986). Optimal matching methods for historical sequences. Journal of Interdisciplinary History, XVI(3):471-494.
- Abbott, A. and Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians' careers. *American Journal of Sociology*, 96(1):144-85.
- Abbott, A. and Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology. Sociological Methods and Research, 29(1):3-33.
- Aisenbrey, S. and Fasang, A. E. (2010). New life for old ideas: The 'second wave' of sequence analysis bringing the 'course' back into the life course. Sociological Methods and Research, 38(3):420-462.
- Barban, N. and Billari, F. (2012). Classifying life course trajectories: A comparison of latent class and sequence analysis. *Journal of the Royal Statistical Society Series C*, 61(5):765–784.
- Billari, F. C., Fürnkranz, J., and Prskawetz, A. (2006). Timing, sequencing and quantum of life course events: A machine learning approach. European Journal of Population, 22:37-65.
- Blair-Loy, M. (1999). Career patterns of executive women in finance: An optimal matching analysis. American Journal of Sociology, 104(5):1346-1397.
- Blanchard, P., Bühlmann, F., and Gauthier, J.-A., editors (2014). Advances in Sequence Analysis: Theory, Method, Applications. Springer, Berlin.
- Dijkstra, W. and Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods and Research, 24(2):214-231.
- Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. Sociological Methods and Research, 32(1):3-29.
- Elzinga, C. H. (2005). Combinatorial representations of token sequences. Journal of Classification, 22(1):87-118.

Elzinga, C. H. (2010). Complexity of categorical time series. Sociological Methods and Research, 38(3):463-481.

Sequence analysis for social scientists Session 5

References

- Levine, J. H. (2000). But what have you done for us lately? Commentary on Abbott and Tsay. Sociological Methods and Research, 29(1):34–40.
- Lovaglio, P. G. and Mezzanzanica, M. (2013). Classification of longitudinal career paths. Quality and Quantity, 47(2):989-1008.
- Marteau, P.-F. (2007). Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching. ArXiv Computer Science e-prints.
- Marteau, P.-F. (2008). Time Warp Edit Distance. ArXiv e-prints.
- Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple-sequence analysis. Journal of the Royal Statistical Society: Series A, 170(1):167–183.
- Raab, M., Fasang, A. E., Karhula, A., and Erola, J. (2014). Sibling similarity in family formation. Demography, 51(6):2127-2154.
- Robette, N., Bry, X., and Éva Lelièvre (2015). A "global interdependence" approach to multidimensional sequence analysis. Sociological Methodology, Online advance copy.
- Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String Edits and Macromolecules. Addison-Wesley, Reading, MA.
- Stovel, K. (2001). Local sequential patterns: The structure of lynching in the Deep South, 1882–1930. Social Forces, 79(3):843–880.
- Stovel, K., Savage, M., and Bearman, P. (1996). Ascription into achievement. American Journal of Sociology, 102(2):358–99.
- Studer, M. and Ritschard, G. (2014). A comparative review of sequence dissimilarity measures. Working Paper 2014-33, LIVES, Geneva.
- Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of state sequences. Sociological Methods and Research, 40(3):471-510.
- Wu, L. L. (2000). Some comments on "Sequence analysis and optimal matching methods in sociology: Review and prospect". Sociological Methods and Research, 29(1):41-64.
- Wuerker, A. (1996). The changing careers of patients with chronic mental illness: A study of sequential patterns in mental health service utilization. The Journal of Behavioral Health Services and Research, 23(4):458-470.

 « □ » « □

- 31