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Outline

What is sequence analysis?

Why it can be worth doing, and how it complements existing
approaches

How to do it, and how to think about it

Practical, hands-on focus, using (inter alia) my SADI add-on
for Stata (Halpin, 2014a)

Slides available at http://teaching.sociology.ul.ie/taiwan
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Section 1

Sequence analysis in the social sciences: some background
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Sequence Analysis

What is sequence analysis?

Large and active research area
From Andrew Abbott in mid-late 1980s, to 2015 special
edition of Sociological Methodology

Focuses on linear data (such as lifecourse trajectories) as
sequences, as wholes

Usually proceeds by de�ning distances between pairs of
sequences, creating empirical typologies, etc
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A brief history of SA in Sociology

Andrew Abbott's long evangelism

Abbott (1984) - earliest, argues for focusing on sequence as
well as duration
Abbott and Forrest (1986) - Morris dancing
Abbott and Hrycak (1990) - careers of Baroque musicians

Abbott's main point: focus on sequences as wholes as an
alternative to "variable-based" sociology

However, his main practical contribution was to introduce the
OM algorithm to the social sciences

James Coleman: `No one's gonna pay any attention . . . as long as
you write about dead German musicians' (Abbott, 2001, p. 13)
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Some 1st wave adopters 1/2

Stovel et al. (1996): A sequence-oriented analysis of career
data from a British bank, showing a transition between a
status-based and an achievement-based system, from 1890 to
1970.

Wuerker (1996): Treats sequences of services interactions of
mental health patients in Los Angeles. A small data set, but of
interest because it uses a relatively uncommon form of
trajectory.

Halpin and Chan (1998): Analyses class careers of British and
Irish men to age 35 using retrospective data.
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Some 1st wave adopters 2/2

Blair-Loy (1999): Women's careers in the �nance industry;
identi�es change across cohort in opportunity and perspective.

Han and Moen (1999): How life and work trajectories of
couples are coordinated. Dyadic, not analyis of all pairwise
distances: uses OM to generate a measure of intra-couple
similarity.

Stovel (2001): Not life-course: looks at county-level histories
of lynching in the Southern US, drawing strongly on arguments
from Abbott and others about the necessity of taking a
sequence perspective on historical explanations.
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2000 debate in SMR

Position: Abbott and Tsay (2000)

Critiques: Levine (2000) and Wu (2000)

is it sociologically meaningful?
how do we parameterise it?
does it have any advantages over conventional approaches?

Response: Abbott (2000)
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Key developments since

Widespread in many �elds, especially lifecourse related:

transition school to work, labour market, retirement, health
outcomes, time use
Some focus on multiple domains, dyadic approaches, cohort
change in average diversity
Much still uses clustering to develop empirical typologies

See Aisenbrey and Fasang (2010) and Halpin (2013) for a
summary

Rather more activity in Europe than in US

Two important conferences:

LaCOSA1 2012 on Sequence Analysis: Blanchard et al. (2014)
(includes historical demographers such as Michel Oris)
LaCOSA2 2016 on Sequence Analysis and related methods
(Online proceedings:
https://lacosa.lives-nccr.ch/online-proceedings)
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Software developments

Abbott's optimize program

Our own initial work used molecular biology software borrowed
from the Oxford Dept of Pathology

Götz Rohwer's TDA included an OM module later (mid-late
1990s)

Stata: SQ and SADI (mid-late 2000s)

R: Traminer (mid-late 2000s)
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Why do Sequence Analysis?

Why would we want to do it

Holistic vs analytic?
Exploratory vs hypothesis testing?
Descriptive, visualisation

Complexity of longitudinal processes hard to capture

Complementary alternative to stochastic techniques which
model data generation process
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Sequences are messy

Lifecourse sequences are epiphenomena of more fundamental
underlying processes

The processes are potentially complex: di�cult to predict
distribution of sequences

Other techniques (hazard rate models, models of late outcome
using history, models of the pattern of transition rates) give a
powerful but incomplete view

SA clearly allows us visualise complex data; possibly allows us
observe features that will otherwise be missed
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Potentially complex processes

The generating processes are complex:

individuals bring di�erent characteristics from the beginning
history matters, including via duration dependence (individuals
accumulate characteristics)
time matters:

calendar time (e.g. economic cycle), state distribution may
change dramatically
developmental time (maturation)
processes in other lifecourse domains

Too many parameters to model, hard to visualise distribution
of life courses, also the possibility of emergent features

Clear exploratory advantages
possibility of detecting things that might not be detected
otherwise
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Timing, sequence, quantum

Di�erent things can be interesting

Timing: when things happen
Sequence: in what order do things happen
Quantum: how much time is spent in di�erent states (Billari
et al., 2006)

Many applications in longitudinal social science: annotated
bibliography in Halpin (2013)
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Non-holistic approaches

Numerous non-holistic approaches exist

Typically they will discard some aspect of the information in
the data, and focus powerfully on another

For instance, focus on

cumulated duration in states (how much but not when)
transition patterns between states (period-to-period but not
overall)
time-to-event of leaving spell (spells, perhaps pooled, but lose
sight of individual career).
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Cumulative duration

For instance, summarise trajectories in terms of cumulative
time in each state

Typically use as a predictor (e.g., proportion of time
unemployed predicting later ill-health)

Or as an outcome: variables measured earlier (e.g., school
performance) predicting proportion of time unemployed.
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Transition rate models

Model rates of period-to-period change: e.g., monthly
movement between labour market statuses

Model origin�destination patterns: e.g., transition between
class at entry to labour market, and class at age 35

Markov models

Very useful, good overview, can be descriptive or stochastic:
tables make categorical data digestible

Disadvantage: the focus on the t-1/t or t0/tT pattern means a
loss of individual continuity

Some potential to model longer Markov chains (Gabadinho,
2014)
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Hazard-rate modelling

Hazard-rate modelling is one of the dominant statistical
alternative

Either in terms of survival tables and curves (essentially
descriptive)

Or full stochastic models of the determinants of the hazard
rate (Cox and/or parametric)

Example: what characteristics speed up (or slow down) exit
from unemployment?

Very nice conceptual model of the temporal process

Can test hypotheses

Disadvantage: spell orientation, lack of whole-trajectory
overview
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Latent class analysis

Latent class growth curve models

Where theory allows a developmental model of a quantitative
outcome
Account for the structure of repeated measurement of
individuals
Not so suitable for categorical variables

Latent class models can be applied to careers

However, di�cult to properly incorporate the longitudinality
Examples: Lovaglio and Mezzanzanica (2013); Barban and
Billari (2012)
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Holistic approaches

Holistic approaches by de�nition treat whole trajectories as
units

Classi�cation of sequences is a typical goal

Usually achieved by de�ning inter-sequence similarity and
cluster analysis

But other aspects of similarity may be interesting

Variation of similarity by grouping variable (cohort, social class)
Dyad similarity (couples' time use, mother�daughter fertility
etc)
Distance to pre-de�ned ideal types (empirical or theoretical)
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De�ning similarity

De�ning similarity the key challenge: must be

e�cient
coherent, and
sociologically meaningful

We will consider a number of methods to do this

Hamming distance
Optimal Matching distance
Dynamic Hamming distance
Time-warping measures
Combinatorial subsequence measures
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Hamming distance and Optimal Matching

The simplest way to compare sequences is element-wise

Given a rule for d(a, b), project it onto D(A,B) as
D(A,B) =

∑
i d(Ai ,Bi )

Requires sequence of equal length

Hamming distance: recognises match or similarity at same time

Simple but important case of mapping d(a, b)→ D(A,B)
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Hamming distance example

Calculate Hamming distance
input s1 s2 s3 s4 s5

1 2 3 2 3

2 3 2 3 1

4 2 3 2 3

1 1 1 1 1

end

// Define the state differences

matrix scost = (0,1,2,3 \ ///

1,0,1,2 \ ///

2,1,0,1 \ ///

3,2,1,0 )

hamming s1-s5, subs(scost) pwd(ham)

Resulting distances
. matrix list ham

symmetric ham[4,4]

c1 c2 c3 c4

r1 0

r2 1.2 0

r3 .6 1.4 0

r4 1.2 1.2 1.8 0

23



Sequence analysis for social scientists
Session 1: Background
OM and Hamming

Hamming distance example

Calculate Hamming distance
input s1 s2 s3 s4 s5

1 2 3 2 3

2 3 2 3 1

4 2 3 2 3

1 1 1 1 1

end

// Define the state differences

matrix scost = (0,1,2,3 \ ///

1,0,1,2 \ ///

2,1,0,1 \ ///

3,2,1,0 )

hamming s1-s5, subs(scost) pwd(ham)

Resulting distances
. matrix list ham

symmetric ham[4,4]

c1 c2 c3 c4

r1 0

r2 1.2 0

r3 .6 1.4 0

r4 1.2 1.2 1.8 0

23

Sequence analysis for social scientists
Session 1: Background
OM and Hamming

Optimal Matching

Hamming recognises similarity at the same time

If sequences have similarity that is out of alignment this will
not be recognised

OM de�nes similarity like Hamming, but uses insertion and
deletion to allow sequences to align

I.e., it cuts bits out in order to slide other parts along to match
Insertion/deletion also enables comparison of sequences of
di�erent lengths

Origins in computer science, pattern recognition, extensive use
in molecular biology
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OM example

OMA call
. oma s1-s5, subs(scost) indel(1.5) ///

pwd(oma) length(5)

Resulting distances

OM distances

symmetric oma[4,4]

c1 c2 c3 c4

r1 0

r2 .6 0

r3 .6 .6 0

r4 1.2 1.2 1.8 0

Hamming distances

symmetric ham[4,4]

c1 c2 c3 c4

r1 0

r2 1.2 0

r3 .6 1.4 0

r4 1.2 1.2 1.8 0
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OM vs Hamming

For most pairs the OM and Hamming distance is the same

For the pairs (1,2) and (2,3), OM distance is less because
"alignment" allows a better match

1 vs 2

Seq 1 1 2 3 2 3 -
Seq 2 - 2 3 2 3 1

Cost i 0 0 0 0 i

2 vs 3

Seq 2 - 2 3 2 3 1
Seq 3 4 2 3 2 3 -

Cost i 0 0 0 0 i
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A more general example

To convert ABCD into CDAAB the following set of operations gives
the cheapest path:
Operation Intermediate state Cost

Sequence 2 ABCD = 0

insert C CABCD +1.5

=

1.5
insert D CDABCD +1.5

=

3.0
const A = A CDABCD +0.0

=

3.0
subs B→A CDAACD +1.0

=

4.0
subs C→B CDAABD +1.0

=

5.0
delete D CDAAB- +1.5

=

6.5

Sequence 1 CDAAB =

6.5
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Programming OM

OM distance is de�ned as the cheapest set of "elementary
operations" that edit one sequence into another

Determining the cheapest set of �elementary operations� is
potentially complex � a large population of candidates

However, it can be stated as a recursive problem and
programmed very e�ciently

Understanding how it is programmed can help understand the
principle of OM
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OM: Recursive problem

∆OM(Ap,Bq) =

min





∆OM(Ap−1,Bq) + indel
∆OM(Ap−1,Bq−1) + δ(ap, bq)
∆OM(Ap,Bq−1) + indel

(∆ represents distance between sequences, and δ di�erences within
the state space)
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Implementing the recursive algorithm

Cell value: min(ci−1,j−1 + ωi ,j , ci ,j−1 + ι, ci−1,j + ι)

= min(0 + 2, 2 + 2, 2 + 2) = 2
= min(2 + 1, 2 + 2, 4 + 2) = 3
= min(4 + 0, 3 + 2, 6 + 2) = 4
= min(6 + 1, 4 + 2, 8 + 2) = 6

s1

s2
A B C D

C 2 1 0 1
D 3 2 1 0
A 0 1 2 3
A 0 1 2 3
B 1 0 1 2

0 2 4 6 8
2

2 3 4 6

4

4 4 4 4

6

4 5 6 6

8

6 5 7 8

10

8 6 6 8
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A B C D

C 2 1 0 1
D 3 2 1 0
A 0 1 2 3
A 0 1 2 3
B 1 0 1 2

0 2 4 6 8
2 2 3 4 6
4 4 4 4 4
6 4 5 6 6
8 6 5 7 8
10

8 6 6 8
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Section 2: Practical Sequence Analysis

How to carry out basic sequence analysis
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Two example data sets

We will be primarily using two data sets as examples

MVAD: McVicar/Anyadike-Danes data on the school-to-work
transition in Northern Ireland (72 months, 6 states)
BSSEQ: 6 years of labour market history of women who have a
birth at end of year 2 (72 months, 4 states)
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Initial step: looking at life course data

It's harder to get an overview of lifecourse that cross-sectional
data

However, a number of numeric and graphical techniques are
available
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Numeric summaries

We can summarise lifecourse data in terms of:

Cumulative duration

Number of spells

Patterns of transition rates

month by month
start by �nish

Durations to event (time to �rst job, �rst marriage, �rst child)

Useful to break down these measures by covariates, and model them
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Cumulative duration

use mvad

cumuldur state*, cd(cd) nstates(6)

reshape long cd, i(id) j(durtype)

label values durtype state

table male durtype, c(mean cd) format(%5.2f)

table grammar durtype, c(mean cd) format(%5.2f)

----------------------------------------------------

| durtype

male | E F H S T U

----------+-----------------------------------------

0 | 29.24 12.73 10.12 7.30 5.55 7.06

1 | 34.96 10.75 6.81 5.00 9.12 5.36

----------------------------------------------------

----------------------------------------------------

| durtype

grammar | E F H S T U

----------+-----------------------------------------

0 | 34.25 12.42 6.07 4.44 8.09 6.74

1 | 23.02 8.47 18.93 13.62 4.32 3.64

----------------------------------------------------
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Number of spells

. nspells state*, gen(nsp)

. tab nsp grammar, col nofreq

| grammar

nsp | 0 1 | Total

-----------+----------------------+----------

1 | 6.17 4.65 | 5.90

2 | 20.24 24.81 | 21.07

3 | 30.70 33.33 | 31.18

4 | 19.21 19.38 | 19.24

5 | 12.52 6.98 | 11.52

6 | 4.12 6.20 | 4.49

7 | 3.95 1.55 | 3.51

8 | 1.37 2.33 | 1.54

9 | 1.03 0.78 | 0.98

10 | 0.34 0.00 | 0.28

11 | 0.34 0.00 | 0.28

-----------+----------------------+----------

Total | 100.00 100.00 | 100.00
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Transition rates

use mvad

reshape long state, i(id) j(t)

by id: gen last = state[_n-1] if _n>1

label values last state

tab last state, row nofreq
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Transition rates

| state
last | E F H S T U | Total

-----------+------------------------------------------------------------------+----------
E | 22,039 115 56 39 58 146 | 22,453

| 98.16 0.51 0.25 0.17 0.26 0.65 | 100.00
-----------+------------------------------------------------------------------+----------

F | 227 7,927 54 8 33 73 | 8,322
| 2.73 95.25 0.65 0.10 0.40 0.88 | 100.00

-----------+------------------------------------------------------------------+----------
H | 60 1 5,787 0 3 11 | 5,862

| 1.02 0.02 98.72 0.00 0.05 0.19 | 100.00
-----------+------------------------------------------------------------------+----------

S | 59 50 74 4,120 19 23 | 4,345
| 1.36 1.15 1.70 94.82 0.44 0.53 | 100.00

-----------+------------------------------------------------------------------+----------
T | 197 21 0 4 4,973 69 | 5,264

| 3.74 0.40 0.00 0.08 94.47 1.31 | 100.00
-----------+------------------------------------------------------------------+----------

U | 182 120 9 39 64 3,892 | 4,306
| 4.23 2.79 0.21 0.91 1.49 90.39 | 100.00

-----------+------------------------------------------------------------------+----------
Total | 22,764 8,234 5,980 4,210 5,150 4,214 | 50,552

| 45.03 16.29 11.83 8.33 10.19 8.34 | 100.00
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Graphs

Graphs give us an even better overview. Consider

Chronograms

Survival plots

Index plots

Transition rate time-series
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Chronograms
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Index plots
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Survival plots: time to �rst job
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Transition rate time-series
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Sequence analysis of real data

Now let's do some sequence analysis of real lifecourse data

44

Sequence analysis for social scientists
Session 2: Doing SA
Sequence analysis of real data

Chronogram, mothers' labour market history (BS)
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OM on BS data

use bsseq

matrix scost = (0,1,2,3 \ ///

1,0,1,2 \ ///

2,1,0,1 \ ///

3,2,1,0 )

oma state*, subs(scost) indel(1.5) pwd(oma) len(72)

matlist oma[1..5,1..5]
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OM output

. oma state*, subs(scost) indel(1.5) pwd(oma) len(72)

Normalising distances with respect to length

(0 observations deleted)

417 unique observations

nrefs: 0

. matlist oma[1..5,1..5]

| c1 c2 c3 c4 c5

-------------+-------------------------------------------------------

r1 | 0

r2 | 2.694444 0

r3 | .7777778 1.916667 0

r4 | 1.861111 .8333333 1.083333 0

r5 | 2.277778 .4583333 1.541667 .8333333 0
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Hamming for comparison

. hamming state*, subs(scost) pwd(ham)

. corrsqm ham oma

VECH correlation between ham and oma: 0.9946

. matlist ham[1..5,1..5]

| c1 c2 c3 c4 c5

-------------+-------------------------------------------------------

r1 | 0

r2 | 2.694444 0

r3 | .7777778 1.916667 0

r4 | 1.861111 .8333333 1.083333 0

r5 | 2.277778 .5 1.583333 1.222222 0
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First �ve sequences
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What to do with distances?

Pairwise distance matrices are an intermediate point

One useful thing: create a data-driven classi�cation

Use cluster analysis, typically using Ward's linkage

Number of clusters is a matter for thought, 8 is convenient for
exposition (but see also Halpin (2016))

50

Sequence analysis for social scientists
Session 2: Doing SA
Cluster analysis: empirical typologies from distances

Clustering OM

clustermat wards oma, add

cluster generate g8=groups(8)

cluster dendrogram, cutnumber(32)

chronogram state*, by(g8)

chronogram state*, by(g8) proportional
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Dendrogram
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Chronogram by cluster
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Chronogram, proportional
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Indexplot
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Indexplot in dendrogram order
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Details: how it was done

clustermat wards oma, add

cluster generate g8 = groups(8)

cluster generate g999 = groups(800), ties(fewer)

chronogram state*, by(g8)

chronogram state*, by(g8) prop

reshape long state, i(pid) j(t)

sqset state pid t

sqindexplot, by(g8, legend(off))

sqindexplot, by(g8, legend(off)) order(g999)
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Compare Hamming (L) and OM (R) solutions
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ARI and permtab

Hamming
OM 1 2 3 4 5 6 7 8

1 273 0 1 0 0 1 48 0
2 0 192 0 0 0 0 0 0
3 0 0 85 0 1 16 32 0
4 0 0 10 69 0 0 0 16
5 0 0 0 0 68 0 0 0
6 0 1 0 0 0 44 0 0
7 0 0 0 0 0 16 0 0
8 0 0 10 4 0 14 0 39

Kappa-max: 0.7791

Adjusted Rand Index: 0.7818
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Hamming and OM

Often with lifecourse data, Hamming and OM generate quite
similar results

However, where they di�er it is with more complex sequences
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Complexity of sequences

Complexity of sequences is relevant: more complex means less
likely to be similar (and perhaps, similarity is more interesting)

How to measure? Number of spells is part of it

Also distribution of time

A single long spell is the simplest sequence

Many spells in many di�erent states is very complex
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Shannon Entropy

Information theory relates complexity to "entropy"

More complex objects are harder to describe, cannot be
compressed

Shannon Entropy: ε = −∑
pi log2 pi where pi is the

proportion of months in state i

Takes account of diversity of state but ABABAB counts as no
more complex than AAABBB
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Example: entropy

entropy state*, gen(ent) cd(pcd) nstates(4)

nspells state*, gen(nsp)

gen ent2 = ent*nsp/72

table g8, c(mean ent mean ent2 mean nsp) format(%6.3f)

----------------------------------------------

g8 | mean(ent) mean(ent2) mean(nsp)

----------+-----------------------------------

1 | 0.150 0.008 1.536

2 | 0.100 0.004 1.359

3 | 1.143 0.061 3.560

4 | 1.053 0.057 3.684

5 | 0.074 0.003 1.235

6 | 1.252 0.091 4.844

7 | 0.000 0.000 1.000

8 | 1.489 0.097 4.597

----------------------------------------------

63

Sequence analysis for social scientists
Session 3
Summarising sequences: Duration, number of spells, entropy

Elzinga's turbulence

In Elzinga (2010) a measure of complexity is proposed that is
more appropriate for spell data

It is based on duration weighted spells, and on subsequence
counting

It combines a measure based on the number of distince
subsequences, with a measure of the variance of their durations

It is (only) available in TraMineR

However, in practice the simpler Shannon entropy correlates
highly with it
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Regular expressions

If sequences are represented as text, text-processing tools such
as "regular expressions" can be used to sort between them

Refer to lab notes for more details

stripe state*, gen(seqst)

list seqst in 1/5,clean

count if regexm(seqst,"^A+$")

count if regexm(seqst,"^AAAAAA+.*DDDDDD.*AAAAAA.*$")

count if regexm(seqst,"AB.*AB")
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Multi-dimensional scaling (optional)

The other "obvious" thing to do with pairwise distances is
multi-dimensional scaling

The network of distances implies a coherent space: can we
re-construct it?

Preferably with dimensions much less than number of
sequences!

Standard MDS uses principal component analysis
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Example

. mdsmat oma, dim(3)
(row names of (dis)similarity matrix differ from column names; row names used)

Classical metric multidimensional scaling
dissimilarity matrix: oma

Number of obs = 940
Eigenvalues > 0 = 188 Mardia fit measure 1 = 0.7556
Retained dimensions = 3 Mardia fit measure 2 = 0.9932

--------------------------------------------------------------------------
| abs(eigenvalue) (eigenvalue)^2

Dimension | Eigenvalue Percent Cumul. Percent Cumul.
-------------+------------------------------------------------------------

1 | 1205.3971 67.73 67.73 98.57 98.57
2 | 95.282325 5.35 73.08 0.62 99.19
3 | 44.082404 2.48 75.56 0.13 99.32

-------------+------------------------------------------------------------
4 | 28.932307 1.63 77.19 0.06 99.38
5 | 23.350698 1.31 78.50 0.04 99.41
6 | 12.040492 0.68 79.17 0.01 99.42
7 | 10.398137 0.58 79.76 0.01 99.43
8 | 8.8446418 0.50 80.26 0.01 99.44
9 | 6.3672493 0.36 80.61 0.00 99.44

10 | 6.1013343 0.34 80.96 0.00 99.44
--------------------------------------------------------------------------

67



Sequence analysis for social scientists
Session 3
MDS and pairwise distances (optional)

Scatterplot
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Scatterplot
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Scatterplot by cluster solution
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Avoid clustering: Indexplot ordered by 1st MDS
dimension
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Partitioning by MDS
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Are substitution costs a problem?

Repeated claims in the literature:

that sociologists don't know how to set substitution costs,
that we can't match the e�ectiveness of molecular biology

Yes, our analytical goals are often much less well de�ned than
those of the biologists

No, substitution costs are not an intractable problem
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Mapping states to sequences

The essence of SA is mapping a view of a state space onto a
view of a trajectory space: d(s)→ D(S)

We start with knowledge or a view of how states relate to each
other (what states are like each other, what states are
dissimilar)

With a suitable algorithm we map this perspective onto
trajectories through the state space: what trajectories are more
or less similar

The nature of the algorithm determines

Whether the mapping makes sense
Exactly how the structure of the state space a�ects the
structure of the trajectory space
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OMA coherent?

Can we expect OMA to provide a coherent d(s)→ D(S)
mapping?

Elementary operations are intuitively appealing:
1 D(ABC, ADC) = f (d(B, D))
2 D(ABCD, ABD) = f (indel)
3 minimising concatenation of these two operations to link any

pair of trajectories

If 3 is reasonable, 1 and 2 determine how state space a�ects
trajectory space
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Thinking about state spaces and distances

Costs can be thought of as distances between states

If state space is Rn, distance is intuitive

If state space is categorical, how de�ne distance?

State space as e�cient summary of clustered distribution in
Rn: distances are between cluster centroids
State space can be mapped onto speci�c set of quantitative
dimensions; each state located at the vector of its mean
values; Euclidean or other distances between vectors
States can be located relative to each other on theoretical
grounds
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Transitions and substitutions

Transition rates frequently proposed as basis for substitution
costs

Critics of OMA complain of substitution operations implying
impossible transitions (e.g., Wu)

Even proponents of OMA are sometimes concerned about
�impossible� transitions (e.g., Pollock, 2007)

But substitutions are not transitions, not even a little bit!

substitutions happen across sequences,
D(ABC, ADC) = f (d(B, D)) (similarity of states)
transitions happen within sequences (movement between
states)

77

Sequence analysis for social scientists
Session 3
Substitution costs

Informative transition rates

No logical connection between substitutions and transition
rates

but under certain circumstances transition rates can inform us
about state distances

If state space is a partitioning of an unknown Rn, movement is
random (unstructured), and the probability of a move is
inversely related to its length, then

Distance between states will vary inversely with the transition
rates

However, these conditions usually not met
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Deceptive transiton rates

Example: using voting intentions as a way of de�ning inter
party distances

UK: relatively high Con�LibDem two-way �ows; ditto
Lab�LibDem

But Con�Lab transitions much lower: implies a potentially
incoherent space (non-metric, more below)

d(Con, Lab) > d(Con, LibDem) + d(LibDem, Lab)

Procedure confuses party state space and voter characteristics

Voter polarisation/loyalty is trajectory information, not state
information

Another type of problem: irrelevant distinctions can cause
similar states to have low transition rates

79

Sequence analysis for social scientists
Session 3
Substitution costs

Take �space� seriously

Very useful to think in spatial terms
1 State space as e�cient summary of clustered distribution in Rn

2 State space mapped onto speci�c set of quantitative
dimensions

3 State space de�ned on theoretical grounds

For 1 and 2, explicitly multidimensional, in case 2 dimensions
are explicit

For 1 and 3, we can attempt to recover the implicit dimensions
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Looking at state spaces

Two very simple state spaces:

Single dimension, equally spaced:

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

All states equidistant � n − 1 dimensions

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0
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Structure passes through

State space structure passes through to trajectory space
structure

Distances between states clearly a�ect distances between
trajectories containing high proportions of those states

If d(”A”, ”B”) << d(”A”, ”C”) then D(”..AAAA..”, ”..BBB..”)
will tend to be less than D(”..AAAA..”, ”..CCC..”)

Di�erential distances promote alignment: AADDAAA and
AAADDAA are more likely to be aligned to match the DD if
d(”A”, ”D”) is large
If the state distances are non-metric, the trajectory distances
may also be non-metric (at least between trajectories
consisting of near 100% one state)
Unidimensional states spaces will tend to be re�ected strongly
in 1st principle component of trajectory space

82

Sequence analysis for social scientists
Session 3
Substitution costs

Designing state spaces

Be explicit about state spaces and what distances mean

Think spatially

Choose high or low dimensions, but have your reasons

Simplify state space as far as possible

Drop irrelevant distinctions
Drop longitudinal information: let the sequence encode the
temporal information, make state space cross-sectional
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Dropping temporal information

e.g., Simplify marital status:
Living alone Living with partner

Legally married Separated Married
Not legally married Single, never

married, post-
cohabitation,
divorced

Cohabiting

The sequence will distinguish adequately between the various
�single� states

Parity sequences: Women's annual fertility history

in parity terms: 000112333344444

in birth event terms: 000101100010000
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Costing OM: a tractable problem

Substitution costs make a big di�erence

but largely understandable in operation
and an asset � more meaningful state space, more meaningful
trajectory space

Think spatially! Use data and geometric models

Simplify

Let the sequence do the temporal work
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Alternatives to OM and Hamming

OMA is the dominant but not the only approach

It receives justi�ed and unjusti�ed criticism in terms of its �t
to lifecourse data

One axis of critique relates to costs: Dynamic Hamming
sidesteps this

Another relates to whether token strings are:

a good way to represent life-course processes (continuous time,
discrete state space, infrequent transitions)
and whether operations on token-strings match sociological
di�erence
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Alternatives

Hollister's LOM and my OMv attempt to �x OM by paying
attention to the local context of operations (but fail:
non-metric)

TWED "warps time" and has more sensitivity to spell order

Lesnard's Dynamic Hamming estimates substitution costs from
the data and does no alignment

Elzinga's duration-weighted combinatorial measures pay strict
attention to spell order and duration

See Halpin (2014b) for a discussion

See Studer and Ritschard (2014) for a comprehensive review of
distance measures

87

Sequence analysis for social scientists
Session 4
Alternatives

An aside: Metric spaces

To treat a dissimilarity as a distance, it must be compatible
with a "metric space"

Everyday 3D Euclidean space is metric, but we can relax many
of the characteristics of Euclidean space and still think in
spatial terms, using e.g., cluster analysis and MDS

Four conditions are required

d(x , x) = 0; identity
d(x , y) ≥ 0; non-negativity
d(x , y) = d(y , x); symmetry
d(x , y) ≤ d(x , z) + d(z , y); the "triangle inequality"

LOM and OMv do not satisfy the triangle inequality
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Dynamic Hamming

Dynamic Hamming takes a completely di�erent slant: no
alignment

Similarity at the same time only, where similarity is de�ned by
time-dependent transition patterns

While changes are common di�erences matter less
While change is rare, di�erences are more marked

Naturally appropriate for "clock" time, e.g., daily, weekly,
annual patterns

Less obviously appropriate for "developmental" time, where a
common feature is people taking the same route at di�erent
speeds

Lesnard (2006); Lesnard and de Saint Pol (2009); Lesnard
(2010), implemented by him (seqcomp), in Traminer and SADI
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Combinatorial approaches

Combinatorial methods are a completely di�erent approach to
sequence comparison

Proposed by Elzinga (2003, 2005)

Compare sequences in terms of common �subsequences� rather
than string-edits
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Counting sequences

The sequence ABC has as subsequences:

the null (empty) string
A, B and C

AB, AC and BC

and ABC itself

A sequence of length l has 2l subsequences

If elements are repeated not all subsequences are distinct
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Combinatorial measures

Elzinga has proposed a number of measures that count
subsequences

Longest common subsequence
Number of common subsequences
Number of matching subsequences

A completely di�erent logic, combinatorial rather than
string-editing: "the same states in the same order"

One particularly attractive approach: number of matching
spell-subsequences weighted by duration (I refer to it as "X/t")
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Warping time

What of time-warping?

Abbott and Hrycak (1990) use the term to suggest non-linear
time scales

OMv �warps time� by weighting it di�erently in di�erent spells

In turn informed by Sanko� and Kruskal (1983), Time Warps,

String Edits and Macromolecules

But time-warping refer to a speci�c set of algorithms
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Time warping algorithms

Formally, time warping is a family of algorithms that do
�continuous time-series to time-series correction� while OM et

al do �string to string correction� (Marteau, 2007)

Focus on comparing pairs of continuous-time high-dimensional
time-series in Rn

Operates by locally compressing or expanding the time scale of
one trajectory to minimise the distance to the other

Distance is usually Euclidean in Rn or other simple distance
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TWED: Matching 1D series
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TWED: Compress and expand
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TW algorithms

TW used widely: was used for speech recognition, signature
veri�cation, other machine learning tasks

Typically used to match a high-dimensional time-series to a
�dictionary� of standard elements

Conceptually it is a continuous time approach but
implementations must be discrete � sampling or periodic
summaries:

e.g., sound sampled at 41 kHz
rainfall summarised daily
employment history reported monthly

Kruskal and Liberman (1983) show that the continuous time
logic can be faithfully implemented with discretised series
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Discrete time-warping

AAABBCC

ABCCCCC
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TW with sti�ness penalty: TWED

Violation of the triangle inequality is due to TW usually having
no cost to expansion or compression, only to the residual
point-by-point distance

Marteau (2007, 2008) proposes a TW algorithm that has a
�sti�ness� penalty

Satis�es the triangle inequality

Can be programmed very similarly to OM (recursive algorithm)

Sti�ness penalty like but not like indel cost �
squeezing/stretching, not inserting/deleting

Point-to-point distance just like substitution
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TWED: Recursive algorithm

TW distance, δ(Ap,Bq) =

min





δ(Ap−1,Bq) + dLP(ap, ap−1) + γdLP(tap , tap−1) +λ
δ(Ap−1,Bq−1) + dLP(ap, bq) + γdLP(tap , tbq)
δ(Ap,Bq−1) + dLP(bq, bq−1) + γdLP(tbq , tbq−1) +λ

(Marteau, 2007)
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MDS/Cluster with TWED

−
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0
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−.4 −.2 0 .2 .4

tmds1

(See OM version)
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TWED attractive

TWED has a completely di�erent "narrative" from OM:
warping time rather than editing token strings

Nonetheless, gives results that are not radically di�erent

More noticeable di�erences for more complex sequences

For high values of λ and γ, tends to yield Hamming distance

For very low values of λ and γ, closer (but still not that close)
to X/t

Distribution in sequence space more like OM than X/t
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Code to run all the measures

use bsseq

set matsize 1000

matrix sm = (0,1,2,3\1,0,1,2\2,1,0,1\3,2,1,0)

matrix fl = (0,1,1,1\1,0,1,1\1,1,0,1\1,1,1,0)

hamming state1-state72, subs(sm) pwd(ham)

oma state1-state72, subs(sm) indel(1.5) pwd(om) len(72)

twed state1-state72, subs(sm) nu(0.5) lambda(0.5) pwd(twd) len(72)

hamming state1-state72, subs(fl) pwd(haf)

oma state1-state72, subs(fl) indel(0.5) pwd(of) len(72)

twed state1-state72, subs(fl) nu(0.5) lambda(0.5) pwd(twf) len(72)

dynhamming state1-state72, pwd(dyn)

preserve

combinprep, state(state) length(l) nspells(nsp) idvar(pid)

combinadd state1-l`r(maxspells)', pws(xtd) nsp(nsp) nstates(`r(nels)') rtype(d)

restore
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Hamming, linear matrix
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OM, linear matrix

105

Sequence analysis for social scientists
Session 4
Comparing the measures, BSSEQ

TWED, linear matrix

106

Sequence analysis for social scientists
Session 4
Comparing the measures, BSSEQ

Hamming, �at matrix

107



Sequence analysis for social scientists
Session 4
Comparing the measures, BSSEQ

OM, �at matrix
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TWED, �at matrix
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Dynamic Hamming
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X/t

111

Sequence analysis for social scientists
Session 4
SA and further analysis

SA and further analysis

With pairwise distances or a cluster solution we can move on
to conventional analysis:

Explain the clusters: who goes where?
Predict from the clusters: do they have consequences for the
future?

Approaches: tabular, ANOVA, regression, logit

Using clusters, MDS dimensions or other summaries of the
distances
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Explaining cluster membership, MVAD data

. tab g8 funemp, chi . tab g8 gcse5eq, chi

| funemp | gcse5eq
g8 | 0 1 | Total g8 | 0 1 | Total

--------+----------------------+---------- ---------+----------------------+----------
1 | 13.28 11.97 | 13.06 1 | 17.26 5.77 | 13.06
2 | 22.52 24.79 | 22.89 2 | 29.87 10.77 | 22.89
3 | 9.41 5.13 | 8.71 3 | 2.21 20.00 | 8.71
4 | 20.84 18.80 | 20.51 4 | 20.80 20.00 | 20.51
5 | 8.24 17.09 | 9.69 5 | 13.05 3.85 | 9.69
6 | 3.03 10.26 | 4.21 6 | 5.75 1.54 | 4.21
7 | 6.89 5.13 | 6.60 7 | 6.64 6.54 | 6.60
8 | 15.80 6.84 | 14.33 8 | 4.42 31.54 | 14.33

--------+----------------------+---------- ---------+----------------------+----------
Total | 100.00 100.00 | 100.00 Total | 452 260 | 712

Pearson chi2(7) = 28.5978 Pr = 0.000 Pearson chi2(7) = 209.0925 Pr = 0.000
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Association between covariates and clustering

Where we have outcome variables, we may want to see how
well they are predicted by the cluster solution

Here one question is whether the cluster solution has
additional explanatory power over and above simple summaries
such as cumulated duration

Example using Mothers' data

use sequence analysis/clustering of �rst 48 months to predict
working in month 72
Nested model test: does cluster solution have predictive power
after taking account of cumulated duration and state in month
48
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Stata code

use bsseq

matrix subs = (0,1,2,3\ ///

1,0,1,2\ ///

2,1,0,1\ ///

3,2,1,0)

oma state1-state48, subs(subs) indel(1.5) pwd(pwd) len(48)

clustermat wards pwd, add

cluster gen g8=groups(8)

cumuldur state1-state48, cdstub(cd) nstates(4)

gen working = inlist(state72,1,2)

logit working cd* i.state48

est store base

logit working cd* i.state48 i.g8

lrtest base
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Beating cumulated duration

Logistic regression Number of obs = 940
LR chi2(13) = 692.23

Log likelihood = -304.3196 Pseudo R2 = 0.5321
------------------------------------------------------------------------------

working | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

cd1 | .0567982 .0303362 1.87 0.061 -.0026595 .116256
cd2 | .0448847 .0257596 1.74 0.081 -.0056033 .0953726
cd3 | -.0250336 .023572 -1.06 0.288 -.0712338 .0211667
cd4 | 0 (omitted)

|
state48 |

Part time.. | -.6516304 .4752393 -1.37 0.170 -1.583082 .2798214
Unemployed | -1.42019 .7612029 -1.87 0.062 -2.91212 .0717405

Non-emplo~d | -1.91716 .476274 -4.03 0.000 -2.85064 -.9836802
|

g8 |
2 | 1.383836 1.482716 0.93 0.351 -1.522235 4.289906
3 | .9581697 .8137579 1.18 0.239 -.6367663 2.553106
4 | 1.408097 .5815145 2.42 0.015 .268349 2.547844
5 | 1.633173 .746909 2.19 0.029 .1692583 3.097088
6 | .6102612 1.210328 0.50 0.614 -1.761939 2.982461
7 | 1.660886 .8701866 1.91 0.056 -.0446485 3.36642
8 | 2.953757 1.329375 2.22 0.026 .3482298 5.559284

_cons | -1.357889 .5485839 -2.48 0.013 -2.433093 -.2826838
------------------------------------------------------------------------------

. lrtest base
Likelihood-ratio test LR chi2(7) = 21.78
(Assumption: base nested in .) Prob > chi2 = 0.0028
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MDS and modelling

It may make sense to model with the MDS dimensions

set matsize 1000

mdsmat pwd, dim(3)

matrix dim=e(Y)

svmat dim

logit working cd* i.state48 dim*

lrtest base
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MDS dimensions and model

Logistic regression Number of obs = 940
LR chi2(9) = 680.39
Prob > chi2 = 0.0000

Log likelihood = -310.23558 Pseudo R2 = 0.5230

------------------------------------------------------------------------------
working | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cd1 | -.2089523 .7153776 -0.29 0.770 -1.611067 1.193162
cd2 | -.066477 .4688012 -0.14 0.887 -.9853105 .8523564
cd3 | -.0511365 .2315928 -0.22 0.825 -.5050501 .4027771
cd4 | 0 (omitted)

|
state48 |

Part time.. | -1.15598 .4838525 -2.39 0.017 -2.104314 -.2076468
Unemployed | -1.808753 .7752256 -2.33 0.020 -3.328167 -.2893387

Non-emplo~d | -2.050996 .5259212 -3.90 0.000 -3.081782 -1.020209
|

dim1 | -4.520051 11.43535 -0.40 0.693 -26.93293 17.89283
dim2 | 1.239288 .6851007 1.81 0.070 -.1034849 2.58206
dim3 | -1.502881 .567547 -2.65 0.008 -2.615252 -.390509

_cons | 5.161245 15.96924 0.32 0.747 -26.13789 36.46038
------------------------------------------------------------------------------

. lrtest base

Likelihood-ratio test LR chi2(3) = 9.94
(Assumption: base nested in .) Prob > chi2 = 0.0191
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MDS correlated?

. corr cd* dim*
(obs=940)

| cd1 cd2 cd3 cd4 dim1 dim2 dim3
-------------+---------------------------------------------------------------

cd1 | 1.0000
cd2 | -0.2586 1.0000
cd3 | -0.1879 -0.0914 1.0000
cd4 | -0.7082 -0.4017 -0.1321 1.0000

dim1 | -0.8801 -0.2130 0.1039 0.9471 1.0000
dim2 | 0.3202 -0.5932 -0.2478 0.1919 -0.0000 1.0000
dim3 | -0.1299 0.1803 0.3282 -0.1219 0.0000 -0.0000 1.0000
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Studer et al's discrepancy

Studer et al. (2011) propose a method for treating distances
matrices analogously to SS in regression and ANOVA

The average distance to the centre of the whole matrix is the
analogue of total sum of squares

With a grouping variable, the distance to the centre for each
groups is the residual sum of squares

This allows a pseudo-R2 and a pseudo-F test

Permutation is used to approximate the sampling distribution
of pseudo-F
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Discrepancy and MVAD

use mvad

matrix md = (0, 1, 1, 2, 1, 3\ ///

1, 0, 1, 2, 1, 3\ ///

1, 1, 0, 2, 1, 2\ ///

2, 2, 2, 0, 1, 1\ ///

1, 1, 1, 1, 0, 2\ ///

3, 3, 2, 1, 2, 0)

matrix rownames md = E F H S T U

matrix colnames md = E F H S T U

set matsize 1000

oma state*, subs(md) indel(1.5) pwd(oma) length(72)

discrepancy funemp, dist(oma) idvar(id) niter(1000) dcg(d2c)
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Discrepancy results

. discrepancy funemp, dist(oma) idvar(id) niter(100) dcg(d2c)

Discrepancy based R2 and F, 100 permutations for p-value

| pseudo R2 pseudo F p-value

-------------+---------------------------------

funemp | .007956 5.694094 .17

----------------------------------------------------------

funemp | N(d2c) min(d2c) mean(d2c) max(d2c)

----------+-----------------------------------------------

0 | 595 .2215114 .463736 1.919831

1 | 117 .2757618 .5502117 1.518995

----------------------------------------------------------
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Multiple domains

Lifecourse analysis recognises the interrelatedness of domains

Somewhat hard to handle in many approaches: a potential
strength of SA?

In practice, not very well developed; most research on single
domains

Some work (Dijkstra and Taris (1995), Pollock (2007),
Gauthier et al. (2010))
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Combined distance versus combining distances

How to proceed?

Conduct parallel analyses and combine results?

Combine domains into a single variable?

The former is easy but will be less sensitive to the
synchronisation of domains

The latter involves a large state space and problem in de�ning
distances

However, better sensitivity to cross-domain features makes it
attractive
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Combine by cross-tabulation

The simplest approach is to create a new state space that is
the cross-tabulation of the two (or more) domains

This yields a large number of states, one for each combination

How then to determine costs?
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Determining costs

Simplest strategy is to sum across the domains

In short, dAB
ik,jl = dA

i ,j + dB
k,l

There may be justi�cation for imposing other patterns, for
instance,

imposing a ceiling
changing dA for certain values in domain B
weighting the domains di�erentially

Note that with two di�erent substitution matrices it can be
di�cult to weight equally

equalise by max substitution cost?
equalise by average substitution cost?
equalise by average substitution cost weighted by occurrence in
the data?
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Implementation

We take a simple case (four parity levels and �ve employment
statuses)
First step is to create the interaction or crosstabulation of the
states

// Reshape long to work on all months simultaneously

reshape long parx emp, i(pid) j(month)

// Create a variable that is the interaction of the two

gen cross = emp+(parx-1)*5

// Verify the state interaction variable

tab cross

table parx emp, c(mean cross)

// Back to wide, fix the variable order

reshape wide parx emp cross, i(pid) j(month)

order pid parx* emp* cross*
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Create the substitution cost matrix

We have two substitution cost matrices, 4x4 and 5x5:

matrix spar = (0,1,2,3\ /// matrix semp = (0,1,2,3,3\ ///

1,0,1,2\ /// 1,0,1,2,2\ ///

2,1,0,1\ /// 2,1,0,1,1\ ///

3,2,1,0) 3,2,1,0,1\ ///

3,2,1,1,0)

Both have a max of 3, otherwise perhaps divide each by its max
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Combine into 20x20

// Use Mata to combine the two matrices

mata:

spar = st_matrix("spar")

semp = st_matrix("semp")

// each element becomes a 5x5 block

sparx = spar # J(1,5,1) # J(5,1,1)

// replicate the 5x5 matrix 4x4 times

sempx = semp

for (i=2; i<=4; i++) {

sempx = sempx,semp

}

sempxy = sempx

for (i=2; i<=4; i++) {

sempxy = sempxy\sempx

}

// The combined matrix is the element-wise sum; return it from Mata to Stata

st_matrix("mcsa", sempxy :+ sparx)

end
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The combined matrix

symmetric mcsa[20,20]

c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12c13c14c15c16c17c18c19c20

r1 0

r2 1 0

r3 2 1 0

r4 3 2 1 0

r5 3 2 1 1 0

r6 1 2 3 4 4 0

r7 2 1 2 3 3 1 0

r8 3 2 1 2 2 2 1 0

r9 4 3 2 1 2 3 2 1 0

r10 4 3 2 2 1 3 2 1 1 0

r11 2 3 4 5 5 1 2 3 4 4 0

r12 3 2 3 4 4 2 1 2 3 3 1 0

r13 4 3 2 3 3 3 2 1 2 2 2 1 0

r14 5 4 3 2 3 4 3 2 1 2 3 2 1 0

r15 5 4 3 3 2 4 3 2 2 1 3 2 1 1 0

r16 3 4 5 6 6 2 3 4 5 5 1 2 3 4 4 0

r17 4 3 4 5 5 3 2 3 4 4 2 1 2 3 3 1 0

r18 5 4 3 4 4 4 3 2 3 3 3 2 1 2 2 2 1 0

r19 6 5 4 3 4 5 4 3 2 3 4 3 2 1 2 3 2 1 0

r20 6 5 4 4 3 5 4 3 3 2 4 3 2 2 1 3 2 1 1 0
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Dyadic SA

SA typically uses all-pair-wise distances, or distance to special
cases

Dyadic SA is also useful: distance between a speci�c pair

Couple time-diaries
Couple labour market histories
Mother�daughter fertility histories, etc.
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Research questions

Allows testing hypotheses about dyadic similarity

Are couples' time-use patterns or life-course histories aligned
Are fertility patterns inherited?
Under what conditions are dyadic distances smaller or larger?
How do couples arrange joint lifecourses?
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Similarity and di�erence

Couples may coordinate their lives under very di�erent gender
constraints

Fertility patterns may be similar within the constraints of
di�erent cohort patterns of fertility

The relationship between sequences may not be one of
replication

some daughters may completely reject their mother's fertility
pattern
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Literature

O�-scheduling (Lesnard, 2008) Dyadic in concept but actually
creates combined sequences

Robette et al. (2015): Mother�daughter labour market careers

Fasang and Raab (2014): Intergenerational fertility; notes that
focus on similarity ignores heterogeneity

Raab et al. (2014): Jun 13 2015 15:18:18 Sibling dyads,
fertility
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Practical issues

We can calculate dyadic distances with standard software

For e�ciency it might better to just calculate dyads' distances

But the cost of calculating all pairs is relatively small, and
o�ers an advantage:

Compare dyadic distances with distances to all others
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Strategy: Begin with dyad-ordered data

Dyad 1 1 2 2 3 3 4 4
Type M D M D M D M D

M 1 11 12 13 14 15 16 17 18
D 1 21 22 23 24 25 26 27 28
M 2 31 32 33 34 35 36 37 38
D 2 41 42 43 44 45 46 47 48
M 3 51 52 53 54 55 56 57 58
D 3 61 62 63 64 65 66 67 68
M 4 71 72 73 74 75 76 77 78
D 4 81 82 83 84 85 86 87 88
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Sort by types

Dyad 1 2 3 4 1 2 3 4
Type D D D D M M M M

D 1 22 24 26 28 21 23 25 27
D 2 42 44 46 48 41 43 45 47
D 3 62 64 66 68 61 63 65 67
D 4 82 84 86 88 81 83 85 87

M 1 12 14 16 18 11 13 15 17
M 2 32 34 36 38 31 33 35 37
M 3 52 54 56 58 51 53 55 57
M 4 72 74 76 78 71 73 75 77
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Submatrices

Two submatrices, with distances from each mother to each
daughter (and transpose)

Distance from mother to her own daughter on diagonal (and
transpose)

Use distance from mother to all daughters to assess whether
distance to own daughter is unusual
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Submatrices

Pair 1 2 3 4
Type M M M M

D 1 21 23 25 27
D 2 41 43 45 47
D 3 61 63 65 67
D 4 81 83 85 87

Pair 1 2 3 4
Type D D D D

M 1 12 14 16 18
M 2 32 34 36 38
M 3 52 54 56 58
M 4 72 74 76 78
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Extract diagonals and other information

The main info is on the diagonals: the dyad distances
(repeated across the two submatrices since distance is
symmetric)

Other summaries are also interesting

mean distance of each daughter to all mothers (and vice versa)
variance, standard deviation of this distance
z-score of dyad distance relative to all distances
rank of dyad distance compared with all distances
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