subtables, each consisting of an adjacent pair. Thus we end up
  with a table with one binary variable, and an extra dimension
  with 
 categories. That is, an 
 table becomes a
  
 table.
   c1 c2 c3
r1 11 12 13
r2 21 22 23
r3 31 32 33
r4 41 32 43
becomes
      c1 c2 c3
l1 r1 11 12 13
   r1 21 22 23
l2 r1 21 22 23
   r1 31 32 33
l3 r1 31 32 33
   r1 41 32 43
1 0    281     becomes    1 0 0    281
1 62.5 225                1 0 62.5 225
1 125  283                1 0 125  283
1 250  202                1 0 250  202
1 500  9                  1 0 500  9  
2 0    1                  1 1 0    1  
2 62.5 0                  1 1 62.5 0  
2 125  7                  1 1 125  7  
2 250  59                 1 1 250  59 
2 500  132                1 1 500  132
3 0    15                 2 0 0    1  
3 62.5 17                 2 0 62.5 0  
3 125  22                 2 0 125  7  
3 250  38                 2 0 250  59 
3 500  144                2 0 500  132
                          2 1 0    15 
                          2 1 62.5 17 
                          2 1 125  22 
                          2 1 250  38 
                          2 1 500  144
treating outcome (normal, abnormal, dead) as ordinal. The first
column is the new variable with 
 categories, indexing the
new pairs. This can usually be done `by hand' in a text editor or a
spreadsheet, since tables are usually small enough to be convenient.
GENLOG
  outcome  BY  subtab with dose2
  /MODEL=MULTINOMIAL
  /PRINT estim   /PLOT none
  /DESIGN outcome outcome*dose2 
          outcome*subtab.
where subtab is the index of the subtable. 
/DESIGN = outcome outcome*dose2 
          outcome*subtab
          outcome*dose2*subtab.
will allow separate effects. 
    DOSE  OUTCOME    COUNT   SUBTAB
    0        1      281        1   * row 1
   62.5      1      225        1   
  125        1      283        1   
  250        1      202        1   
  500        1        9        1   
    0        2        1        1   * row 2
   62.5      2        0        1   
  125        2        7        1   
  250        2       59        1   
  500        2      132        1   
    0        1      282        2   * row 1 + row 2
   62.5      1      225        2   
  125        1      290        2   
  250        1      261        2   
  500        1      141        2   
    0        2       15        2   * row 3
   62.5      2       17        2   
  125        2       22        2   
  250        2       38        2   
  500        2      144        2
 combined. The file
  mice-auto.sps
gives an example of doing this automatically within SPSS.
Loglinear Analysis Unit 8
![]()  | 
  | ||||||||