

SO5032 Lecture 9

Brendan Halpin April 7, 2024

Outline

SO5032 Lecture 9

SO5032 Lecture 9

Logistic regression

Outline

Today we introduce logistic regression: for binary outcomes

See Agresti Ch 15 Sec 1.

-

Binary outcomes and regression

- OLS (linear regression) requires an interval dependent variable
- Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials

Problems with OLS

- · Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- · Particular difficulties with multiple explanatory variables
- · Nonetheless still often used

Linear Probability Model

• If we use OLS with binary outcomes, it is called "linear probability model":

$$Pr(Y = 1) = a + bX$$

- data is 0/1, prediction is probability
- Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too bad

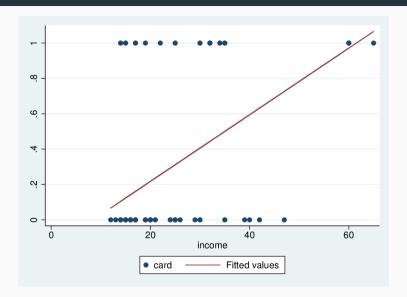
E

Credit card example

. reg card income

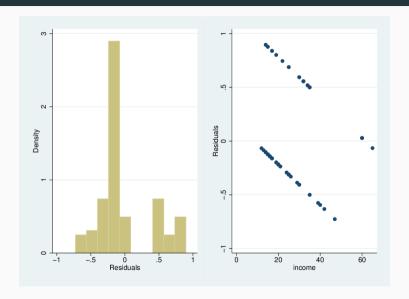
Source	SS	df	MS	Num	ber of ob	s =	100
				— F(1	, 98)	=	34.38
Model	5.55556122	1	5.555561	22 Pro	b > F	=	0.0000
Residual	15.8344388	98	.1615759	06 R-s	quared	=	0.2597
				— Adj	R-square	d =	0.2522
Total	21.39	99	.2160606	06 Roo	t MSE	=	.40197
	<u> </u>						
card	Coef.	Std. Err	t	P> t	[95%	Conf.	Interval]
income	.0188458	.003214	5.86	0.000	.0124	678	. 0252238
_cons	1594495	.089584	-1.78	0.078	3372	261	.018327

Credit card example



-

Credit card example

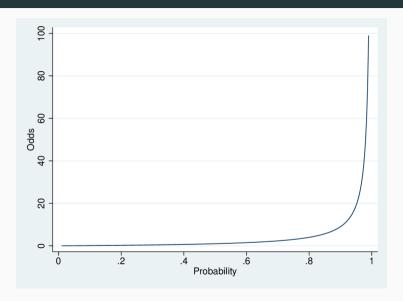


Logistic transformation

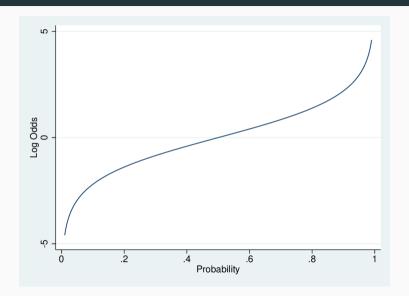
- Probability is bounded [0 : 1]
- · OLS predicted value is unbounded
- How to transform probability to $-\infty : \infty$ range?
- Odds: $\frac{p}{1-p}$ range is 0 : ∞
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty : \infty$

Ç

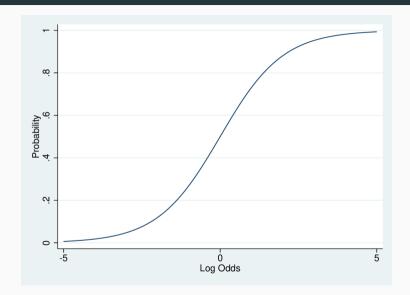
Probability to odds



Probability to log-odds



Rotated: the "S-shaped" curve



Logistic regression

• Logistic regression uses this as the dependent variable:

$$\log\left(\frac{p}{1-p}\right) = a + bX$$

Alternatives

We can look at this in three ways

In terms of log-odds:

$$\log\left(\frac{Pr(Y=1)}{1-Pr(Y=1)}\right)=a+bX$$

In terms of odds:

$$\frac{Pr(Y=1)}{1-Pr(Y=1)}=e^{a+bX}$$

In terms of probability:

$$Pr(Y = 1) = \frac{e^{a+bX}}{1 + e^{a+bX}} = \frac{1}{1 + e^{-a-bX}}$$

Parameters

- The b parameter is the effect of a unit change in X on $\log \left(\frac{Pr(Y=1)}{1-Pr(Y=1)} \right)$
- This implies a multiplicative change of e^b in $\frac{Pr(Y=1)}{1-Pr(Y=1)}$, in the Odds
- Thus an odds ratio
- But the effect of b on P depends on the level of b

Credit card logistic regression

```
. logit card income
```

```
Iteration 0: log likelihood = -61.910066
Iteration 1: log likelihood = -48.707265
Iteration 2: log likelihood = -48.613215
Iteration 3: log likelihood = -48.61304
Iteration 4: log likelihood = -48.61304
```

Logistic regression

-	LR chi2(1)	=	26.59
	Prob > chi2	=	0.0000
g likelihood = -48.61304	Pseudo R2	=	0.2148

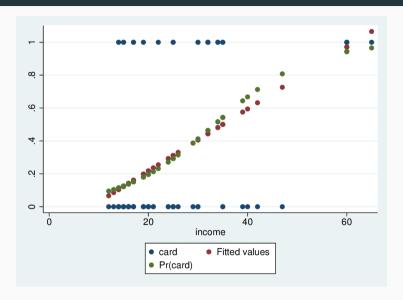
Number of obs

100

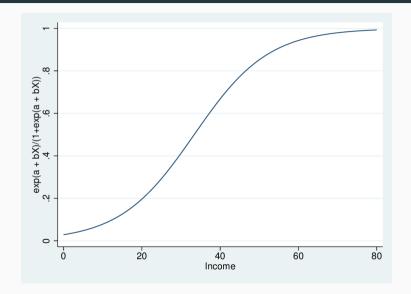
Log

card	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
income	.1054089	.0261574	4.03	0.000	.0541413	.1566765
_cons	-3.517947	.7103358	-4.95		-4.910179	-2.125714

Credit card logistic regression



Sigmoid curve from a+bX



Calculating predicted probabilities by hand

- We can calculate the predicted probability for any combination of values of the independent variables
- First, plug them into the a + bX part to get the predicted log-odds
- Then take the anti-log of the log-odds to get the odds
- Then odds/(1+odds) gives us the probability

Calculating predicted probabilities

- Example: log(odds) = 0.25 + 0.12X
- Predict for X == 10
 - Predicted log-odds = 0.25 + 0.12*10 = 1.45
 - Predicted odds = $e^{1.45}$ = 4.263
 - Predicted probability = 4.263/(1 + 4.263) = 0.810

Web applet for practicing

https://teaching.sociology.ul.ie:/apps/logabx/

