

SO5032 Lecture 9

Brendan Halpin April 3, 2024

SO5032 Lecture 9

1

SO5032 Lecture 9

Logistic regression

Today we introduce logistic regression: for binary outcomes See Agresti Ch 15 Sec 1.

- OLS (linear regression) requires an interval dependent variable
- · Binary or "yes/no" dependent variables are not suitable
- Nor are rates, e.g., n successes out of m trials

- · Errors are distinctly not normal
- While predicted value can be read as a probability, can depart from 0:1 range
- · Particular difficulties with multiple explanatory variables
- · Nonetheless still often used

• If we use OLS with binary outcomes, it is called "linear probability model":

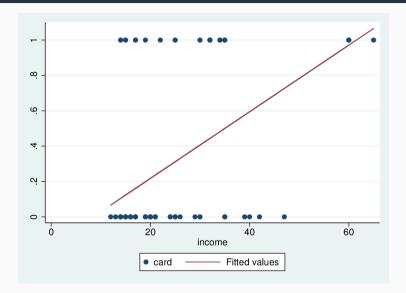
Pr(Y = 1) = a + bX

- data is 0/1, prediction is probability
- Assumptions violated, but if predicted probabilities in range 0.2–0.8, not too bad

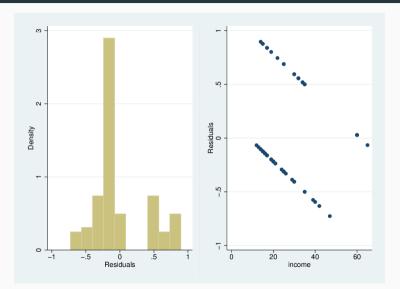
. reg card income

Source	SS	df	MS	Numbe	r of obs	; =	100
				- F(1,	98)	=	34.38
Model	5.55556122	1	5.55556122	2 Prob	> F	=	0.0000
Residual	15.8344388	98	.161575906	6 R-squ	ared	=	0.2597
				- AdjR	-squared	i =	0.2522
Total	21.39	99	.216060606	3 Root 1	MSE	=	.40197
card	Coef.	Std. Err.	t	P> t	[95% 0	Conf.	Interval]
income	.0188458	.003214	5.86	0.000	.01246	678	.0252238
_cons	1594495	.089584	-1.78	0.078	33722	261	.018327

Credit card example

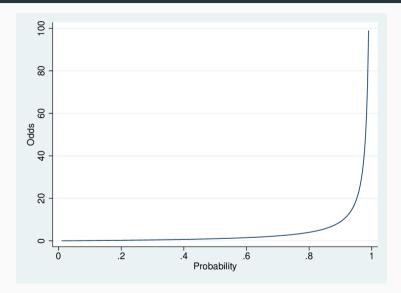


Credit card example

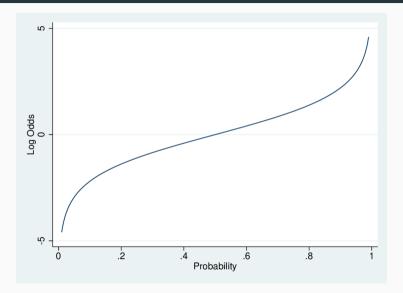


- Probability is bounded [0 : 1]
- OLS predicted value is unbounded
- How to transform probability to $-\infty:\infty$ range?
- Odds: $\frac{p}{1-p}$ range is 0 : ∞
- Log of odds: $\log \frac{p}{1-p}$ has range $-\infty : \infty$

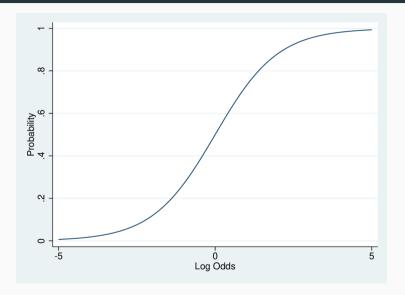
Probability to odds



Probability to log-odds



Rotated: the "S-shaped" curve



• Logistic regression uses this as the dependent variable:

$$\log\left(\frac{p}{1-p}\right) = a + bX$$

Alternatives

We can look at this in three ways

• In terms of log-odds:

$$\log\left(\frac{Pr(Y=1)}{1-Pr(Y=1)}\right) = a + bX$$

· In terms of odds:

$$\frac{\Pr(Y=1)}{1-\Pr(Y=1)}=e^{a+b\lambda}$$

• In terms of probability:

$$Pr(Y = 1) = \frac{e^{a+bX}}{1+e^{a+bX}} = \frac{1}{1+e^{-a-bX}}$$

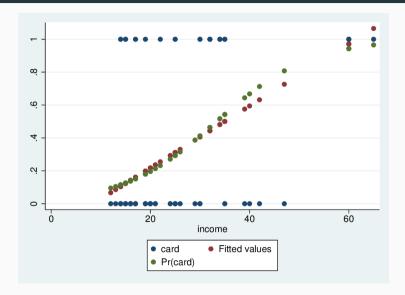
- The b parameter is the effect of a unit change in X on $\log \left(\frac{Pr(Y=1)}{1-Pr(Y=1)} \right)$
- This implies a multiplicative change of e^b in $\frac{Pr(Y=1)}{1-Pr(Y=1)}$, in the Odds
- Thus an odds ratio
- · But the effect of b on P depends on the level of b

Credit card logistic regression

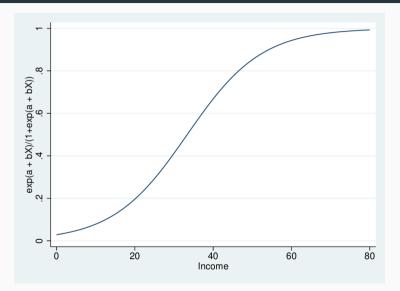
. logit card income

Iteration 0:	log likelih	ood = -61.9	10066				
Iteration 1:	log likelih	pod = -48.7	07265				
Iteration 2:	log likelih	pod = -48.6	13215				
Iteration 3:	log likelih						
Iteration 4:	log likelih						
Logistic regro	Number of obs =		=	100			
				LR chi2	(1)	=	26.59
				Prob >	chi2	=	0.0000
Log likelihood	d = -48.61304	1		Pseudo 1	R2	=	0.2148
card	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
income	.1054089	.0261574	4.03	0.000	.054	1413	. 1566765
_cons	-3.517947	.7103358	-4.95	0.000	-4.910	0179	-2.125714

Credit card logistic regression



Sigmoid curve from a+bX



- We can calculate the predicted probability for any combination of values of the independent variables
- First, plug them into the a + bX part to get the predicted log-odds
- Then take the anti-log of the log-odds to get the odds
- Then odds/(1+odds) gives us the probability

- Example: log(odds) = 0.25 + 0.12X
- Predict for X == 10
 - Predicted log-odds = 0.25 + 0.12*10 = 1.45
 - Predicted odds = $e^{1.45} = 4.263$
 - Predicted probability = 4.263/(1 + 4.263) = 0.810

http://teaching.sociology.ul.ie:3838/logabx/

