SO5032 Lecture 10

Brendan Halpin
April 14, 2024

Outline

SO5032 Lecture 10

SO5032 Lecture 10

Worked example

Housing tenure

- Housing tenure: probability of owning outright, BHPS data

```
. logit ownocc age
Iteration 0: Log likelihood = -8728.6773
Iteration 1: Log likelihood = -7150.2389
Iteration 2: Log likelihood = -7095.7194
Iteration 3: Log likelihood = -7095.5268
Iteration 4: Log likelihood = -7095.5268
```

Logistic regression Number of obs $=14,182$
LR chi2(1) $=3266.30$
Prob > chi2 $=0.0000$
Log likelihood $=-7095.5268$

Number of obs	$=14,182$
LR chi2(1)	$=3266.30$
Prob > chi2	$=0.0000$
Pseudo R2	$=0.1871$

| ownocc | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | .0633183 | .0012705 | 49.84 | 0.000 | .0608281 | .0658084 |
| _cons | -3.974023 | .0697795 | -56.95 | 0.000 | -4.110788 | -3.837258 |

Predictions

Age and home-ownership, BHPS

Predictions

$L O=a+b X$
Odds $=\exp (a+b X)$
P = Odds/(1 + Odds)
X increases by 1 :

- LO by b (additive)
- Odds by e ${ }^{\text {b }}$ (multiplicative)
- P is more complicated

Predicton

- Log-odds

$$
\begin{array}{ll}
X=x & L O(x)=a+b x \\
X=x+1 & L O(x+1)=a+b(x+1)=a+b x+b \\
\text { Difference: } & L O(x+1)-L O(x)=b
\end{array}
$$

Prediction: odds scale

- Odds

$$
\begin{array}{ll}
X=x & \operatorname{Odds}(x)=e^{a+b x}=e^{a} e^{b x} \\
X=x+1 & \operatorname{Odds}(x+1)=e^{a+b(x+1)}=e^{a+b x+b}=e^{a} e^{b x} e^{b} \\
\text { Ratio } & \operatorname{Odds}(x+1) / \operatorname{Odds}(x)=e^{b}
\end{array}
$$

- Hence odds-ratio: if X increases by 1 , OR increases by factor of e^{b}

Odds ratio

- tab univ ownocc			
univ	ownocc 0	1	Total
0	8,335	3,835	12,170 1
Total	9,514	499	

$\mathrm{OR}=(499 / 1514) /$ $(3835 / 8335)=0.7163$
logit ownocc i.univ
Iteration 0: Log likelihood $=-8729.863$ Iteration 1: Log likelihood $=-8710.9025$ Iteration 2: Log likelihood $=-8710.8468$ Iteration 3: Log likelihood $=-8710.8468$

Logistic regression
Number of obs $=14,183$ LR chi2(1) $=38.03$ Prob > chi2 $=0.0000$ Pseudo R2 $=0.0022$

ownocc	Coefficient	Std. err.	z	$P>\|z\|$	$[95 \%$ conf. interval]	
1.univ	-.3336103	.0551837	-6.05	0.000	-.4417683	-.2254522
_cons	-.7762941	.0195124	-39.78	0.000	-.8145376	-.7380506

$$
e^{b}=e^{-.3336103}=0.7163
$$

sociology

Predictions on probability scale

- Effect of X on the probability scale is non-linear
- Low when p is either high or low
- Highest at $p=0.5$, odds $=1, \log -$ odds $=0$
- The steepest slope is at $p=0.5$, with a value of $\frac{\beta}{4}$

Marginal effects

Marginal effects of age on probability at 25, 62.76 and 90

Multiple explanatory variables

```
. logit ownocc age i.univ
Iteration 0: Log likelihood = -8728.6773
Iteration 1: Log likelihood = -7150.3435
Iteration 2: Log likelihood = -7094.4048
Iteration 3: Log likelihood = -7094.1883
Iteration 4: Log likelihood = -7094.1882
Logistic regression Number of obs = 14,182
LR chi2(2) = 3268.98
Prob > chi2 = 0.0000
Log likelihood = -7094.1882
\begin{tabular}{llr} 
Number of obs & \(=14,182\) \\
LR chi2 (2) & \(=3268.98\) \\
Prob > chi2 & \(=0.0000\) \\
Pseudo R2 & \(=0.1873\)
\end{tabular}
\begin{tabular}{r|rrrrrr}
\hline ownocc & Coefficient & Std. err. & \(z\) & \(P>|z|\) & [95\% conf. interval] \\
\hline age & .0636471 & .0012888 & 49.38 & 0.000 & .061121 & .0661731 \\
1.univ & .0999785 & .0608614 & 1.64 & 0.100 & -.0193076 & .2192646 \\
_cons & -4.004807 & .0724889 & -55.25 & 0.000 & -4.146883 & -3.862731 \\
\hline
\end{tabular}
```


SO5032 Lecture 10

Inference

Inference

- In practice, inference is similar to OLS though based on a different logic
- For each explanatory variable, $H_{0}: \beta=0$ is the interesting null
- $z=\frac{\hat{\beta}}{S E}$ is approximately normally distributed (large sample property)
- More usually, the Wald test is used: $\left(\frac{\hat{\beta}}{S E}\right)^{2}$ has a χ^{2} distribution with one degree of freedom

Likelihood ratio tests

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where I_{0} is the likelihood of the model without X_{j}, and I_{1} that with it, the quantity

$$
-2\left(\log \frac{I_{0}}{I_{1}}\right)=-2\left(\log I_{0}-\log I_{1}\right)
$$

is χ^{2} distributed with one degree of freedom

Nested models

- More generally, $-2\left(\log \frac{l_{0}}{T_{1}}\right)$ tests nested models: where model 1 contains all the variables in model 0 , plus m extra ones, it tests the null that all the extra β coefficients are zero (χ^{2} with m df)
- If we compare a model against the null model (no explanatory variables, it tests

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0
$$

- Strong analogy with F test in OLS

Example

. qui logit ownocc age

- est store mod1
- logit ownocc age i.educ
Iteration 0: Log likelihood $=-8728.6773$
Iteration 1: Log likelihood $=-7136.2054$
Iteration 2: Log likelihood $=-7077.7722$
Iteration 3: Log likelihood $=-7077.5203$
Iteration 4: Log likelihood $=-7077.5203$

lrtest mod1

Likelihood-ratio test
Assumption: mod1 nested within

SO5032 Lecture 10

Margins command

"Average Marginal Effect"

- "What would happen to the averege predicted probability if we increased X?"
- For linear regression, increase X by $1=>$ increase by b
- increase X by $10=>$ increase by $b \times 10$
- increase X by 0.1 => increase by $b \times 0.1$
- since it's a straight line
- For AME in logistic we use the slope of the tangent, for each X value
- Average across the observed data
- Gives something like a LPM slope

AME in Stata

. margins, dydx(age)
Average marginal effects
Model VCE: OIM
Expression: Pr(ownocc), predict()
dy/dx wrt: age
age

sociology

SO5032 Lecture 10

Maximum likelihood

Maximum likelihood estimation

- What is this "likelihood"?
- Unlike OLS, logistic regression (and many, many other models) are extimated by maximum likelihood estimation
- In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data
- OLS can be ML estimated, and yields exactly the same results

Iterative search

- Sometimes the values can be chosen analytically
- A likelihood function is written, defining the probability of observing the actual data given parameter estimates
- Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set
- Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations)
- Extremely flexible, allows estimation of a vast range of complex models within a single framework

Likelihood as a quantity

- Either way, a given model yields a specific maximum likelihood for a give data set
- This is a probability, henced bounded [0:1]
- Reported as log-likelihood, hence bounded [- : 0]
- Thus is usually a large negative number
- Where an iterative solution is used, likelihood at each stage is usually reported - normally getting nearer 0 at each step

SO5032 Lecture 10

Tabular data

Tabular data

- If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table
- If we think of it as a table where each cell contains n yeses and $m-n$ noes (n successes out of m trials) we can fit grouped logistic regression
- n successes out of m trials implies a binomial distribution of degree m

$$
\log \frac{n}{m-n}=\alpha+\beta X
$$

- The parameter estimates will be exactly the same as if the data were treated individually

Tabular data and goodness of fit

- But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell
- If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value)
- Where l_{i} is the likelihood of the current model, and I_{s} is the likelihood of the "saturated model" the test statistic is

$$
-2\left(\log \frac{I_{i}}{I_{s}}\right)
$$

- The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table)
- The test has $d f$ of number of settings less number of parameters estimated, and is χ^{2} distributed

Grouped card data

Iteration 0:	Log likelihood $=-27.687962$					
Iteration 1:	Log likelihood $=-27.416557$					
Iteration 2:	Log likelihood $=-27.416501$					
Iteration 3:	Log likelihood $=-27.416501$					
Generalized linear models				Num	of obs	24
Optimization : ML				Res	al df	22
				Sca	parameter	1
Deviance $\quad=39.275792$	$=39.275792$			(1/df) Deviance $=1.785263$		
Pearson $\quad=32.29690239$				$(1 / \mathrm{df})$ Pearson $=1.468041$		
Variance function: $V(u)=u *(1-u / n)$				[Binomial]		
Link function	$: g(u)=\ln (u /(n-u))$			[Logit]		
	$=-27.41650068$			AIC		2.451375
Log likelihood				BIC		-30.64139
credit	Coefficient	$\begin{gathered} \text { OIM } \\ \text { std. err. } \end{gathered}$	z	$P>\|z\|$	[95\% con	interval]
income	. 1054089	. 0261574	4.03	0.000	. 0541413	. 1566765
_cons	-3.517947	. 7103358	-4.95	0.000	-4.910179	-2.125714

sociology

SO5032 Lecture 10

Probit

Alternatives to logistic: probit regression

- The logistic transformation gives us an S-shaped curve relating $a+b X$ to probability
- There are other ways of getting this curve

The Standard Normal: density and CDF

The Standard Normal: density and CDF

Normal Density and Cumulative

Filled-in area is bottom 5\%, below $z=-1.645$

Probit transformation

Card and income: logit

. logit card income
Iteration 0: Log likelihood $=-61.910066$
Iteration 1: Log likelihood $=-48.707265$
Iteration 2: Log likelihood $=-48.613215$
Iteration 3: Log likelihood $=-48.61304$
Iteration 4: Log likelihood $=-48.61304$
Logistic regression

Number of obs	$=$	100
LR chi2 (1)	$=26.59$	
Prob > chi2	$=0.0000$	
Pseudo R2	$=0.2148$	

Log likelihood = -48.61304
Pseudo R2 $=0.2148$

card	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf. interval]	
income	.1054089	.0261574	4.03	0.000	.0541413	.1566765
_cons	-3.517947	.7103358	-4.95	0.000	-4.910179	-2.125714

sociology

Card and income: probit

- probit card income

Iteration 0: Log likelihood $=-61.910066$
Iteration 1: Log likelihood $=-48.59092$
Iteration 2: Log likelihood $=-48.550994$
Iteration 3: Log likelihood $=-48.550978$
Iteration 4: Log likelihood $=-48.550978$
Probit regression

| Number of obs | $=100$ |
| :--- | ---: | ---: |
| LR chi2 (1) | $=26.72$ |
| Prob > chi2 | $=0.0000$ |
| Pseudo R2 | $=0.2158$ |

card	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf. interval]	
income	.0622283	.0141879	4.39	0.000	.0344205	.0900361
_cons	-2.089336	.3821555	-5.47	0.000	-2.838347	-1.340325

sociology \times

Predictions

```
. di exp(-3.517947 +. .1054089*50)/(1 + exp(-3.517947 + .1054089*50))
. }852267
. di normal(-2.089336 + .0622283*50)
. }8466282
```


Card probability

Probit and Logit predictions

Comparison

- Logit estimates are usually about 1.8 times probit
- Predictions are often very close
- Inference are usually the same
- Using the normal distribution is intuitive
- But while log-odds are not intuitive, the link to the simple tabular odds-ratio is attractive

