

Brendan Halpin April 14, 2024

1

Worked example

Housing tenure

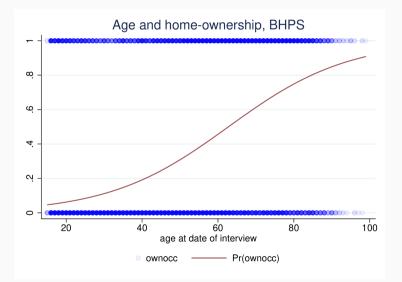
· Housing tenure: probability of owning outright, BHPS data

. logit ownocc age

Iteration 0:	Log likelihood = -8728.6773	
Iteration 1:	Log likelihood = -7150.2389	
Iteration 2:	Log likelihood = -7095.7194	
Iteration 3:	Log likelihood = -7095.5268	
Iteration 4:	Log likelihood = -7095.5268	
Logistic reg	ression	Number of $obs = 14,182$
		LR chi2(1) = 3266.30
		Prob > chi2 = 0.0000
Log likelihoo	od = -7095.5268	Pseudo R2 = 0.1871

ownocc	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age _cons		.0012705 .0697795		0.000	.0608281 -4.110788	.0658084 -3.837258

Predictions



LO = a + bX

- Odds = exp(a + bX)
- P = Odds/(1 + Odds)

X increases by 1:

- LO by b (additive)
- Odds by e^b (multiplicative)
- P is more complicated

Log-odds

$$X = x$$
 $LO(x) = a + bx$
 $X = x+1$
 $LO(x+1) = a + b(x + 1) = a + bx + b$

 Difference:
 $LO(x+1) - LO(x) = b$

• Odds

X = xOdds(x) =
$$e^{a+bx} = e^a e^{bx}$$
X = x+1Odds(x+1) = $e^{a+b(x+1)} = e^{a+bx+b} = e^a e^{bx} e^{bx}$ RatioOdds(x+1)/Odds(x) = e^b

• Hence odds-ratio: if X increases by 1, OR increases by factor of eb

$e^b = e^{-.3336103} = 0.7163$

OR = (499/1514) / (3835/8335) = 0.7163

	ownocc		
univ	0	1	Total
0 1	8,335 1,514	3,835 499	12,170 2,013
Total	9,849	4,334	14,183

. tab univ ownocc

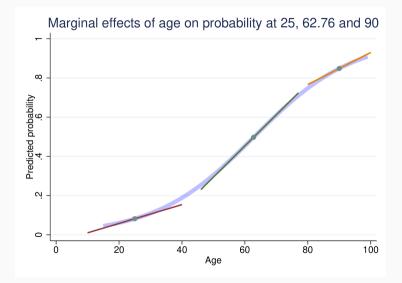
	Log likelihoo Log likelihoo	d = -8710.9	9025			
Iteration 3:	Log likelihoo	d = -8710.8	34 68			
Logistic regre Log likelihood		3			Number of ob LR chi2(1) Prob > chi2 Pseudo R2	= 38.03 = 0.0000
ownocc	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
1.univ	3336103	.0551837	-6.05	0.000	4417683	2254522
_cons	7762941	.0195124	-39.78	0.000	8145376	7380506

. logit ownocc i.univ

Iteration 0: Log likelihood = 9729 969

- · Effect of X on the probability scale is non-linear
- · Low when p is either high or low
- Highest at p = 0.5, odds = 1, log-odds = 0
- The steepest slope is at p = 0.5, with a value of $\frac{\beta}{4}$

Marginal effects



Multiple explanatory variables

```
. logit ownocc age i.univ
```

Log likelihood = -7094.1882

Iteration	0:	Log	likelihood	=	-8728.6773
Iteration	1:	Log	likelihood	=	-7150.3435
Iteration	2:	Log	likelihood	=	-7094.4048
Iteration	3:	Log	likelihood	=	-7094.1883
Iteration	4:	Log	likelihood	=	-7094.1882

Logistic regression

Number of obs	=	14,182
LR chi2(2)	=	3268.98
Prob > chi2	=	0.0000
Pseudo R2	=	0.1873

ownocc	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
age	.0636471	.0012888	49.38	0.000	.061121	.0661731
1.univ	.0999785	.0608614	1.64	0.100	0193076	.2192646
_cons	-4.004807	.0724889	-55.25	0.000	-4.146883	-3.862731

Inference

- · In practice, inference is similar to OLS though based on a different logic
- For each explanatory variable, $H_0: \beta = 0$ is the interesting null
- $z = \frac{\hat{\beta}}{SE}$ is approximately normally distributed (large sample property)
- More usually, the Wald test is used: $\left(\frac{\hat{\beta}}{SE}\right)^2$ has a χ^2 distribution with one degree of freedom

- The "likelihood ratio" test is thought more robust than the Wald test for smaller samples
- Where I_0 is the likelihood of the model without X_j , and I_1 that with it, the quantity

$$-2\left(\log\frac{l_0}{l_1}\right) = -2\left(\log l_0 - \log l_1\right)$$

is χ^2 distributed with one degree of freedom

- More generally, $-2\left(\log \frac{l_0}{l_1}\right)$ tests nested models: where model 1 contains all the variables in model 0, plus *m* extra ones, it tests the null that all the extra β coefficients are zero (χ^2 with *m* df)
- If we compare a model against the null model (no explanatory variables, it tests

$$H_0:\beta_1=\beta_2=\ldots=\beta_k=0$$

Strong analogy with F test in OLS

Example

. qui logit ownocc age									
. est store mo	. est store mod1								
. logit ownoco	. logit ownocc age i.educ								
Iteration 1: Iteration 2: Iteration 3:	<pre>Iteration 0: Log likelihood = -8728.6773 Iteration 1: Log likelihood = -7136.2054 Iteration 2: Log likelihood = -7077.7722 Iteration 3: Log likelihood = -7077.5203 Iteration 4: Log likelihood = -7077.5203</pre>								
Logistic regre	ession				Number of obs	= 14,182			
					LR chi2(3)	= 3302.31			
					Prob > chi2	= 0.0000			
Log likelihood	1 = -7077.5203				Pseudo R2	= 0.1892			
ownocc	Coefficient	Std. err.	z	P> z	[95% conf.	interval]			
ag e	.0652599	. 001 34 33	48.58	0.000	. 0626271	. 0678927			
educ									
Med	. 3041599	.0673504	4.52	0.000	.1721556	.4361642			
Lo	1075582	.0461399	-2.33	0.020	1979907	01 71 257			
_cons	-4.060514	.0730524	-55.58	0.000	-4.203694	-3.917333			

. lrtest modi

Likelihood-ratio test Assumption: mod1 nested within .

1 1 14

Margins command

- "What would happen to the averege predicted probability if we increased X?"
- For linear regression, increase X by 1 => increase by b
 - increase X by $10 \Rightarrow$ increase by $b \times 10$
 - increase X by $0.1 \Rightarrow$ increase by $b \times 0.1$
 - · since it's a straight line
- For AME in logistic we use the slope of the tangent, for each X value
- · Average across the observed data
- · Gives something like a LPM slope


```
. margins, dydx(age)
Average marginal effects
Model VCE: OIM
```

Number of obs = 14,182

```
Expression: Pr(ownocc), predict()
dy/dx wrt: age
```

	I					
	dy/dx	std. err.	z	P> z	[95% conf.	interval]
age	.0104836	.0001382	75.84	0.000	.0102126	.0107545

Maximum likelihood

- What is this "likelihood"?
- Unlike OLS, logistic regression (and many, many other models) are extimated by *maximum likelihood estimation*
- In general this works by choosing values for the parameter estimates which maximise the probability (likelihood) of observing the actual data
- OLS can be ML estimated, and yields exactly the same results

- Sometimes the values can be chosen analytically
 - A likelihood function is written, defining the probability of observing the actual data given parameter estimates
 - Differential calculus derives the values of the parameters that maximise the likelihood, for a given data set
- Often, such "closed form solutions" are not possible, and the values for the parameters are chosen by a systematic computerised search (multiple iterations)
- Extremely flexible, allows estimation of a vast range of complex models within a single framework

- Either way, a given model yields a specific maximum likelihood for a give data set
- This is a probability, henced bounded [0 : 1]
- Reported as log-likelihood, hence bounded $[-\infty:\mathbf{0}]$
- Thus is usually a large negative number
- Where an iterative solution is used, likelihood at each stage is usually reported *normally* getting nearer 0 at each step

Tabular data

- If all the explanatory variables are categorical (or have few fixed values) your data set can be represented as a table
- If we think of it as a table where each cell contains n yeses and m n noes (n successes out of m trials) we can fit grouped logistic regression
- *n* successes out of *m* trials implies a binomial distribution of degree *m*

$$\log \frac{n}{m-n} = \alpha + \beta X$$

• The parameter estimates will be exactly the same as if the data were treated individually

Tabular data and goodness of fit

- But unlike with individual data, we can calculate goodness of fit, by relating observed successes to predicted in each cell
- If these are close we cannot reject the null hypothesis that the model is incorrect (i.e., you want a high p-value)
- Where I_i is the likelihood of the current model, and I_s is the likelihood of the "saturated model" the test statistic is

$$-2\left(\log\frac{l_i}{l_s}\right)$$

- The saturated model predicts perfectly and has as many parameters as there are "settings" (cells in the table)
- The test has *df* of number of settings less number of parameters estimated, and is χ^2 distributed

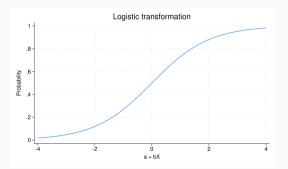
Grouped card data

```
. glm credit income, family(binomial n)
Iteration 0: Log likelihood = -27.687962
Iteration 1: Log likelihood = -27.416557
Iteration 2: Log likelihood = -27.416501
Iteration 3: Log likelihood = -27,416501
Generalized linear models
                                                  Number of obs =
                                                                            24
                                                  Residual df
Optimization
                : ML
                                                                            22
                                                                  =
                                                  Scale parameter =
Deviance
                 -
                      39.275792
                                                  (1/df) Deviance =
                                                                      1.785263
Pearson
                 = 32,29690239
                                                  (1/df) Pearson =
                                                                      1.468041
Variance function: V(u) = u*(1-u/n)
                                                  [Binomial]
Link function : g(u) = \ln(u/(n-u))
                                                  [Logit]
                                                  AIC
                                                                      2.451375
                                                                  =
Log likelihood = -27.41650068
                                                  BIC
                                                                  = -30.64139
                               0 T M
               Coefficient std. err.
                                                P> |z|
                                                          [95% conf. interval]
      credit
                                           z
      income
                 .1054089
                            .0261574
                                         4.03
                                                0.000
                                                          .0541413
                                                                      .1566765
       cons
                -3.517947
                            .7103358
                                        -4.95
                                                0.000
                                                         -4.910179
                                                                     -2.125714
```

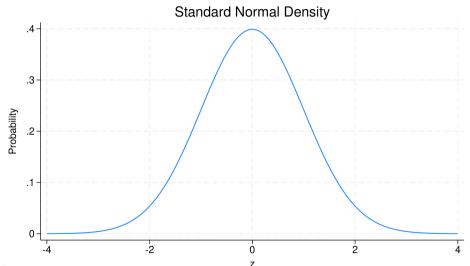

Probit

Alternatives to logistic: probit regression

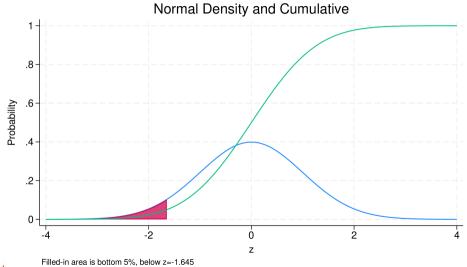
- The logistic transformation gives us an S-shaped curve relating a+bX to probability
- · There are other ways of getting this curve



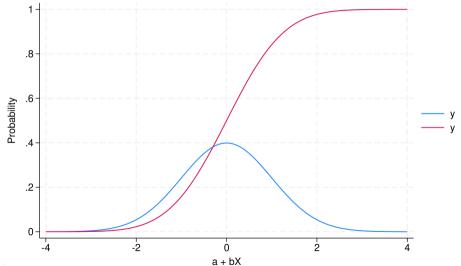
The Standard Normal: density and CDF



The Standard Normal: density and CDF



Probit transformation



Card and income: logit

. 1	ogit	card	income
-----	------	------	--------

Iteration	0:	Log	likelihood	=	-61.910066
Iteration	1:	Log	likelihood	=	-48.707265
Iteration	2:	Log	likelihood	=	-48.613215
Iteration	3:	Log	likelihood	=	-48.61304
Iteration	4:	Log	likelihood	=	-48.61304

Logistic regression

Number of obs	=	100
LR chi2(1)	=	26.59
Prob > chi2	=	0.0000
Pseudo R2	=	0.2148

Log likelihood = -48.61304

card	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
income _cons	.1054089 -3.517947		4.03 -4.95		.0541413 -4.910179	.1566765 -2.125714

Card and income: probit

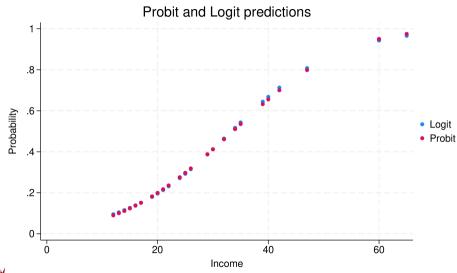
. probit card	income			
Iteration 0:	Log likelihood = -61.910066			
Iteration 1:	Log likelihood = -48.59092			
Iteration 2:	Log likelihood = -48.550994			
Iteration 3:	Log likelihood = -48.550978			
Iteration 4:	Log likelihood = -48.550978			
Probit regres	sion	Number of obs	=	100
		LR chi2(1)	=	26.72
		Prob > chi2	=	0.0000
Log likelihoo	d = -48.550978	Pseudo R2	=	0.2158

card	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
income _cons	.0622283 -2.089336		4.39 -5.47		.0344205 -2.838347	


```
. di exp(-3.517947 + .1054089*50)/(1 + exp(-3.517947 + .1054089*50))
.8522676
. di normal(-2.089336 + .0622283*50)
```

```
. di normal(-2.089336 + .0622283*50
.84662824
```


Card probability



- · Logit estimates are usually about 1.8 times probit
- · Predictions are often very close
- · Inference are usually the same
- · Using the normal distribution is intuitive
- But while log-odds are not intuitive, the link to the simple tabular odds-ratio is attractive

