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Housing tenure

• Housing tenure: probability of owning outright, BHPS data

. logit ownocc age

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7150.2389

Iteration 2: Log likelihood = -7095.7194

Iteration 3: Log likelihood = -7095.5268

Iteration 4: Log likelihood = -7095.5268

Logistic regression Number of obs = 14,182

LR chi2(1) = 3266.30

Prob > chi2 = 0.0000

Log likelihood = -7095.5268 Pseudo R2 = 0.1871

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0633183 .0012705 49.84 0.000 .0608281 .0658084

_cons -3.974023 .0697795 -56.95 0.000 -4.110788 -3.837258
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Predictions
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Predictions

LO = a + bX

Odds = exp(a + bX)

P = Odds/(1 + Odds)

X increases by 1:

• LO by b (additive)

• Odds by eb (multiplicative)

• P is more complicated
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Predicton

• Log-odds

X = x LO(x) = a + bx
X = x+1 LO(x+1) = a + b(x + 1) = a + bx + b
Difference: LO(x+1) - LO(x) = b
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Prediction: odds scale

• Odds

X = x Odds(x) = ea+bx = eaebx

X = x+1 Odds(x+1) = ea+b(x+1) = ea+bx+b = eaebxeb

Ratio Odds(x+1)/Odds(x) = eb

• Hence odds-ratio: if X increases by 1, OR increases by factor of eb
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Odds ratio

. tab univ ownocc

ownocc

univ 0 1 Total

0 8,335 3,835 12,170

1 1,514 499 2,013

Total 9,849 4,334 14,183

OR = (499/1514) /
(3835/8335) = 0.7163

. logit ownocc i.univ

Iteration 0: Log likelihood = -8729.863

Iteration 1: Log likelihood = -8710.9025

Iteration 2: Log likelihood = -8710.8468

Iteration 3: Log likelihood = -8710.8468

Logistic regression Number of obs = 14,183

LR chi2(1) = 38.03

Prob > chi2 = 0.0000

Log likelihood = -8710.8468 Pseudo R2 = 0.0022

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

1.univ -.3336103 .0551837 -6.05 0.000 -.4417683 -.2254522

_cons -.7762941 .0195124 -39.78 0.000 -.8145376 -.7380506

eb = e−.3336103 = 0.7163
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Predictions on probability scale

• Effect of X on the probability scale is non-linear

• Low when p is either high or low

• Highest at p = 0.5, odds = 1, log-odds = 0

• The steepest slope is at p = 0.5, with a value of β
4
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Marginal effects
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Multiple explanatory variables

. logit ownocc age i.univ

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7150.3435

Iteration 2: Log likelihood = -7094.4048

Iteration 3: Log likelihood = -7094.1883

Iteration 4: Log likelihood = -7094.1882

Logistic regression Number of obs = 14,182

LR chi2(2) = 3268.98

Prob > chi2 = 0.0000

Log likelihood = -7094.1882 Pseudo R2 = 0.1873

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0636471 .0012888 49.38 0.000 .061121 .0661731

1.univ .0999785 .0608614 1.64 0.100 -.0193076 .2192646

_cons -4.004807 .0724889 -55.25 0.000 -4.146883 -3.862731
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Inference

• In practice, inference is similar to OLS though based on a different logic

• For each explanatory variable, H0 : β = 0 is the interesting null

• z = β̂
SE is approximately normally distributed (large sample property)

• More usually, the Wald test is used:
(

β̂
SE

)2
has a χ2 distribution with one

degree of freedom
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Likelihood ratio tests

• The “likelihood ratio” test is thought more robust than the Wald test for smaller
samples

• Where l0 is the likelihood of the model without Xj , and l1 that with it, the
quantity

−2
(
log

l0
l1

)
= −2 (log l0 − log l1)

is χ2 distributed with one degree of freedom
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Nested models

• More generally, −2
(
log lo

l1

)
tests nested models: where model 1 contains all

the variables in model 0, plus m extra ones, it tests the null that all the extra β

coefficients are zero (χ2 with m df)

• If we compare a model against the null model (no explanatory variables, it
tests

H0 : β1 = β2 = . . . = βk = 0

• Strong analogy with F test in OLS
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Example

. qui logit ownocc age

. est store mod1

. logit ownocc age i.educ

Iteration 0: Log likelihood = -8728.6773

Iteration 1: Log likelihood = -7136.2054

Iteration 2: Log likelihood = -7077.7722

Iteration 3: Log likelihood = -7077.5203

Iteration 4: Log likelihood = -7077.5203

Logistic regression Number of obs = 14,182

LR chi2(3) = 3302.31

Prob > chi2 = 0.0000

Log likelihood = -7077.5203 Pseudo R2 = 0.1892

ownocc Coefficient Std. err. z P>|z| [95% conf. interval]

age .0652599 .0013433 48.58 0.000 .0626271 .0678927

educ

Med .3041599 .0673504 4.52 0.000 .1721556 .4361642

Lo -.1075582 .0461399 -2.33 0.020 -.1979907 -.0171257

_cons -4.060514 .0730524 -55.58 0.000 -4.203694 -3.917333

. lrtest mod1

Likelihood-ratio test

Assumption: mod1 nested within .

LR chi2(2) = 36.01

Prob > chi2 = 0.0000 14
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"Average Marginal Effect"

• "What would happen to the averege predicted probability if we increased X?"
• For linear regression, increase X by 1 => increase by b

• increase X by 10 => increase by b× 10
• increase X by 0.1 => increase by b× 0.1
• since it’s a straight line

• For AME in logistic we use the slope of the tangent, for each X value

• Average across the observed data

• Gives something like a LPM slope
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AME in Stata

. margins, dydx(age)

Average marginal effects Number of obs = 14,182

Model VCE: OIM

Expression: Pr(ownocc), predict()

dy/dx wrt: age

Delta-method

dy/dx std. err. z P>|z| [95% conf. interval]

age .0104836 .0001382 75.84 0.000 .0102126 .0107545
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Maximum likelihood estimation

• What is this “likelihood”?

• Unlike OLS, logistic regression (and many, many other models) are extimated
by maximum likelihood estimation

• In general this works by choosing values for the parameter estimates which
maximise the probability (likelihood) of observing the actual data

• OLS can be ML estimated, and yields exactly the same results
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Iterative search

• Sometimes the values can be chosen analytically
• A likelihood function is written, defining the probability of observing the actual

data given parameter estimates
• Differential calculus derives the values of the parameters that maximise the

likelihood, for a given data set

• Often, such “closed form solutions” are not possible, and the values for the
parameters are chosen by a systematic computerised search (multiple
iterations)

• Extremely flexible, allows estimation of a vast range of complex models within
a single framework
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Likelihood as a quantity

• Either way, a given model yields a specific maximum likelihood for a give data
set

• This is a probability, henced bounded [0 : 1]

• Reported as log-likelihood, hence bounded [−∞ : 0]

• Thus is usually a large negative number

• Where an iterative solution is used, likelihood at each stage is usually
reported – normally getting nearer 0 at each step
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Tabular data

• If all the explanatory variables are categorical (or have few fixed values) your
data set can be represented as a table

• If we think of it as a table where each cell contains n yeses and m − n noes (n
successes out of m trials) we can fit grouped logistic regression

• n successes out of m trials implies a binomial distribution of degree m

log
n

m − n
= α+ βX

• The parameter estimates will be exactly the same as if the data were treated
individually
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Tabular data and goodness of fit

• But unlike with individual data, we can calculate goodness of fit, by relating
observed successes to predicted in each cell

• If these are close we cannot reject the null hypothesis that the model is
incorrect (i.e., you want a high p-value)

• Where li is the likelihood of the current model, and ls is the likelihood of the
“saturated model” the test statistic is

−2
(
log

li
ls

)

• The saturated model predicts perfectly and has as many parameters as there
are “settings” (cells in the table)

• The test has df of number of settings less number of parameters estimated,
and is χ2 distributed
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Grouped card data

. glm credit income, family(binomial n)

Iteration 0: Log likelihood = -27.687962

Iteration 1: Log likelihood = -27.416557

Iteration 2: Log likelihood = -27.416501

Iteration 3: Log likelihood = -27.416501

Generalized linear models Number of obs = 24

Optimization : ML Residual df = 22

Scale parameter = 1

Deviance = 39.275792 (1/df) Deviance = 1.785263

Pearson = 32.29690239 (1/df) Pearson = 1.468041

Variance function: V(u) = u*(1-u/n) [Binomial]

Link function : g(u) = ln(u/(n-u)) [Logit]

AIC = 2.451375

Log likelihood = -27.41650068 BIC = -30.64139

OIM

credit Coefficient std. err. z P>|z| [95% conf. interval]

income .1054089 .0261574 4.03 0.000 .0541413 .1566765

_cons -3.517947 .7103358 -4.95 0.000 -4.910179 -2.125714
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Alternatives to logistic: probit regression

• The logistic transformation gives us an S-shaped curve relating a+bX to
probability

• There are other ways of getting this curve
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The Standard Normal: density and CDF
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The Standard Normal: density and CDF
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Probit transformation
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Card and income: logit

. logit card income

Iteration 0: Log likelihood = -61.910066

Iteration 1: Log likelihood = -48.707265

Iteration 2: Log likelihood = -48.613215

Iteration 3: Log likelihood = -48.61304

Iteration 4: Log likelihood = -48.61304

Logistic regression Number of obs = 100

LR chi2(1) = 26.59

Prob > chi2 = 0.0000

Log likelihood = -48.61304 Pseudo R2 = 0.2148

card Coefficient Std. err. z P>|z| [95% conf. interval]

income .1054089 .0261574 4.03 0.000 .0541413 .1566765

_cons -3.517947 .7103358 -4.95 0.000 -4.910179 -2.125714
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Card and income: probit

. probit card income

Iteration 0: Log likelihood = -61.910066

Iteration 1: Log likelihood = -48.59092

Iteration 2: Log likelihood = -48.550994

Iteration 3: Log likelihood = -48.550978

Iteration 4: Log likelihood = -48.550978

Probit regression Number of obs = 100

LR chi2(1) = 26.72

Prob > chi2 = 0.0000

Log likelihood = -48.550978 Pseudo R2 = 0.2158

card Coefficient Std. err. z P>|z| [95% conf. interval]

income .0622283 .0141879 4.39 0.000 .0344205 .0900361

_cons -2.089336 .3821555 -5.47 0.000 -2.838347 -1.340325
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Predictions

. di exp(-3.517947 + .1054089*50)/(1 + exp(-3.517947 + .1054089*50))

.8522676

. di normal(-2.089336 + .0622283*50)

.84662824
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Card probability
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Comparison

• Logit estimates are usually about 1.8 times probit

• Predictions are often very close

• Inference are usually the same

• Using the normal distribution is intuitive

• But while log-odds are not intuitive, the link to the simple tabular odds-ratio is
attractive
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