

SO5032 Lecture 11

Brendan Halpin April 21, 2024

1

Outline

- Binary logistic regression is for 2 outcomes (yes/no)
- With more than two outcomes:
 - Multinomial logistic regression (nominal outcomes)
 - Ordinal logistic regression (ordinal outcomes)

Many categories

What if we have multiple possible outcomes, not just two?

- Logistic regression is binary: yes/no
- · Many interesting dependent variables have multiple categories
 - · voting intention by party
 - · first destination after second-level education
 - housing tenure type
- · We can use binary logistic by
 - · recoding into two categories
 - dropping all but two categories
- But that would lose information

Multinomial logistic regression

- Another idea:
- Pick one of the *J* categories as baseline
- For each of J 1 other categories, fit binary models contrasting that category with baseline
- Multinomial logistic effectively does that, fitting J 1 models simultaneously

$$\log \frac{P(Y=j)}{P(Y=J)} = \alpha_j + \beta_j X, \ j = 1, \dots, c-1$$

• Which category is baseline is not critically important, but better for interpretation if it is reasonably large and coherent (i.e. "Other" is a poor choice)

Each category except one is compared against a baseline, and a single model is fitted in one go

- · Let's attempt to predict housing tenure
 - Owner occupier
 - · Local authority renter
 - Private renter
- · using age and employment status
 - Employed
 - Unemployed
 - Not in labour force
- mlogit ten3 age i.eun

Stata output

. mlogit ten3 age i.eun

Iteration 0:	log likelihood = -7222.352			
Iteration 1:	log likelihood = -6837.8941			
Iteration 2:	log likelihood = -6795.5044			
Iteration 3:	log likelihood = -6795.3972			
Iteration 4:	log likelihood = -6795.3972			
Multinomial 10	gistic regression	Number of obs	-	11,770
		LR chi2(8)	-	853.91
		Prob > chi2	-	0.0000
Log likelihood	i = -6795.3972	Pseudo R2	-	0.0591

ten	G Coef.	Std. Err.	z	P > z	[95% Conf.	Interval]		
Owner_occupies	r (base outo	(base outcome)						
Social_renter								
ag	e0008792	.0027744	-0.32	0.751	006317	.0045587		
eu	1							
Unemployed	2.197923	. 14 01 94 1	15.68	0.000	1.923148	2.472698		
Not in LM	1.818469	.0736188	24.70	0.000	1.674179	1.962759		
Retired	1.068702	.0975851	10.95	0.000	.8774384	1.259965		
_ con:	- 2.425975	.135135	-17.95	0.000	-2.690835	-2.161115		
Private_renter								
ag	e02291	.0043864	-5.22	0.000	0315072	0143128		
eu	,							
Unemployed	1.209508	.2153007	5.62	0.000	. 7875264	1.63149		
Not in LM	.8079265	.111692	7.23	0.000	. 5890142	1.026839		
Retired	.3597836	.158331	2.27	0.023	. 0494605	.6701067		
	-1.747756	.1999509	- 8.74	0.000	-2.139653	-1.355859		

7

- Stata chooses category 1 (owner) as baseline
- Each panel is similar in interpretation to a binary regression on that category versus baseline
- Effects are on the log of the odds of being in category *j* versus the baseline

Inference

- At one level inference is the same:
 - Wald test for $H_o: \beta_k = 0$
 - · LR test between nested models
- However, each variable has J 1 parameters
- Better to consider the LR test for dropping the variable across all contrasts: $H_0: \beta_1 k = \beta_2 k = ... = \beta_j k = 0$
- Thus retain a variable even for contrasts where it is insignificant as long as it has an effect overall
- Which category is baseline affects the parameter estimates but not the fit (log-likelihood, predicted values, LR test on variables)

Ordinal logit

- While mlogit is attractive for multi-category outcomes, it is imparsimonious
- For nominal variables this is necessary, but for ordinal variables there should be a better way
- We consider one useful model (others exist)
 - · Proportional odds logit

Proportional odds

- The most commonly used ordinal logistic model has another logic
- It assumes the ordinal variable is based on an unobserved latent variable
- Unobserved cutpoints divide the latent variable into the groups indexed by the observed ordinal variable
- The model estimates the effects on the log of the odds of being higher rather than lower across the cutpoints

• For j = 1 to J - 1,

$$\log \frac{P(Y > j)}{P(Y <= j)} = \alpha_j + \beta x$$

- Only one β per variable, whose interpretation is the effect on the odds of being higher rather than lower
- One α per contrast, taking account of the fact that there are different proportions in each one

But rather than compare categories against a baseline it splits into high and low, with all the data involved each time

- Using data from the BHPS, we predict the probability of each of 5 ordered responses to the assertion "homosexual relationships are wrong"
- Answers from 1: strongly agree, to 5: strongly disagree
- Sex and age as predictors descriptively women and younger people are more likely to disagree (i.e., have high values)

First approach: just use mlogit

. mlogit ropfamr i.rsex :	rage, baseout com	e(1)				
Iteration 0: log likel	ihood = -18924.1	58				
Iteration 1: log likel	ihood = -17839.5	41				
Iteration 2: log likel	ihood = -17781.0	73				
Iteration 3: log likel	ihood = -17780.9	05				
Iteration 4: log likel	ihood = -17780.9	05				
Multinomial logistic reg	ression		N um	ber of ot	8 - 12,725	
			LR	ch i2 (8)	- 2286.51	
			Pro	b > chi2	- 0.0000	
Log likelihood = -17780.	0.05		P me	ud o R2	- 0.0604	
r op fa m	Coefficient S	td. err.	z	$P \geqslant \ \mathbf{z} \ $	195X conf.	interva :
m rong ly_agree	(base ous come)				
25100						
THEX						
fenale	.3920172	084704	4.63	0.000	.2260005	.55802
Tage	0019587 .	0022428	-0.87	0.382	0063546	.002433
_ cons	.050326 .	13 03 92 4	0.39	0.700	2052385	.3 05 89 0
meither scree por din-e						
fenale	8480555	0699274	12.13	0.000	7110004	.985110
TAFE		0018436	.8.74	0.000	.0197173	012490
cons	1.808773 .	1055106	17.14	0.000	1.60 1976	2 .0 15 5
dimeree						
TREX						
fenale	1.228169	0728716	16.85	0.000	1,085343	1,37095
Tage	0370249 .	00 19 47 5	-19.01	0.000	0408418	033203
_ cons	2.354661 .	1077832	21.85	0.000	2.14341	2.5659
mrong ly_dimgree						
rsex						
fenale	1.697925 .	0796096	21.33	0.000	1.541894	1.85396
rage	0671478 .	0022283	-30.13	0.000	0715151	0 62 78 0
cons	2.884952 .	1143069	25.24	0.000	2.660915	3.1085

Ordered logistic: Stata output

Ordered logis	sti	c regression	n		Number	of obs	; =	12725
					LR chi	2(2)	=	2244.14
					Prob >	chi2	=	0.0000
Log likelihoo	bd	= -17802.08	8		Pseudo	R2	=	0.0593
ropfamr		Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
	+-							
2.rsex		.8339045	.033062	25.22	0.000	.7691	.041	.8987048
rage		0371618	.0009172	-40.51	0.000	0389	9595	035364
	+-							
/cut1		-3.833869	.0597563			-3.950	989	-3.716749
/cut2		-2.913506	.0547271			-3.02	2077	-2.806243
/cut3		-1.132863	.0488522			-1.228	8612	-1.037115
/cut4		.3371151	.0482232			. 2425	5994	.4316307

- The betas are straightforward:
 - The effect for women is .8339. The OR is $e^{.8339}$ or 2.302
 - Women's odds of being on the "disagree" rather than the "agree" (high values of the variable) side of each contrast are 2.302 times as big as men's
 - Each year of age reduced the log-odds by .03716 (OR 0.964).
- The intercepts are odd: Stata sets up the model in terms of cutpoints in the latent variable, so they are actually $-\alpha_j$

Thus the α + βX or linear predictor for the contrast between strongly agree (1) and the rest is (2-5 versus 1)

 $3.834 + 0.8339 \times \text{female} - 0.03716 \times \text{age}$

• Between strongly disagree (5) and the rest (1-4 versus 5)

 $-0.3371+0.8339\times female-0.03716\times age$

and so on.

Predicted log odds

sociology 💥

19

- The predicted log-odds lines are straight and parallel
- The highest relates to the 1-4 vs 5 contrast
- Parallel lines means the effect of a variable is the same across all contrasts
- Exponentiating, this means that the multiplicative effect of a variable is the same on all contrasts: hence "proportional odds"
- This is a key assumption

Predicted probabilities relative to contrasts

- We predict the probabilities of being above a particular contrast in the standard way
- · Since age has a negative effect, downward sloping sigmoid curves
- Sigmoid curves are also parallel (same shape, shifted left-right)
- We get probabilities for each of the five states by subtraction

- The key elements of inference are standard: Wald tests and LR tests
- Since there is only one parameter per variable it is more straightforward than MNL
- However, the key assumption of proportional odds (that there *is* only one parameter per variable) is often wrong.
- The effect of a variable on one contrast may differ from another
- Long and Freese's SPost Stata add-on contains a test for this

Compare with linear regression: ologit

. ologit ropfamr i.rsex rage Iteration 0: \log likelihood = -18924.158 Iteration 1: \log likelihood = -17818.231 Iteration 2: log likelihood = -17802.121 Iteration 3: \log likelihood = -17802.088 Iteration 4: \log likelihood = -17802.088 Number of obs = 12.725Ordered logistic regression LR chi2(2) = 2244.14 Prob > chi2 = 0.0000 Log likelihood = -17802.088 Pseudo R2 = 0.0593 ropfamr Coefficient Std. err. P> |z| [95% conf. interval] z rsex female 8339045 .033062 25.22 0.000 .7691041 .8987048 -.0371618 .0009172 -40.51 0.000 -.0389595 -.035364 rage /cut1 -3.833869 .0597563 -3.950989 -3.716749 /cut2 -2.913506.0547271 -3.02077 -2.806243/cut3 -1.132863.0488522 -1.228612-1.037115 /cut4 .3371151 .0482232 .2425994 .4316307

. reg ropfamr i.rsex rage

Source	SS	df	MS	Numbe	r of ob:	5 =	12,725
				· F(2,	12722)	=	1157.61
Model	2675.45318	2	1337.72659	Prob	> F	=	0.0000
Residual	14701.4919	12,722	1.15559597	′ R-squ	ared	=	0.1540
				- Adj R	-square	i =	0.1538
Total	17376.9451	12,724	1.36568257	Root	MSE	=	1.075
ropfamr	Coefficient	Std. err.	t	P> t	[95% d	conf.	interval]
rsex							
female	. 4938903	.0191483	25.79	0.000	. 4563	568	.5314238
rage	0208292	.0005083	-40.98	0.000	0218	255	0198329
_cons	4.073714	.0274276	148.53	0.000	4.0199	952	4.127476

