sociology $火 火$

SO5032 Lecture 11

Brendan Halpin
April 21, 2024

Outline

SO5032 Lecture 11: Multinomial and ordinal regression

SO5032 Lecture 11: Multinomial and ordinal regression

Outline

Summary

- Binary logistic regression is for 2 outcomes (yes/no)
- With more than two outcomes:
- Multinomial logistic regression (nominal outcomes)
- Ordinal logistic regression (ordinal outcomes)

SO5032 Lecture 11: Multinomial and ordinal regression

Many categories

What if we have multiple possible outcomes, not just two?

- Logistic regression is binary: yes/no
- Many interesting dependent variables have multiple categories
- voting intention by party
- first destination after second-level education
- housing tenure type
- We can use binary logistic by
- recoding into two categories
- dropping all but two categories
- But that would lose information

Multinomial logistic regression

- Another idea:
- Pick one of the J categories as baseline
- For each of $J-1$ other categories, fit binary models contrasting that category with baseline
- Multinomial logistic effectively does that, fitting $J-1$ models simultaneously

$$
\log \frac{P(Y=j)}{P(Y=J)}=\alpha_{j}+\beta_{j} X, j=1, \ldots, c-1
$$

- Which category is baseline is not critically important, but better for interpretation if it is reasonably large and coherent (i.e. "Other" is a poor choice)

Multinomial logit: $J-1$ contrasts

Each category except one is compared against a baseline, and a single model is fitted in one go

Example

- Let's attempt to predict housing tenure
- Owner occupier
- Local authority renter
- Private renter
- using age and employment status
- Employed
- Unemployed
- Not in labour force
- mlogit ten3 age i.eun

Stata output

- mlogit ten3 age i.eun

Iteration 0: log likelihood $=-7222.352$ Iteration 1: $\quad \log$ likelihood $=-6837.8941$ Iteration 2: $\quad \log$ likelihood $=-6795.5044$ Iteration 3: $\quad \log$ likelihood $=-6795.3972$ Iteration 4: log likelihood $=-6795.3972$

Multinomial logistic regression	Number of obs	$=11,770$
	LR chi2 (8)	$=853.91$
Log likelihood $=-6795.3972$	Prob >chi2	$=0.0000$
	Pseudo R2	$=0.0591$

Interpretation

- Stata chooses category 1 (owner) as baseline
- Each panel is similar in interpretation to a binary regression on that category versus baseline
- Effects are on the log of the odds of being in category j versus the baseline

Inference

- At one level inference is the same:
- Wald test for $H_{0}: \beta_{k}=0$
- LR test between nested models
- However, each variable has $J-1$ parameters
- Better to consider the LR test for dropping the variable across all contrasts:
$H_{0}: \beta_{1} k=\beta_{2} k=\ldots=\beta_{j} k=0$
- Thus retain a variable even for contrasts where it is insignificant as long as it has an effect overall
- Which category is baseline affects the parameter estimates but not the fit (log-likelihood, predicted values, LR test on variables)

SO5032 Lecture 11: Multinomial and ordinal regression

Ordinal logit

Predicting ordinal outcomes

- While mlogit is attractive for multi-category outcomes, it is imparsimonious
- For nominal variables this is necessary, but for ordinal variables there should be a better way
- We consider one useful model (others exist)
- Proportional odds logit

SO5032 Lecture 11: Multinomial and ordinal regression

Proportional odds

The proportional odds model

- The most commonly used ordinal logistic model has another logic
- It assumes the ordinal variable is based on an unobserved latent variable
- Unobserved cutpoints divide the latent variable into the groups indexed by the observed ordinal variable
- The model estimates the effects on the log of the odds of being higher rather than lower across the cutpoints

The model

- For $j=1$ to $J-1$,

$$
\log \frac{P(Y>j)}{P(Y<=j)}=\alpha_{j}+\beta x
$$

- Only one β per variable, whose interpretation is the effect on the odds of being higher rather than lower
- One α per contrast, taking account of the fact that there are different proportions in each one

$J-1$ contrasts again, but different

But rather than compare categories against a baseline it splits into high and low, with all the data involved each time

An example

- Using data from the BHPS, we predict the probability of each of 5 ordered responses to the assertion "homosexual relationships are wrong"
- Answers from 1: strongly agree, to 5: strongly disagree
- Sex and age as predictors - descriptively women and younger people are more likely to disagree (i.e., have high values)

First approach: just use mlogit

Iteration 0: \log likelihood $=-18924.158$						
Iteration 1: 10 g likel	$\log 1 \mathrm{ikel}$ ihood $=-17839.541$					
Iteration 2: \log likel	$\log 1$ ikeli hood $=-17781.073$					
Iteration 3: \log likel	\log likelihood $=-17780.905$					
Iteration 4: \log likelihood $=-17780.905$						
Multincmial logistic regression			$\begin{aligned} \text { Number of obs } & =12,725 \\ \text { LR chi2 }(8) & =2286.51 \\ \text { Prob }>\text { chi2 } & =0.0000 \end{aligned}$			
Log 1ikelihood $=-17780.905$			Pseudo R2 $=0.0604$			
ropfamr	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf.	interval]
strongly -agree	(base outcome)					
agree						
rsex						
female	. 3920172	. 084704	4.63	0.000	. 2260005	. 558034
rage	-. 0019587	. 0022428	-0.87	0.382	-. 0063546	. 0024371
-cons	. 050326	. 1303924	0.39	0.700	-. 2052385	. 3058905
neither_agree_nor_diswe						
rsex						
female	. 8480555	. 0699274	12.13	0.000	. 7110004	. 9851106
rage	-. 016104	. 0018436	-8.74	0.000	-. 0197173	-. 0124906
-cons	1.808773	. 1055106	17.14	0.000	1.601976	2.01557
disagree						
rsex						
female	1.228169	. 0728716	16.85	0.000	1.085343	1.370995
rage	-. 0370249	. 0019475	-19.01	0.000	-. 0408418	-. 0332079
-cons	2.354661	. 1077832	21.85	0.000	2.14341	2.565912
strongly -disagree						
rsex						
female	1.697925	. 0796096	21.33	0.000	1.541894	1.853957
rage	-. 0671478	. 0022283	-30.13	0.000	-. 0715151	-. 0627804
-cons	2.884952	. 1143069	25.24	0.000	2.660915	3.10899

Ordered logistic: Stata output

sociology

Interpretation

- The betas are straightforward:
- The effect for women is .8339. The OR is $e^{.8339}$ or 2.302
- Women's odds of being on the "disagree" rather than the "agree" (high values of the variable) side of each contrast are 2.302 times as big as men's
- Each year of age reduced the log-odds by 03716 (OR 0.964).
- The intercepts are odd: Stata sets up the model in terms of cutpoints in the latent variable, so they are actually $-\alpha_{j}$

Linear predictor

- Thus the $\alpha+\beta X$ or linear predictor for the contrast between strongly agree (1) and the rest is ($2-5$ versus 1)

$$
3.834+0.8339 \times \text { female }-0.03716 \times \text { age }
$$

- Between strongly disagree (5) and the rest (1-4 versus 5)

$$
-0.3371+0.8339 \times \text { female }-0.03716 \times \text { age }
$$

and so on.

Predicted log odds

Predicted log odds per contrast

- The predicted log-odds lines are straight and parallel
- The highest relates to the $1-4$ vs 5 contrast
- Parallel lines means the effect of a variable is the same across all contrasts
- Exponentiating, this means that the multiplicative effect of a variable is the same on all contrasts: hence "proportional odds"
- This is a key assumption

Predicted probabilities relative to contrasts

Predicted probabilities relative to contrasts

- We predict the probabilities of being above a particular contrast in the standard way
- Since age has a negative effect, downward sloping sigmoid curves
- Sigmoid curves are also parallel (same shape, shifted left-right)
- We get probabilities for each of the five states by subtraction

Inference

- The key elements of inference are standard: Wald tests and LR tests
- Since there is only one parameter per variable it is more straightforward than MNL
- However, the key assumption of proportional odds (that there is only one parameter per variable) is often wrong.
- The effect of a variable on one contrast may differ from another
- Long and Freese's SPost Stata add-on contains a test for this

Compare with linear regression: ologit

sociology

Compare with linear regression: regression

. reg ropfamr i.rsex rage

sociology

