

SO5041 Unit 7: Distributions

Brendan Halpin, Sociology Autumn 2020/1

SO5041 Unit 7

Characteristics of distributions

Distributions

- We have seen how to display and summarise the distribution of variables:
 - Categorical: frequency distribution, percentage distribution, bar and pie charts
 - Quantitative (interval/ratio): mean, median, IQR, standard deviation, histogram, box-plot

Distributions have shapes

- The shape of the histogram tells us about the distribution of the variable
- If a variable is "uniformly" distributed we see a flat distribution between the extremes:

Heaped distributions

 More often we see "heaped distributions" where more of the observations cluster around the centre, like this example (age) from the 1999 school-leavers' survey:

Many patterns

There are many patterns we might see:

- Uniform
- Extremes
- Bimodal
- Uni-modal

Polarisation

//www.fivothirtwoight.com

Uni-modal differences

- Symmetric (with different levels of kurtosis)
 - platykurtic flatter
 - mesokurtic average
 - leptokurtic very concentrated around centre
- Asymmetric
 - · Positively skewed (to right)
 - Negatively skewed (to left)

SO5041 Unit 7

The Normal distribution

Mathematically defined distributions

- There are some patterns that are defined "theoretically" or mathematically
- Among these the most important is the Normal Distribution:

• This is the famous "bell-shaped curve"

The Normal Distribution

- · The normal distribution is
 - symmetric (no skew)
 - mesokurtic (between flatter and pointier)
- The mean, mode and median are the same
- The farther you go from the mean, the lower the proportion of cases, in each direction symmetrically

Histograms display distributions

• We can see what a histogram of a variable drawn from a normally distributed population looks like:

 As the sample gets bigger, the histogram approximates the theoretical distribution better

Ç

Normal: mean and standard deviation

- What makes the normal distribution useful is that its form is well understood:
 - It is completely characterised by its mean and its standard deviation

Same SD, different mean

Online app: http://teaching.sociology.ul.ie:3838/apps/normsd

Normal distribution: well-understood

- About 68% of the cases in a normal distribution are within 1 SD on either side of its mean
- 95% are within \pm 1.96 standard deviations of the mean
- 97.5% are within \pm 2.24 standard deviations of the mean

