

SO5041 Unit 15: Correlation

Brendan Halpin, Sociology Autumn 2023/4

SO5041 Unit 15

Correlation

Remaining topics

- From today we look at two related techniques for interval and ratio variables:
 - · Correlation: a single measure of association for interval/ratio variables
 - Linear Regression: a very powerful technique for describing the relationship between one interval/ratio variable and one or more others

SO5041 Unit 15

Measures of association for interval/ratio variables

Scatterplots

 Scatterplots can be considered as interval/ratio analogue of cross-tabs: arbitrarily many values mapped out in 2-dimensions

Figure 1: Age 47, income €6,535.

Age vs Income

Figure 2: Age and income, Wave 15 BHPS.

Summarising association simply

- We can see a lot of detail in a scatterplot, but sometimes we can summarise it in simple ways
- For instance the two variables may have a positive association: when one is high the other tends to be high, and vice versa
- Or a negative association: when one is high the other tends to be low

Strong positive

Figure 3: Fictional data displaying a strong positive linear relationship.

Correlation coefficient: 0.851

Strong negative

Figure 4: Fictional data displaying a strong negative linear relationship.

Correlation coefficient: -0.866

Weak negative

Figure 5: Fictional data displaying a weak negative linear relationship.

Correlation coefficient: -0.410

7

No relationship

Figure 6: Fictional data displaying absence of a relationship.

https://teaching.sociology.ul.ie/apps/corrgame

The correlation coefficient

- How does it work?
- Combines X deviations $(X_i \overline{X})$ and Y deviations $(Y_i \overline{Y})$ i.e., compares each point with the mean for X and the mean for Y
- With positive association, cases below average on X tend to be below average on Y (and above average on X tend to be above average on Y)
- With negative association, cases below average on X tend to be above average on Y and vice versa

Deviations

Figure 7: X and Y deviations for correlation

Combining deviations

- With positive association below the mean, both X_i X̄ and Y_i Ȳ are negative, so (X_i X̄)(Y_i Ȳ) is positive
- With negative association, $X_i \bar{X}$ and $Y_i \bar{Y}$ tend to have opposite signs, so $(X_i \bar{X})(Y_i \bar{Y})$ is negative

Pearson Product-Moment Correlation

Coefficient

• Pearson Product-Moment Correlation Coefficient (r)

$$r = \frac{SXY}{\sqrt{SXX.SYY}}$$
$$SXX = \Sigma(X - \bar{X})^{2}$$
$$SYY = \Sigma(Y - \bar{Y})^{2}$$
$$SXY = \Sigma(X - \bar{X})(Y - \bar{Y})$$

- Range: −1 ≤ *r* ≤ +1
- *r* is a symmetric measure: $r_{xy} = r_{yx}$

- Changing the scale of one variable (additively or multiplicatively) doesn't change the results
 - Corr(x, y) = Corr(x + c, y)
 - Corr(x, y) = Corr(x * c, y)
- "Scale invariant"
- · Suits both interval and ratio variables

Pitfalls

- · Correlation is not causality
- · Absence of correlation is not absence of relationship: non-linearity

Non-linear!

Figure 8: A strong non-linear relationship and a near-zero correlation.

Correlations on data: School Leaver's Earnings

Correlations on data: BHPS

Strong and weak

- There is a strong simple mechanism linking gross and net earnings, leading to a very high correlation of 0.965
- The relationship between age and income is much more complex, but is still real: thus a much lower correlation of 0.223

Hypothesis testing

- Null hypothesis: no association, correlation = 0
- Test statistic: $\frac{r}{SE}$, normally distributed (SE not in output)
- P-value: Chance of getting a correlation this far from zero if null is true

	ofimn	oage
ofimn	1.0000	
oage	0.2228 0.0000	1.0000

. pwcorr ofimn oage, sig

Estimating correlations in Stata

. pwcorr ofimn ojbhgs ojbhrs, sig

	ofimn	ojbhgs	ojbhrs
ofimn	1.0000		
ojbhgs	0.4851 0.0000	1.0000	
ojbhrs	0.4245 0.0000	0.2489 0.0000	1.0000

Viewing the same correlations

Summary

- Correlation: summarising straight-line association between two interval/ratio variables
- Range: -1 (perfect negative) through 0 (no association) to 1 (perfect positive)
- Beware pitfalls
 - "correlation isn't causation"
 - · absence of linear association isn't absence of association

