

SO5041 Unit 16: Regression

Brendan Halpin, Sociology Autumn 2023/4

SO5041 Unit 16

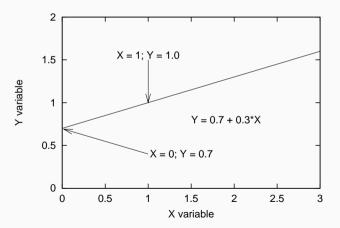
Outline

Outline

- Moving on from the idea of correlation: relating two (or more) interval/ratio variables
- · Identifying the line that best summarises the scatterplot
- Directional: X predicts Y
- Predictive: Given the relationship between X and Y, knowing X helps us predict Y better
- · Bivariate regression: one X variable predicting one Y
- Multiple regression: multiple X variables predicting one Y
- Reading: Agresti Ch 9

SO5041 Unit 16

Bivariate Linear Regression


Bivariate regression analysis

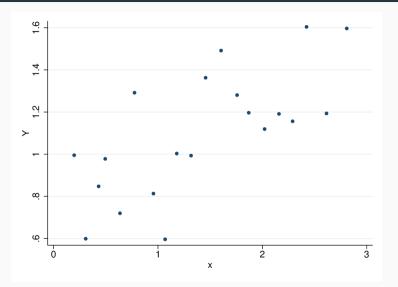
- Regression Analysis: Fitting the "best" line through the scatter
- Very closely related to correlation, but treats one variable as dependent and the other(s) as explanatory, while correlation is asymmetric

Some geometry: equation of a line

Y = a + bX

Applet

https://teaching.sociology.ul.ie/apps/abx/



Predictive in intent

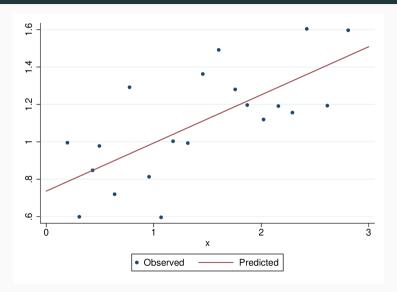
- Asymmetric: use X to predict Y
- Find the best *a* and *b* to summarise the data scatter:
 - 'Best' is defined as minimising the squared deviations between the observed data-points and the fitted line, hence often called 'least-squares' regression
 - Deviations are the vertical distance between the line and the observed data points.
 - Very similar logic to the mean (minimise variance).

A simple example: scatterplot

Regression in Stata

. reg y x

Source	SS	df	MS	Number of ob	s =	20
				- F(1, 18)	=	17.51
Model	.820567701	1	.820567701	. Prob > F	=	0.0006
Residual	.843474028	18	.046859668	R-squared	=	0.4931
				- Adj R-square	d =	0.4650
Total	1.66404173	19	.087581144	Root MSE	=	.21647
У	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
x	.2574678	.0615269	4.18	0.001 .1282	045	.3867311
_cons	.7363586	.0998061	7.38	0.000 .5266	737	.9460435



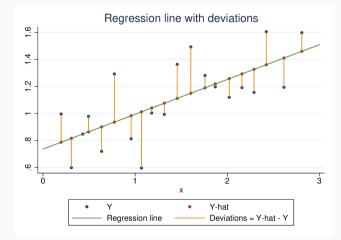
$$\hat{Y} = 0.7364 + X \times 0.2575$$

- To draw the line by hand, calculate two predicted values for Y at opposite sides of the graph
 - e.g., for X = 0, Y = a = 0.7364
 - for X = 3, Y = a + 3b = 0.7364 + 30.2575 = 1.509
- · Join them with a ruler!

The line

Predicted values

• The line gives a predicted value of *Y* for each value of *X*:


$$\hat{Y} = a + bX$$

 $Y = \hat{Y} + e$
 $Y = a + bX + e$

e is the 'residual' or deviation.

• That is, knowing X we "predict" or guess Y as a + bX

Deviations from the line

Regression equation

• Regression equation: the estimate of Y, called \hat{Y} , depends on X:

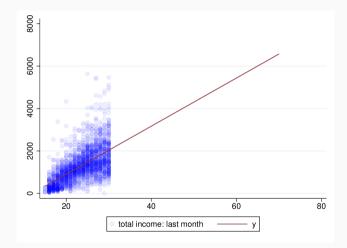
 $\hat{Y} = a + bX$

• The regression slope *b* depends on *SXY* and *SXX*, the intercept *a* is calculated from *b* and the mean values of *Y* and *X*:

SXX

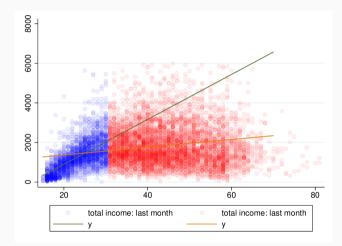
$$b = rac{SXY}{SXX}$$
 $a = ar{Y} - bar{X}$ $= \sum (X_i - ar{X})^2$

$$SXY = \sum (X_i - \bar{X})(Y_i - \bar{Y})$$

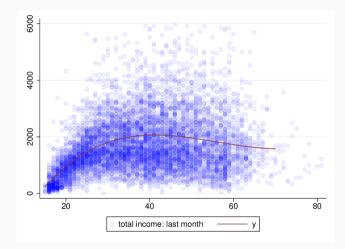


Pitfalls

- Spurious relationships will fit just as well as real ones (e.g., if A affects B and A affects C, B and C will seem to be related and a regression line might fit well)
- Predicting outside the range of the data: the relationship we see only holds for the data we use, and it may well not hold for higher (or lower) values of X and Y
- · Like correlation, non-linear relationships may be missed



Predicting outside the range of the data: income and age for <30 years



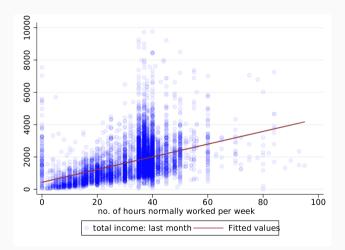
Predicting outside the range of the data: full age range

Income and age: true relationship is non-linear

- How well does it "fit"? We use R² to tell:
 - ranges from 0: no relationship at all
 - to 1: perfect relationship, all *Y*s are exactly equal to a + bX
 - · values from 0.7 up indicate quite a good relationship
 - · smaller values may indicate an interesting relationship
- In the case of bivariate regression (one independent variable), R² is the same as r × r (squared correlation coefficient).

Hypothesis testing

- If we regress Y on X we are asking whether X has a (statistical) effect on Y
- · The null is therefore that X has no "effect" on Y
- This is equivalent to a slope, β , of zero: $\hat{Y} = \alpha + \mathbf{0} \times X$
- In any sample from a population where this is true, b, the estimate of β is likely to be close to, but not exactly zero
- We use its SE to create a t-stat: $t = \frac{\hat{\beta}}{\text{SE}}$
- DF = n k + 1 where k in number of X variables


Regression in Stata:

. reg ofimn ojbhrs

Source	SS	df	MS	Number of ob:	5 =	7,945
				F(1, 7943)	=	1398.95
Model	1.7000e+09	1	1.7000e+09	Prob > F	=	0.0000
Residual	9.6522e+09	7,943	1215179.2	R-squared	=	0.1497
				Adj R-squared	i =	0.1496
Total	1.1352e+10	7,944	1429021.17	Root MSE	=	1102.4
ofimn	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
ojbhrs	39.34202	1.051854	37.40	0.000 37.280	011	41.40393
_cons	434.7389	36.8029	11.81	0.000 362.59	955	506.8822

Predicted regression line

SO5041 Unit 16

Multiple Regression

- Regression analysis can be extended to the case where there is more than one explanatory variable – multiple regression
- This allows us to estimate the net simultaneous effect of many variables, and thus to begin to disentangle more complex relationships
- Interpretation is relatively easy: each variable gets its own slope coefficient, standard error and significance
- The slope coefficient is the effect on the dependent variable of a 1 unit change in the explanatory variable, *while taking account of the other variables*

Example

- Example: domestic work time may be affected by gender, and also by paid work time: competing explanations – one or the other, or both could have effects
- We can fit bivariate regressions:

 $DWT = a + b \times PaidWork$

or

 $DWT = a + b \times Female$

• We can also fit a single multiple regression

 $DWT = a + b \times PaidWork + c \times Female$

Dichotomous variables

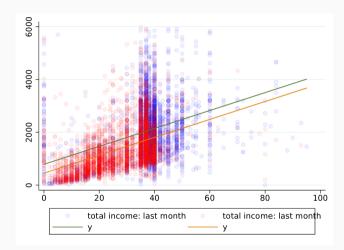
- We deal with gender in a special way: this is a *binary* or *dichotomous* variable

 has two values
- We turn it into a yes/no or 0/1 variable e.g., female or not
- If we put this in as an explanatory variable a *one unit change in the explanatory variable* is the difference between being male and female
- Thus the *c* coefficient we get in the *DWT* = *a* + *b* × *PaidWork* + *c* × *Female* regression is the net change in predicted domestic work time for females, once you take account of paid work time.
- The *b* coefficient is then the net effect of a unit change in paid work time, once you take gender into account.

Sex only predicting income

. reg ofimn i.osex

Source	SS	df	MS	Numbe	er of obs	=	7,945
				F(1,	7943)	=	606.72
Model	805586626	1	805586626	Prob	> F	=	0.0000
Residual	1.0547e+10	7,943	1327780.12	R-sq	lared	=	0.0710
				Adj I	R-squared	=	0.0708
Total	1.1352e+10	7,944	1429021.17	Root	MSE	=	1152.3
ofimn	Coef.	Std. Err.	t	P> t	L95% Co	nf.	Interval]
osex							
female	-637.3352	25.87467	-24.63	0.000	-688.056	3	-586.614
_cons	2062.275	18.64855	110.59	0.000	2025.71	9	2098.831


Sex and job hours predicting income

. reg ofimn ojbhrs i.osex

Source	SS	df	MS		er of obs		7,945
	4 0005 100		040704007		7942)	=	794.96
Model	1.8935e+09	2	946761687		> F	=	0.0000
Residual	9.4586e+09	7,942	1190962.07	R-sq	ıared	=	0.1668
				Adjl	R-squared	1 =	0.1666
Total	1.1352e+10	7,944	1429021.17	Root	MSE	=	1091.3
ofimn	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
ojbhrs	33.96065	1.123629	30.22	0.000	31.758	304	36.16326
osex							
female	-337.0889	26.44232	-12.75	0.000	-388.92	228	-285.255
_cons	787.1759	45.73595	17.21	0.000	697.52	214	876.8304

Sex and hours

