Gender change in Irish political representation

Estimating the effect of the gender quota: The initial question

A gender quota for candidates was imposed in the 2016 Irish election (see e.g., The question arises whether it had an impact. As a first pass consider the following table:1

           |        gender
      dail |         f          m |     Total
      2011 |        21        145 |       166 
           |     12.65      87.35 |    100.00 
      2016 |        32        116 |       148 
           |     21.62      78.38 |    100.00 
     Total |        53        261 |       314 
           |     16.88      83.12 |    100.00

This is clearly a big rise. Is it statistically significant?

Continue reading

Pseudo-R2 is pseudo

People like the R2 stat from linear regression so much that they re-invent it in places it doesn’t naturally arise, such as logistic regression. The true R2 has nice clean interpretations, as the proportion of variation explained or the square of the correlation between observed and predicted values. The fake or pseudo-R2 statistics are often based on relating the loglikelihood of the current model against that of the null model (intercept only) in some way. There is a good overview at UCLA.

One of the most popular pseudo-R2 is McFadden’s. This is defined as 1 – LLm/LL0 where LLm is the log-likelihood of the current model, and LL0 that of the null model. This appears to have the range 0-1 though 1 will never be reached in practice.

It is well known that if we fit linear regressions by maximum-likelihood, we get exactly the same parameter estimates as if we fit by ordinary least squares. We can demonstrate this in Stata:

. sysuse auto
. reg price headroom mpg
. glm price headroom mpg

Since the ML estimation of the linear regression gives us loglikelihoods, we can calculate pseudo-R2 and true R2 for the same model. This code does it for a range of simple models with Stata’s demonstration “auto” data set:

sysuse auto, clear
glm price
local basell = e(ll)
local vars "mpg rep78 headroom trunk weight length turn displacement gear_ratio foreign"
local rhs = ""

gen r2 = .
gen mcf = .

local i 0
foreach var in `vars' {
local i = `i'+1
local rhs = "`rhs' `var'"
qui glm price `rhs'
local mcfad = 1 - (e(ll)/ `basell')
qui reg price `rhs'
di %6.3f `=e(r2)' %6.3f `mcfad' " : `rhs'"
qui replace r2 = `=e(r2)' in `i'
qui replace mcf = `mcfad' in `i'

label var mcf "McFadden Pseudo-R2"
label var r2 "R-squared"
scatter mcf r2

This generates the following graph, in which we see that there is a monotonic but non-linear relationship between the two measures. We can also see very clearly that pseudo-R2 is always substantially lower than R2. Thus it should be clear that while it emulates R2 in spirit, it doesn’t actually approximate it. So when people talk about proportion of variation explained in a logistic regression, shoot them down.

pseudo-R2 vs R2

UCAS, ethnicity and admission rates

UCAS, the UK university admissions clearing house, have released data relating to ethnicity and admissions to English universities, in part in response to Vikki Boliver‘s research in Sociology suggesting that members of ethnic minorities are less likely to be admitted to Russell Group universities.

The analysis note with the release is sober and correct, showing a mostly consistent pattern of offer rates for ethnic minority students being lower (but not far lower) than expected. However, UCAS’s press release seems to have suggested that the effect is almost explained away, and attributes it to ethnic minority students disproportionately applying to courses with low acceptance rates. This does not seem to be the case.

Update: see also next blog entry.
Continue reading

Substitution costs from transition rates

Given that determining substitution costs in sequence analysis is such a bone of contention, many researchers look for a way for the data to generate the costs. The typical way to do this is, is by pooling transition rates and defining the substitution cost to be:

2 – p(ij) – p(ji)

where p(ij) is the transition rate from state i to state j. Intuitively, states that are closer to each other will have higher transitions, and vice versa. Continue reading

Using Emacs to send mail later

There are lots of ways to schedule mail to be sent some time in the future, but it is easy, for those of us who write and send mail from Emacs, to use that program and the Unix atd batch system to do it. If you use message-mode to write messages, this approach means that creating mails for delayed sending is the same as for normal sending.

Continue reading